
Last updated:
11/29/2021

Problem M14.1: Microprogramming and Bus-Based Architectures

Problem M14.1.A Memory-to-Memory Add

Worksheet M14.1-1 shows one way to implement ADDm in microcode.

Note that to maintain “clean” behavior of your microcode, no registers in the register file should change their value
during execution (unless they are written to). This does not refer to the registers in the datapath (IR, A, B, MA).
Thus, using asterisks for the load signals (ldIR, ldA, ldB, and ldMA) is acceptable as long as the correctness of your
microcode is not affected.

Problem M14.1.B Implementing DBNEZ Instruction

The question asked to jump to PC+4+offset. This ignores that the immediate value needs to be shifted left by 2
before it can be added to PC+4, to make sure we don’t run into alignment problems. We did this because the data
path given doesn’t really have facilities for shifting.

Worksheet M14.1-2 shows one way to implement DBNEZ in microcode.

Problem M14.1.C Implementing RETZ Instruction

Worksheet M14.1-3 shows one way to implement RETZ in microcode.

Problem M14.1.D Implementing CALL Instruction

Worksheet M14.1-4 shows one way to implement CALL in microcode.

Problem M14.1.E Instruction Execution Times

Instruction Cycles
SUB R3,R2,R1 3 + 3 = 6
SUBI R2,R1,#4 3 + 3 = 6
SW R1,0(R2) 3 + 5 = 8
BNEZ R1,label # (R1 == 0) 3 + 2 = 5
BNEZ R1,label # (R1 != 0) 3 + 5 = 8
BEQZ R1,label # (R1 == 0) 3 + 5 = 8
BEQZ R1,label # (R1 != 0) 3 + 2 = 5
J label 3 + 3 = 6
JR R1 3 + 2 = 5
JAL label 3 + 4 = 7
JALR R1 3 + 4 = 7

As discussed in Lecture 21, instruction execution includes the number of cycles needed to fetch the instruction. The
lecture notes used 4 cycles for the fetch phase, while Worksheet 1 shows that this phase can actually be
implemented in 3 cycles —either answer is fine. The above table uses 3 cycles for the fetch phase. Overall, SW,
BNEZ (for a taken branch), and BEQZ (for a taken branch) take the most cycles to execute (8), while BNEZ (for a
not-taken branch), BEQZ (for a not-taken branch) and JR take the fewest cycles (5).

Last updated:
11/29/2021

State PseudoCode Ld

IR
Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

ld
MA

Mem
W

en
Mem

Ex
Sel

en
Imm

µBr Next State

FETCH0: MA <- PC; A <- PC 0 PC 0 1 1 * * 0 1 * 0 * 0 N *
 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *
 PC <- A+4;

dispatch
0 PC 1 1 * * INC_A_4 1 * * 0 * 0 D *

. . .
NOP0: microbranch

Back to FETCH0
0 * * 0 * * * 0 * * 0 * 0 J FETCH0

ADDm0: MA <- R[rs] 0 rs 0 1 * * * 0 1 * 0 * 0 N *

 A <- Mem 0 * * 0 1 * * 0 * 0 1 * 0 N *
 MA <- R[rt] 0 rt 0 1 0 * * 0 1 * 0 * 0 N *
 B <- Mem 0 * * 0 0 1 * 0 * 0 1 * 0 N *
 MA <- R[rd] * rd 0 1 0 0 * 0 1 * 0 * 0 N *
 Mem <- A+B; fetch * * * 0 * * ADD 1 * 1 1 * 0 J FETCH0

Worksheet M14.1-1: Implementation of the ADDm instruction

Last updated:
11/29/2021

State PseudoCode ld

IR
Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

Ld
MA

Mem
W

en
Mem

Ex
Sel

en
Imm

µBr Next State

FETCH0: MA <- PC;
A <- PC

* PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *

 PC <- A+4;
B <- A+4

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

* * * 0 * * * 0 * * 0 * 0 J FETCH0

DBNEZ: A <- rs 0 rs 0 1 1 0 * 0 * * 0 * 0 N *

 rs <- A – 1
µB to FETCH0 if
zero

0 rs 1 1 * 0 DEC_A_1 1 * * 0 * 0 Z FETCH0

 A <- sExt16(IR) * * * 0 1 0 * 0 * * 0 sExt16 1 N *

 PC <- A+B
jump to
FETCH0

* PC 1 1 * * ADD 1 * * 0 * 0 J FETCH0

Worksheet M14.1-2: Implementation of the DBNEZ Instruction

Last updated:
11/29/2021

State PseudoCode Ld

IR
Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

Ld
MA

Mem
W

en
Mem

Ex
Sel

en
Im
m

µBr Next State

FETCH0: MA <- PC;
A <- PC

* PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *

 PC <- A+4;
B <- A+4

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

* * * 0 * * * 0 * * 0 * 0 J FETCH0

retz0 A <- Reg[Rs] 0 Rs 0 1 1 * * 0 * * 0 * 0 N *

retz1 A <- Reg[Rt]
MA <- Reg[Rt]
uBr to retz3 if
zero

0 Rt 0 1 1 * COPY_A 0 1 * 0 * 0 Z retz3

retz2 * * * 0 * * * 0 * * 0 * 0 J FETCH0

retz3 PC <- MEM 0 PC 1 1 0 * * 0 * 0 1 * 0 N *

retz4 Reg[Rt] < A+4 * Rt 1 1 * * INC_A_4 1 * * 0 * 0 J FETCH0

Worksheet M14.1-3: Implementation of the RETZ Instruction

Last updated:
11/29/2021

State PseudoCode ld

IR
Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

Ld
MA

Mem
W

en
Me
m

Ex
Sel

en
Imm

µBr Next State

FETCH0: MA <- PC;
A <- PC

* PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *

 PC <- A+4;
B <- A+4

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

* * * 0 * * * 0 * * 0 * 0 J FETCH0

CALL: MA <- R[ra];
A <- R[ra]

0 ra 0 1 1 0 * 0 1 * 0 * 0 N *

 Mem <- B 0 * * 0 0 0 COPY_B 1 * 1 1 * 0 N *

 R[ra] <- A - 4 0 ra 1 1 * 0 DEC_A_4 1 * * 0 * 0 N *

 A <- sExt16(IR) * * * 0 1 0 * 0 * * 0 sExt16 1 N *

 PC <- A+B;
jump to FETCH0

* PC 1 1 * * ADD 1 * * 0 * 0 J FETCH0

Worksheet M14.1-4: Implementation of the CALL Instruction

Last updated:
11/29/2021

Problem M14.1.F Exponentiation

In the given code, ‘m’ and ‘n’ are always nonnegative integers. Therefore, we don’t have to worry about the cases
where ‘i’ is larger than ‘n’ or ‘j’ is larger than ‘m’. Also, for this problem, 0 raised to any power is just 0, while any
nonzero value raised to the 0th power is 1. Note that the pseudo code that is given returns a value of 0 when 0 is
raised to the 0th power. However, the actual pow() function in the standard C library returns a value of 1 for this
case. We present the solution that implements the pseudo code given in the problem rather than C’s pow()
function.

R5: temp, R6: j

ADD R3, R0, R0 ; put 0 in result
BEQZ R1, _END_I ; if m is 0, end
ADDI R3, R0, #1 ; put 1 in result

 BEQZ R2, _END_I ; if n is 0, the loop is over; we set
; i equal to n and count down to 0—since
; R2 does not have to be preserved, we
; use it for i

 SUBI R5, R1, #1 ; temp = m – 1
 BEQZ R5, _END_I ; if m is 1, the result will be 1,

; so end the program
_START_I:

ADD R5, R0, R3 ; temp = result
SUBI R6, R1, #1 ; j = m – 1 (the number of times to

; execute the second loop)
_START_J:

 ADD R3, R3, R5 ; result += temp
SUBI R6, R6, #1 ; j--
BNEZ R6, _START_J ; Re-execute loop until j reaches 0

_END_J:
SUBI R2, R2, #1 ; i--
BNEZ R2, _START_I ; Re-execute loop until i reaches 0

_END_I:

To compute the number of instructions and cycles to execute this code, let us consider subsets of the code.

Code # of instructions # of cycles
ADD R3, R0, R0
BEQZ R1, _END_I

2 6´1 + 8´1 = 14 (m = 0)
6´1 + 5´1 = 11 (m > 0)

ADDI R3, R0, #1
 BEQZ R2, _END_I

2 (if m > 0) 6´1 + 8´1 = 14 (n = 0)
6´1 + 5´1 = 11 (n > 0)

 SUBI R5, R1, #1
BEQZ R5, _END_I

2 (if m > 0 and n > 0) 6´1 + 8´1 = 14 (m =1)
6´1 + 5´1 = 11 (m > 1)

_START_I:
 ADD R5, R0, R3
 SUBI R6, R1, #1

2n (if m > 1 and n > 0)

(6´2)´n = 12n

_START_J:
 ADD R3, R3, R5

SUBI R6, R6, #1
 BNEZ R6, _START_J

3n(m-1)

(if m > 1 and n > 0)

(6´2 + 5´1)´n + (6´2 + 8´1) ´(m-
2)´n = 17n + 20n(m-2)

_END_J:
SUBI R2, R2, #1

 BNEZ R2, _START_I

2n (if m > 1 and n > 0)

(6 + 8)´n – 3 = 14n-3

Last updated:
11/29/2021

From the above table, we can complete the table given in the problem.

m,n Instructions Cycles
0, 1 2 14
1, 0 4 25
2, 2 20 116
3, 4 46 282
M, N (M = 0) 2 14
M, N (M > 0, N = 0) 4 25
M, N (M = 1, N > 0) 6 36
M, N (M > 1, N > 0) 3N(M-1)+4N+6 20N(M-2)+43N+30

Problem M14.1.G Microcontroller Jump Logic

One way to start designing the microcontroller jump logic is to write out a table of the input signals and the output
bits. For clarity, the bits that encode the µJumpTypes are labeled A, B and C, from left to right. The output bits are
labeled H and L, also from left to right. So the table we need to implement is the following (where asterisks are for
the input bits that we don’t care about).

Input bits Output bits
A B C Zero Busy H L
0 0 0 * * 0 0
0 0 1 * 0 0 0
0 0 1 * 1 0 1
0 1 0 * * 1 0
1 0 0 * * 1 1
1 1 0 0 * 0 0
1 1 0 1 * 1 0
1 1 1 0 * 1 0
1 1 1 1 * 0 0

Writing out boolean equations for the H and L output bits (by directly recognizing only the lines which have logical
ones as output) we find

Also, we do not care about the output when the µJump type is 011 or 101, since those are invalid encodings. Thus
we can simplify the equations to

CBAbusyCBAL

zeroABCzeroCABCBACBAH

+×=

×+×++=

BAbusyCBL

zeroACzeroCABABAH

+×=

×+×++=

Drawing this out as gates we get

A

 C

B

busy

H

zero

L

 Page 9 of 39

Problem M14.2: VLIW Programming

Problem M14.2.A

To get 1 cycle per vector element performance, we need to use loop unrolling and software
pipelining. The original loop is unrolled four times and software pipelined. Two registers (F3
and F7) are used for saving partial sums, which are summed at the end.

At the start of the program n may be any value. By making successive checks and providing fix-
up code, n can be guaranteed to be positive and a multiple of 4 by the prolog.

// R1 - points to X
// R2 - points to Y
// R5 - n
// F7 – result

 // clear partial sum registers
 MOVI2FP F3,R0
 MOVI2FP F7,R0

 // clear temporary registers used for multiply results
 MOVI2FP F2,R0
 MOVI2FP F6,R0
 MOVI2FP F10,R0
 MOVI2FP F14,R0

 // n must be greater than 0
 SGT R3,R5,R0
 BEQZ R3,end // if !(n>0) goto end

 // n must be greater than 0
 ANDI R3,R5,#3
 BEQZ R3,prolog

 // (n>0) && ((n%4)!=0)
 SUB R5,R5,R3
L1:
 L.S F3,0(R1); L.S F4,0(R2); SUBI R3,R3,#1
 MUL.S F3,F3,F4; ADDI R1,R1,#4;
 ADD.S F7,F7,F3; ADDI R2,R2,#4; BNEZ R3,L1

 BEQZ R5,end

 // (n>=4) && ((n%4)==0)
prolog:
 L.S F0, 0(R1); L.S F1, 0(R2); SUBI R5,R5,#4
 L.S F4, 4(R1); L.S F5, 4(R2); ADDI R1,R1,#16
 L.S F8,-8(R1); L.S F9, 8(R2); ADDI R2,R2,#16
 L.S F12,-4(R1); L.S F13,-4(R2); BEQZ R5,epilog

 L.S F0, 0(R1); L.S F1, 0(R2); MUL.S F2, F0, F1; SUBI R5,R5,#4
 L.S F4, 4(R1); L.S F5, 4(R2); MUL.S F6, F4, F5; ADDI R1,R1,#16
 L.S F8,-8(R1); L.S F9, 8(R2); MUL.S F10, F8, F9; ADDI R2,R2,#16
 L.S F12,-4(R1); L.S F13,-4(R2); MUL.S F14,F12,F13; BEQZ R5,epilog

 Page 10 of 39

loop:
 L.S F0, 0(R1); L.S F1, 0(R2); MUL.S F2, F0, F1; ADD.S F3,F3, F2; SUBI R5,R5,#4
 L.S F4, 4(R1); L.S F5, 4(R2); MUL.S F6, F4, F5; ADD.S F7,F7, F6; ADDI R1,R1,#16
 L.S F8,-8(R1); L.S F9, 8(R2); MUL.S F10, F8, F9; ADD.S F3,F3,F10; ADDI R2,R2,#16
 L.S F12,-4(R1); L.S F13,-4(R2); MUL.S F14,F12,F13; ADD.S F7,F7,F14; BNEZ R5,loop

epilog:
 MUL.S F2, F0, F1; ADD.S F3,F3, F2
 MUL.S F6, F4, F5; ADD.S F7,F7, F6
 MUL.S F10, F8, F9; ADD.S F3,F3,F10
 MUL.S F14,F12,F13; ADD.S F7,F7,F14

 ADD.S F3,F3, F2
 ADD.S F7,F7, F6
 ADD.S F3,F3,F10
 ADD.S F7,F7,F14

 ADD.S F7,F7,F3

end:

 Page 11 of 39

Problem M14.3: Trace Scheduling

Problem M14.3.A

 Program’s control flow graph Decision tree

Problem M14.3.B

ACF: ld r1, data
 div r3, r6, r7 ;; X <- V2/V3
 mul r8, r6, r7 ;; Y <- V2*V3
D: andi r2, r1, 3 ;; r2 <- r1%4
 bnez r2, G
A: andi r2, r1, 7 ;; r2 <- r1%8
 bnez r2, E
B: div r3, r4, r5 ;; X <- V0/V1
E: mul r8, r4, r5 ;; Y <- V0*V1
G:

Problem M14.3.C

Assume that the load takes x cycles, divide takes y cycles, and multiply takes z cycles.
Approximately how many cycles does the original code take? (ignore small constants)
x+max(y,z)

Approximately how many cycles does the new code take in the best case? max(x,y,z)

A

B C

D

E F

G

A

B C

D D

E E F F

G G G G

1/8 1/8 0 6/8

 Page 12 of 39

Problem M14.4: VLIW machines

Problem M14.4.A

See Table M14.4-1 on the next page.

Problem M14.4.B

12 cycles, 2/12=0.17 flops per cycle

Problem M14.4.C

3 instructions, because there are 5 memory ops and 5 ALU ops, and we can only issue 2 of them
per instruction. (OR 4 instructions, because the slowest operation has a 4-cycle latency.)

Here is the resulting code.

add r1, r1, 4 add r2, r2, 4 ld f1, 0(r1) ld f2, 0(r2) fmul f4, f2, f1

add r3, r3, 4 add r4, r4, -1 ld f3, -4(r3) st f4, -8(r1) fadd f5, f4, f3

 bnez r4, loop st f5, -12(r3)

for a particular instruction, white background corresponds to first iteration of the loop, grey
background to the second iteration, yellow background to third, and blue to fourth. Note, one
does not need to write the code to get an answer, because it’s just a question of how many
instructions are needed to express all the operations.

Problem M14.4.D

2/3=0.67 flops per cycle, 4 iterations at a time.

 Page 13 of 39

ALU1 ALU2 MU1 MU2 FADD FMUL

add r1, r1, 4 add r2, r2, 4 ld f1, 0(r1) ld f2, 0(r2)

add r3, r3, 4 add r4, r4, -1 ld f3, 0(r3)

 fmul f4, f2, f1

 st f4, -4(r1) fadd f5, f4, f3

 bnez r4, loop st f5, -4(r3)

Table M14.4-1: VLIW Program

 Page 14 of 39

Problem M14.4.E

We would need 5 instructions to execute two iterations and we would get 4/5=0.8 flops/cycle.

Problem M14.4.F

Same as above - 0.8 flops/cycle. We are fully utilizing the memory units, so we can’t execute
more loops/cycle.

Problem M14.4.G

No. We need to unroll the loop once to have an even number of memory ops. Use of the rotating
registers would not allow us to squeeze in more memory ops per iteration, so we'd still need 5
instructions.

Problem M14.4.H

This is actually rather tricky. The correct answer is 5, because without interlocks, we can use the
registers just as values come in for them, using the execution units to “store” the loops. The
intuitive answer is 100 though.

Problem M14.4.I

There are approximately 100 instructions required, because maximum latency will be 100 cycles.

 Page 15 of 39

Problem M14.5: VLIW & Vector Coding

Ben Bitdiddle has the following C loop, which takes the absolute value of elements within a
vector.

for (i = 0; i < N; i++) {
 if (A[i] < 0)
 A[i] = -A[i];
}

Problem M14.5.A

; Initial Conditions:
; R1 = N
; R2 = &A[0]

 SGT R3, R1, R0

BEQZ R3, end ; R3 = (N > 0) | special case N £ 0
loop: LW R4, 0(R2) | SUBI R1, R1, #1 ; R4 = A[i] | N--
 SLT R5, R4, R0 | ADDI R2, R2, #4 ; R5 = (A[i] < 0) | R2 = &A[i+1]
 BEQZ R5, next | ; skip if (A[i]³0)

SUB R4, R0, R4 | ; A[i] = -A[i]
SW R4, -4(R2) | ; store updated value of A[i]

next: BNEZ R1, loop | ; continue if N > 0
end:

Average Number of Cycles: ½ ´ (6 + 4) = 5

; SOLUTION #2

 SGT R3, R1, R0

BNEZ R3, end ; R3 = (N > 0) | special case N £ 0
loop: LW R4, 0(R2) | SUBI R1, R1, #1 ; R4 = A[i] | N--
 SLT R5, R4, R0 | ADDI R2, R2, #4 ; R5 = (A[i] < 0) | R2 = &A[i+1]
 BNEZ R5, next | SUB R4, R0, R4 ; skip if (A[i]³0) | A[i] = -A[i]
 SW R4, -4(R2) | ; store updated value of A[i]
next: BNEZ R1, loop | ; continue if N > 0
end:

Average Number of Cycles: ½ ´ (5 + 4) = 4.5

NOTE: Although this solution minimizes code size and average number of cycles per element for
this loop, it causes extra work because it subtracts regardless of whether it has to or not.

 Page 16 of 39

Problem M14.5.B

SGT R3, R1, R0
BNEZ R3, end ; R3 = (N > 0) | if N £ 0

loop: LW R4, 0(R2) | SUBI R1, R1, #1 ; R4 = A[i] | N--
 CMPLTZ P0, R4 | ADDI R2, R2, #4 ; P0 = (A[i]<0) | R2 = &A[i+1]

(P0) SUB R4, R0, R4 | ; A[i] = -A[i]
(P0) SW R4, -4(R2) | BNEZ R1, loop ; store updated value of A[i]

end: ; continue if N > 0

Average Number of Cycles: ½ ´ (4 + 4) = 4 Cycles

Problem M14.5.C

; Initial Conditions:
; R1 = N
; R2 = &A[i]

R3 = N > 0
R4 = A[i]
R5 = N odd
R6 = A[i+1]

SGT R3, R1, R0
BEQZ R3, end | ANDI R5, R1, #1
BEQZ R5, loop | LW R4, 0(R2)
CMPLTZ P0, R4 | SUBI R1, R1, #1
ADDI R2, R2, #4 | (P0) SUB R4, R0, R4
(P0) SW R4, -4(R2) | BEZ R1, end

loop: LW R4, 0(R2) | SUBI R1, R1, #2

CMPLTZ P0, R4 | LW R6, 4(R2)
(P0) SUB R4, R0, R4 | CMPLTZ P1, R6
(P0) SW R4, 0(R2) | (P1) SUB R6 R0, R6

 | (P1) SW R6 4(R2)
 ADDI R2, R2, #8 | BNEZ R1, loop
end:

Average Number of Cycles: 6 for 2 elements = 3 cycles per element

 Page 17 of 39

Problem M14.5.D

; Initial Conditions:
; R1 = N
; R2 = &A[i]

L.D F0, #0
MTC1 VLR R1 # operate on all N elements
CVM
LV V1, R2 # load A
SLTVS.D V1, F0 # setup the mask vector
SUBSV.D V1, F0, V1 # negate appropriate elements
SV R2, V1 # store back changes

Average Number of Cycles: » (N/2 + N/2) / N » 1 cycle per element (assuming chaining)

Note: Because there is only one ALU per lane, only the load and the SLT (Set-Less-Than) can be
chained together, while the subtract and the store can be chained together. Execution time (per
element) of the other instructions is negligible when N is large.

Problem M14.5.E

; assume m = known vector length
; Initial Conditions:
; R1 = N
; R2 = &A[i]

L.D F0, #0
ANDI R3, R1, (m-1) # get N%m - assume m is a power of 2
MTC1 VLR R3 # operate on first N%m elements
LV V1, R2 # load A
SLTVS.D V1, F0 # setup the mask vector
SUBSV.D V1, F0, V1 # negate appropriate elements
SV R2, V1 # store back changes
SUB R1, R1, R3 # decrease i by N%m (i is divisible by m now)
SLLI R3, R3, #2 # (we’re counting i down)
ADDI R2, R2, R3 # advance A pointer
BEQZ R1, end # i == 0 -> done
ADDI R3, R0, m
MTC1 VLR R3 # operate on all elements

loop:
 CVM

LV V1, R2 # load A
SLTVS.D V1, F0 # setup the mask vector
SUBSV.D V1, F0, V1 # negate appropriate elements
SV R2, V1 # store back changes
ADDI R2, R2, (m*4) # advance A pointer
SUBI R1, R1, m # decrease i by m
BNEZ R1, loop # done?

 Page 18 of 39

end:
CVM

 Page 19 of 39

Problem M14.6: Predication and VLIW

Problem M14.6.A

 l.s f1, 0(r1) ; f1 = *r1
 seq.s r5, f10, f1 ; r5 = (f10==f1)
 cmpnez p1, r5 ; p1 = (r5!=0)
 (p1) add.s f2, f1, f11 ; if (p1) f2 = f1+f11
 (!p1) add.s f2, f1, f12 ; if(!p1) f2 = f1+f12
 s.s f2, 0(r2) ; *r2 = f2

Problem M14.6.B

See the next page (Table M14.6-2).

Page 20 of 39

Label integer op floating point add memory op branch
loop: l.s f1,0(r1)
 l.s f3,4(r1)
 addi r1, r1, #8 cmpnez p1, f1
 cmpnez p3, f3
 (p1) add.s f2, f1, f1
 (p3) add.s f4, f3, f3
 (p1) s.s f2, -8(r1)
 (p3) s.s f4, -4(r1) bneq r1, r2, loop

Table M14.6-1

label integer op floating point add memory op branch

 l.s f1,0(r1)

 l.s f3,4(r1)

 addi r1, r1, #8 cmpnez p1, f1

 cmpnez p3, f3 beq r1, r2, epilog
loop: (p1) add.s f2, f1, f1 l.s f1,0(r1)

 (p3) add.s f4, f3, f3 l.s f3,4(r1)

 addi r1, r1, #8 cmpnez p1, f1 (p1) s.s f2, -8(r1)

 cmpnez p3, f3 (p3) s.s f4, -12(r1) bneq r1, r2,loop
epilog: (p1) add.s f2, f1, f1
 (p3) add.s f4, f3, f3
 (p1) s.s f2, -8(r1)
 (p3) s.s f2, -4(r1)

Table M14.6-2

Page 21 of 39

Problem M14.7: Vector Machines

Problem M14.7.A

Consider the implementation of the C-code on the vector machine that executes in a minimum
number of cycles. Assuming the following initial values, insert vector instructions to complete
the implementation.

o R1 points to A[0]
o R2 points to B[0]
o R3 points to C[0]
o R4 contains the value 328

 ANDI R5, R4, 31 # 328 mod 32
 MTC1 VLR, R5 # set VLR to remainder
loop:
 LV V1, R1 # load A
 LV V2, R2 # load B
 LV V3, R3 # load C
 MULV V4, V2, V1 # A * B
 ADDV V5, V3, V4 # C + A
 SV V4, R1 # store A
 SV V5, R3 # store C
 SLL R7, R5, 2
 ADD R1, R1, R7 # increment A ptr
 ADD R2, R2, R7 # increment B ptr
 ADD R3, R3, R7 # increment C ptr
 SUB R4, R4, R5 # update loop counter
 LI R5, 32 # reset VLR to max
 MTC1 VLR, R5
 BGTZ R4, loop

Page 22 of 39

Problem M14.7.B

The following supplementary information explains the diagram.

Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and writeback (W).
A vector instruction is also fetched (F) and decoded (D). Then, it stalls (—) until its required vector
functional unit is available. With no chaining, a dependent vector instruction stalls until the previous
instruction finishes writing back ALL of its elements. A vector instruction is pipelined across all the lanes in
parallel. For each element, the operands are read (R) from the vector register file, the operation executes on
the load/store unit (M) or the ALU (X) or the MUL (Y), and the result is written back (W) to the vector
register file. Assume that there is no structural conflict on the writeback port. A stalled vector instruction does
not block a scalar instruction from executing.
LV1 and LV2 refer to the first and second LV instructions in the loop.

instr.
cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
LV1 F D R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV2 F D ¾ ¾ ¾ R M1 M2 M3 M4 W
LV2 R M1 M2 M3 M4 W
LV2 R M1 M2 M3 M4 W
LV2 R M1 M2 M3 M4 W
LV3 F D ¾ ¾ ¾ ¾ ¾ ¾ R M1 M2 M3 M4 W
LV3 R M1 M2 M3 M4 W
LV3 R M1 M2 M3 M4 W
LV3 R M1 M2 M3 M4 W

MULV F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ R Y1 Y2 W
MULV R Y1 Y2 W
MULV R Y1 Y2 W
MULV R Y1 Y2 W
ADDV F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ R X1 W
ADDV R X1 W
ADDV R X1 W
ADDV R X1 W

SV1 F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ R M1 M2 M3 M4 W
SV1 R M1 M2 M3 M4 W
SV1 R M1 M2 M3 M4 W
SV1 R M1 M2 M3 M4 W
SV2 F D ¾ R M1 M2 M3 M4 W
SV2 R M1 M2 M3 M4 W
SV2 R M1 M2 M3 M4 W
SV2 R M1 M2 M3 M4 W

Page 23 of 39

Problem M14.7.C

instr.
cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
LV1 F D R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV2 F D ¾ ¾ ¾ R M1 M2 M3 M4 W
LV2 R M1 M2 M3 M4 W
LV2 R M1 M2 M3 M4 W
LV2 R M1 M2 M3 M4 W
LV3 F D ¾ ¾ ¾ ¾ ¾ ¾ R M1 M2 M3 M4 W
LV3 R M1 M2 M3 M4 W
LV3 R M1 M2 M3 M4 W
LV3 R M1 M2 M3 M4 W

MULV F D ¾ ¾ ¾ ¾ ¾ ¾ R Y1 Y2 W
MULV R Y1 Y2 W
MULV R Y1 Y2 W
MULV R Y1 Y2 W
ADDV F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ R X1 W
ADDV R X1 W
ADDV R X1 W
ADDV R X1 W

SV1 F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ R M1 M2 M3 M4 W
SV1 R M1 M2 M3 M4 W
SV1 R M1 M2 M3 M4 W
SV1 R M1 M2 M3 M4 W
SV1 F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ R M1 M2 M3 M4 W
SV2 R M1 M2 M3 M4 W
SV2 R M1 M2 M3 M4 W
SV2 R M1 M2 M3 M4 W

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Page 24 of 39

Problem M14.7.D

What is the performance (flops/cycle) of the program with chaining?

2*32/19

Problem M14.7.E

Would loop unrolling of the assembly code improve performance without chaining? Explain.
(You may rearrange the instructions when performing loop unrolling.)

Yes. We can overlap some of the vector memory instructions from different loops.

Page 25 of 39

Problem M14.8: Vector Machines

Problem M14.8.A

The following supplementary information explains the diagram:

Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and writeback (W).
A vector instruction is also fetched (F) and decoded (D). Then, it stalls (—) until its required vector
functional unit is available. With no chaining, a dependent vector instruction stalls until the previous
instruction finishes writing back all of its elements. A vector instruction is pipelined across all the lanes in
parallel. For each element, the operands are read (R) from the vector register file, the operation executes on
the load/store unit (M) or the ALU (X), and the result is written back (W) to the vector register file.
A stalled vector instruction does not block a scalar instruction from executing.
LV1 and LV2 refer to the first and second LV instructions in the loop.

instr.
cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
LV1 F D R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV2 F D ¾ ¾ ¾ R M1 M2 M3 M4 W
LV2 R M1 M2 M3 M4 W
LV2 R M1 M2 M3 M4 W
LV2 R M1 M2 M3 M4 W

ADDV F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ R X1 W
ADDV R X1 W
ADDV R X1 W
ADDV R X1 W
SUBVS F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ R X1 W
SUBVS R X1 W
SUBVS R X1 W
SUBVS R X1 W

SV F D ¾ R M1 M2 M3 M4
SV R M1 M2 M3 M4
SV R M1 M2 M3 M4
SV R M1 M2 M3 M4

ADDI F D X M W
ADDI F D X M W
ADDI F D X M W
SUBI F D X M W
BNEZ F D X M W
LV1 F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W

Page 26 of 39

Problem M14.8.B

Vector processor
configuration

Number of cycles between
successive vector instructions Total cycles

per vector
loop iter. LV1,

LV2
LV2,

ADDV
ADDV,
SUBVS

SUBVS,
SV

SV,
LV1

8 lanes, no chaining 4 9 6 6 4 29

8 lanes, chaining 4 5 4 2 4 19

16 lanes, chaining 2 5 2 2 2 13

32 lanes, chaining 1 5 2 2 1 11

Note, with 8 lanes and chaining, the SUBVS can not issue 2 cycles after the ADDV because there
is only one ALU per lane. Also, since chaining is done through the register file, 2 cycles are
required between the ADDV and SUBVS and between the SUBVS and SV even with 32 lanes (if
bypassing was provided, only 1 cycle would be necessary).

Page 27 of 39

Instr. Number Instruction
I1 LV V1, R1
I2 LV V2, R2
I6 ADDI R1, R1, 128
I7 ADDI R2, R2, 128
I10 LV V5, R1
I11 LV V6, R2
I3 ADDV V3, V1, V2
I4 SUBVS V4, V3, R4
I5 SV R3, V4
I12 ADDV V7, V5, V6
I13 SUBVS V8, V7, R4
I8 ADDI R3, R3, 128
I14 SV R3, V8
I15 ADDI R1, R1, 128
I16 ADDI R2, R2, 128
I17 ADDI R3, R3, 128
I9 SUBI R5, R5, 32
I18 SUBI R5, R5, 32
I19 BNEZ R5, loop

This is only one possible solution. Scheduling the second iteration’s LV’s (I10 and I11) before
the first iteration’s SV (I5) allows the LV’s to execute while the load/store unit would otherwise
be idle. Interleaving instructions from the two iterations (for example, if I12 were placed
between I3 and I4) could hide the functional unit latency seen with no chaining. However, doing
so would delay the first SV (I5), and hence, increase the overall latency. This tension makes the
optimal solution very tricky to find. Note that to preserve the instruction dependencies, I6 and I7
must execute before I10 and I11, and I8 must execute after I5 and before I14.

Problem M14.8.C

Page 28 of 39

Problem M14.9: Vectorizing memcpy and strcpy

Problem M14.9.A

Because there is only one load/store unit, SV instruction should wait at least till the last element
of the LV instruction is issued. Since there is only one lane, each SV and LV instruction takes 32
cycles to issue. In steady state, it takes 32 (LV) + 10 (dead time) + 32 (SV) + 10 (dead time)
cycles per 32 elements, and 2.62 cycles per element. All scalar instructions can be overlapped
with SV.

Problem M14.9.B

We can vectorize strcpy using SEQSV and CLZM. The algorithm is as follows. First, we load
32 elements. Second, we use SEQSV to check whether each element has ‘\0’ or not. Third, we
use CLZM to count the number of the elements before the first ‘\0’ in the vector and set the
vector length to that number. Then, we do a vector store. If no element has ‘\0’ (i.e. the
number is 32), we go back to the first step and load the next 32 elements. If a vector has ‘\0’,
strcpy ends. As discussed in the function definition, our strcpy copies one word at a time,
and assumes that the string is word-aligned with the terminating character of 32-bit ‘\0’.

 ADD R5,R1,R0 ; store destination address in R5
 ADD R4,R2,R0 ; store source address in R4
 ADDI R6,R0,#32
 MTC1 VLR,R6 ; set vector length to 32
 CVM
 MOVI2FP F0,R0
loop:
 LV V1,R4
 ADDI R4,R4,#128 ; bump source pointer
 SEQSV F0,V1 ; setup the mask register
 CLZM R6,VM ; number elements before ‘\0’
 MTC1 VLR,R6
 SV R5,V1
 ADDI R5,R5,#128 ; bump destination pointer
 SUBI R7,R6,#32 ;
 BEQZ R7,loop ; if no element has ‘\0’ goto loop
 SLLI R6,R6,#2 ; move destination pointer to
 SUBI R5,R5,#128 ; the end of the string
 ADD R5,R5,R6 ; copy ‘\0’

Page 29 of 39

Problem M14.9.C

Without vector chaining, strcpy takes more cycles per element than memcpy since it has one
additional vector instruction, SEQSV. It takes 32+10 (LV) + 32 (SEQSV) + 1 (CLZM) + 1 (MTC1)
+ 32 (SV) + 10 (dead time) = 118 cycles per 32 elements or 3.69 cycles per element.

With vector chaining, the first element of V1 can be bypassed to SEQSV instruction after 10
cycles. Store can be executed only after we get the value of VLR, that is, after SEQSV, CLZM,
and MTC1. Therefore, it takes 10 (LV) + 32 (SEQSV) + 1 (CLZM) + 1 (MTC1) + 32 (SV) + 10
(dead time) = 86 cycles per 32 elements or 2.69 cycles per element.

In memcpy, both vector instructions (SV and LV) use the same functional unit. Therefore, the
execution of two instructions cannot be overlapped even with vector chaining. Copying each
element takes 2.62 cycles as in M14.9.A. With vector chaining, the performance of strcpy is
comparable to that of memcpy.

Page 30 of 39

Problem M14.10: Performance of Vector Machines

Problem M14.10.A

With 8 lanes, a 2-cycle dead time and no vector chaining, we get the following pipeline diagram.

 Cycle

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

I
1

F D R X
1

X
2

W

I
1

 R X
1

X
2

W

I
1

 R X
1

X2 W

I
1

 R X1 X2 W

I
2

 F D D D D D D R X
1

X
2

W

I
2

 R X
1

X
2

W

I
2

 R X
1

X
2

W

I
2

 R X
1

X
2

W

I
3

 F D D D D D D D D D D D D R X
1

X
2

X
3

W

I
3

 R X
1

X
2

X
3

W

I
3

 R X
1

X
2

X
3

W

I
3

 R X
1

X
2

X
3

W

Since each vector has 32 elements, and there are 8 lanes, the vector register file needs to be read
4 times for each instruction. Although I2 does not need the results of I1, both instructions use the
vector add unit, so I2 must wait until after I1 completes its last read, plus an additional 2 cycles
for dead time before beginning its first read. And because there is no chaining, I3, which is
dependent on I2, needs to wait until I2 has finished its last write back before beginning its first
read.

The execution time is 18 cycles (from cycle 6 to cycle 23, inclusive).

Page 31 of 39

Problem M14.10.B

With 8 lanes, no dead time and flexible chaining, we get the following pipeline diagram.

 Cycle

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

I
1

F D R X
1

X
2

W

I
1

 R X
1

X
2

W

I
1

 R X
1

X2 W

I
1

 R X1 X2 W

I
2

 F D D D D R X
1

X
2

W

I
2

 R X
1

X
2

W

I
2

 R X
1

X
2

W

I
2

 R X
1

X
2

W

I
3

 F D D D D D D R X
1

X
2

X
3

W

I
3

 R X
1

X
2

X
3

W

I
3

 R X
1

X
2

X
3

W

I
3

 R X
1

X
2

X
3

W

With no dead time, I2 can issue its first read after the last read of I1. And with flexible chaining,
I3 can begin its first read in the same cycle as the first write of I2.

The execution time is 12 cycles (from cycle 6 to cycle 17, inclusive).

Page 32 of 39

Problem M14.10.C

With 16 lanes, no dead time and flexible chaining, we get the following pipeline diagram.

 Cycle

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

I
1

F D R X
1

X
2

W

I
1

 R X
1

X
2

W

I
2

 F D D R X
1

X
2

W

I
2

 R X1 X2 W

I
3

 F D D D D R X
1

X
2

X
3

W

I
3

 R X
1

X
2

X
3

W

Since each vector has 32 elements, and there are 16 lanes, the vector register file needs to be read
2 times for each instruction.

The execution time is 8 cycles (from cycle 6 to cycle 13, inclusive).

Page 33 of 39

Problem M14.11: Let's Talk About Loads (Spring 2014 Quiz 3, Part A)

Consider the following code sequence:

…
I1: DIV R3, R1, 8
I2: BNEZ R9, Somewhere
I3: ST R2, 0(R3)
I4: LD R1, 8(R4)
I5: ADD R5, R1, 8
I6: SUB R10, R6, R7
I7: MUL R8, R9, R10
I8: BEQZ R8, Somewhere else
…

We will explore how this program behaves on different architectural styles. In all cases, assume
the following execution latencies:

• ADD, SUB: 2 cycles
• BNEZ, BEQZ: 2 cycles
• LD: 2 cycles if cache hit, 8 cycles if miss
• MUL: 5 cycles
• DIV: 10 cycles

Additionally, the LD (I4) in this sequence misses in the data cache and therefore has a long
latency of 8 cycles.

Assume that the branch at I2 is not taken and fetch and decode never stall (e.g., by missing on
the instruction cache or the BTB). Also assume that there are no structural hazards.

Problem M14.11.A

Loads are often a bottleneck in processor performance, and as such compilers will try to move
the loads as early as possible in the program to “hide” their latency. However, in the preceding
code sequence, an optimizing compiler cannot move the load earlier in the program. Explain
why in one or two sentences.

We need to explain why the LD can’t be moved before the ST. (Otherwise, it could be moved
earlier, even if not to the very beginning.) The reason is that there could be a RAW hazard
through memory—maybe 0(R3)==8(R4).

Answers that there is a control hazard at I2 or a WAW hazard with I1 do not explain the
difficulty of moving the LD earlier.

Page 34 of 39

Problem M14.11.B

Show how this program would work on a single-issue in-order pipeline that tracks dependencies
with a simple scoreboard. Instructions are issued (i.e., dispatched for execution) in order, but can
complete out of order. Assume infinite functional units and full bypassing. Fill in the remainder
of the table below.

Instruction Issue Cycle Completion Cycle
I1: DIV R3, R1, 8 1 11
I2: BNEZ R9 2 4
I3: ST R2, 0(R3) 11 n/a
I4: LD R1, 8(R4) 12 20
I5: ADD R5, R1, 8 20 22
I6: SUB R10, R6, R7 21 23
I7: MUL R8, R9, R10 23 28
I8: BEQZ R8 28 30

There is no hazard preventing issue of I6, so it can issue at 21. It can’t issue earlier because the
processor is in-order. Following I6 is a string of RAW dependencies, so the latency of I6, I7, and
I8 determine the code sequence’s completion time.

Page 35 of 39

Problem M14.11.C

Assuming a single-issue out-of-order processor, show at which cycles instructions are issued
(i.e., dispatched for execution) and complete. Assume that instructions are dispatched in program
order if multiple are ready in the same cycle, and do not speculate on data dependencies. Again
assume infinite functional units and full bypassing.

Instruction Issue Cycle Completion Cycle
I1: DIV R3, R1, 8 1 11
I2: BNEZ R9 2 4
I3: ST R2, 0(R3) 11 n/a
I4: LD R1, 8(R4) 12 20
I5: ADD R5, R1, 8 20 22
I6: SUB R10, R6, R7 3 5
I7: MUL R8, R9, R10 5 10
I8: BEQZ R8 10 12

Because we are not speculating on data dependencies, we cannot issue the LD before we know
the ST address. So the earliest that the LD can issue is when I1 completes. Since the ST appears
earlier in program order, it is issued first, and the LD is delayed until cycle 12. We can, however,
begin issuing I6 at cycle 3 while waiting for I1 to complete.

In one or two sentences, what is the advantage of an out-of-order architecture vs. the in-order
pipeline for this code sequence?

We are able to execute I6, I7, and I8 while the processor is waiting on memory, shortening the
completion time.

Problem M14.11.D

Suppose the out-of-order processor chose to execute the load first, before all other instructions in
the code sequence. What events could cause the load to be aborted, and what mechanisms are
required to detect mis-speculation and roll back? Ignore exceptions in your answer.

Two events are relevant: the ST writes the address read by the LD, or the branch at I2 is
mispredicted.

The former requires a speculative load buffer to detect RAW memory hazards. The latter
requires detection of mis-speculation and redirecting fetch to the right address. Both require
flushing the ROB for mis-speculated instructions.

Page 36 of 39

Problem M14.11.E

Write VLIW code for this instruction sequence, assuming that the VLIW format is:

Memory operation ALU operation ALU operation / Branch

Try to make your VLIW code as efficient as possible, including re-ordering any instructions that
do not have dependencies. For this VLIW code just use standard MIPS instructions to fill slots
without predication or new, VLIW-specific instructions. (That is, simply schedule the
instructions already provided.) Assume that the VLIW architecture has a scoreboard that stalls
when a result is used before it is ready (e.g., on a cache miss).

 DIV R3, R1, 8 BNEZ R9
ST R2, 0(R3) SUB R10, R6, R7
LD R1, 8(R4)
 MUL R8, R9, R10
 ADD R5, R1, 8 BEQZ R8

This code schedule is effectively what the OOO processor does, with some independent
operations scheduled in parallel. I6 is moved earlier in the program, and I7 & I8 execute while
the LD is waiting. The one subtlety of this code is that the MUL is delayed one instruction so
that the LD is not delayed. This is important because the critical path of this computation is
DIVàSTàLDàADD (issued).

In one or two sentences, what is the advantage/disadvantage of a VLIW architecture for this code
sequence vs. the out-of-order pipeline?

For this code sequence, the VLIW code can achieve similar performance to an OOO processor
with much simpler hardware logic. This is possible because it pushes the scheduling complexity
into the compiler.

The disadvantage is similar—for VLIW to work well, the compiler must be able to schedule
instructions effectively. Often this is not possible in practice.

Josh Fisher points out that if it has a scoreboard, it’s not a true VLIW. How would the code
sequence change if we didn’t have a scoreboard?

We would need to schedule NOPs explicitly to handle the latency of each operation. This
becomes complicated with variable latency operations, like LDs with a cache.

Page 37 of 39

Problem M14.11.F

VLIW architectures rely heavily on the compiler to expose instruction-level parallelism in the
program, so hiding load latency is a major challenge. VLIW compilers developed a technique
called trace scheduling that merges multiple basic blocks into a single code sequence with
software checks to ensure correctness. We profile our program and find that the first branch (I2)
is almost never taken, so merging both basic blocks is a good idea.

If we use trace scheduling to move the load (I4) to be the first instruction, what conditions must
software check to ensure correctness of the load for this code sequence? Ignore exceptions in
your answer.

The answer is: “Same as OOO, except in software.” We must check that there was no RAW
hazard between STàLD. We also must check R9 to make sure that the I2 branch was not taken.

Page 38 of 39

Problem M14.11.G

To mitigate load latency, you decide to implement a prefetch instruction.
PREFETCH Imm(rs) takes a single argument, an address, and hints to the processor that the
given address may be used soon. Crucially, PREFETCH is side-effect free—the processor can
choose to ignore PREFETCH’s without affecting program behavior.

Now consider the following simplified code sequence:

DIV R3, R1, 8
ST R2, 0(R3)
LD R1, 8(R4)
ADD R5, R1, 8

The diagram below shows how this code executes on an in-order issue processor with
scoreboarding. Show how performance can be improved using PREFETCH.

Cycle In-order In-order w/ Prefetch
1 DIV DIV
2 PREFETCH
3
4
5
6
7
8
9
10
11 ST ST
12 LD LD
13
14 ADD
15
16 Complete
17
18
19
20 ADD
21
22 Complete

Scheduling the PREFETCH before the DIV is correct but wastes a cycle unnecessarily.

Page 39 of 39

Problem M14.11.H

In lecture we discussed an alternative instruction, “load-speculate”:

LD.S rt, Imm(rs)
Load-speculate will fetch the value from memory but if the access faults it instead returns zero
and does not cause an exception. Unlike prefetch, it gives not just the address but the source
address and the destination register, which receives a value from memory. A load-speculate is
followed in the program by a “load-check”:

CHK.S rt, cleanup
Load-check checks if the register was written by a LD.S that should have caused an exception
(e.g., due to a page fault). If it was, then CHK.S branches to somewhere else to service the
exception and handle any necessary cleanup. CHK.S executes in 1 cycle.

Show how to use LD.S/CHK.S to speed up the code even further than was possible with
PREFETCH. Assume scoreboarding and infinite functional units. Assume that in this case the
compiler knows that the load (I4) can be scheduled before the store (I3) safely. Do not show
cleanup code.

Cycle In-order In-order+LD.S+CHK.S
1 DIV DIV
2 LD.S
3
4
5
6
7
8
9
10 ADD
11 ST ST
12 LD CHK.S
13 Complete
14
15
16
17
18
19
20 ADD
21
22 Complete

The benefit of LD.S is that it allows for speculative computation on data before the check
occurs. This can lead to significant performance gains.

