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Problem M14.1:  Microprogramming and Bus-Based Architectures 
 
 
Problem M14.1.A Memory-to-Memory Add 

 
Worksheet M14.1-1 shows one way to implement ADDm in microcode.   

Note that to maintain “clean” behavior of your microcode, no registers in the register file should change their value 
during execution (unless they are written to). This does not refer to the registers in the datapath (IR, A, B, MA).  
Thus, using asterisks for the load signals (ldIR, ldA, ldB, and ldMA) is acceptable as long as the correctness of your 
microcode is not affected.  

 

Problem M14.1.B Implementing DBNEZ Instruction 
 
The question asked to jump to PC+4+offset. This ignores that the immediate value needs to be shifted left by 2 
before it can be added to PC+4, to make sure we don’t run into alignment problems. We did this because the data 
path given doesn’t really have facilities for shifting. 
 
Worksheet M14.1-2 shows one way to implement DBNEZ in microcode. 
 
Problem M14.1.C Implementing RETZ Instruction 

 
Worksheet M14.1-3 shows one way to implement RETZ in microcode. 
 

Problem M14.1.D Implementing CALL Instruction 
 

Worksheet M14.1-4 shows one way to implement CALL in microcode. 

 

Problem M14.1.E Instruction Execution Times 
 

Instruction Cycles 
SUB  R3,R2,R1 3 + 3 = 6  
SUBI R2,R1,#4 3 + 3 = 6 
SW   R1,0(R2) 3 + 5 = 8 
BNEZ R1,label  # (R1 == 0) 3 + 2 = 5 
BNEZ R1,label  # (R1 != 0) 3 + 5 = 8 
BEQZ R1,label  # (R1 == 0) 3 + 5 = 8 
BEQZ R1,label  # (R1 != 0) 3 + 2 = 5 
J    label 3 + 3 = 6 
JR   R1 3 + 2 = 5 
JAL  label 3 + 4 = 7 
JALR R1 3 + 4 = 7 

 
As discussed in Lecture 21, instruction execution includes the number of cycles needed to fetch the instruction. The 
lecture notes used 4 cycles for the fetch phase, while Worksheet 1 shows that this phase can actually be 
implemented in 3 cycles —either answer is fine. The above table uses 3 cycles for the fetch phase. Overall, SW, 
BNEZ (for a taken branch), and BEQZ (for a taken branch) take the most cycles to execute (8), while BNEZ (for a 
not-taken branch), BEQZ (for a not-taken branch) and JR take the fewest cycles (5).    
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State PseudoCode Ld 

IR 
Reg 
Sel 

Reg 
W 

en 
Reg 

ld 
A 

ld 
B 

ALUOp en 
ALU 

ld 
MA 

Mem 
W 

en 
Mem 

Ex 
Sel 

en 
Imm 

µBr Next State 

FETCH0: MA <- PC; A <- PC 0 PC 0 1 1 * * 0 1 * 0 * 0 N * 
 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N * 
 PC <- A+4; 

dispatch 
0 PC 1 1 * * INC_A_4 1 * * 0 * 0 D * 

. . .                 
NOP0: microbranch 

Back to FETCH0 
0 * * 0 * * * 0 * * 0 * 0 J FETCH0 

                 
ADDm0: MA <- R[rs] 0 rs 0 1 * * * 0 1 * 0 * 0 N * 

 A <- Mem 0 * * 0 1 * * 0 * 0 1 * 0 N * 
 MA <- R[rt] 0 rt 0 1 0 * * 0 1 * 0 * 0 N * 
 B <- Mem  0 * * 0 0 1 * 0 * 0 1 * 0 N * 
 MA <- R[rd] * rd 0 1 0 0 * 0 1 * 0 * 0 N * 
 Mem <- A+B; fetch * * * 0 * * ADD 1 * 1 1 * 0 J FETCH0 
                 
                 
                 

Worksheet M14.1-1: Implementation of the ADDm instruction 
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State PseudoCode ld 

IR 
Reg 
Sel 

Reg 
W 

en 
Reg 

ld 
A 

ld 
B 

ALUOp en 
ALU 

Ld 
MA 

Mem 
W 

en 
Mem 

Ex 
Sel 

en 
Imm 

µBr Next State 

FETCH0: MA <- PC; 
A <- PC 

* PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N * 

 PC <- A+4; 
B <- A+4 

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

* * * 0 * * * 0 * * 0 * 0 J FETCH0 

DBNEZ: A <- rs 0 rs 0 1 1 0 * 0 * * 0 * 0 N * 

 rs <- A – 1 
µB to FETCH0 if 
zero 

0 rs 1 1 * 0 DEC_A_1 1 * * 0 * 0 Z FETCH0 

 A <- sExt16(IR) * * * 0 1 0 * 0 * * 0 sExt16 1 N * 

 PC <- A+B 
jump to 
FETCH0 

* PC 1 1 * * ADD 1 * * 0 * 0 J FETCH0 

                 

                 

Worksheet M14.1-2:  Implementation of the DBNEZ Instruction 
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State PseudoCode Ld 

IR 
Reg 
Sel 

Reg 
W 

en 
Reg 

ld 
A 

ld 
B 

ALUOp en 
ALU 

Ld 
MA 

Mem 
W 

en 
Mem 

Ex 
Sel 

en 
Im
m 

µBr Next State 

FETCH0: MA <- PC; 
A <- PC 

* PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N * 

 PC <- A+4; 
B <- A+4 

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

* * * 0 * * * 0 * * 0 * 0 J FETCH0 

retz0 A <- Reg[Rs] 0 Rs 0 1 1 * * 0 * * 0 * 0 N * 

retz1 A <- Reg[Rt] 
MA <- Reg[Rt] 
uBr to retz3 if 
zero 

0 Rt 0 1 1 * COPY_A 0 1 * 0 * 0 Z retz3 

retz2  * * * 0 * * * 0 * * 0 * 0 J FETCH0 

retz3 PC <- MEM 0 PC 1 1 0 * * 0 * 0 1 * 0 N * 

retz4 Reg[Rt] < A+4 * Rt 1 1 * * INC_A_4 1 * * 0 * 0 J FETCH0 

                 

                 
                 

                 
                 
                 

Worksheet M14.1-3:  Implementation of the RETZ Instruction 
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State PseudoCode ld 

IR 
Reg 
Sel 

Reg 
W 

en 
Reg 

ld 
A 

ld 
B 

ALUOp en 
ALU 

Ld 
MA 

Mem 
W 

en 
Me
m 

Ex 
Sel 

en 
Imm 

µBr Next State 

FETCH0: MA <- PC; 
A <- PC 

* PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N * 

 PC <- A+4; 
B <- A+4 

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

* * * 0 * * * 0 * * 0 * 0 J FETCH0 

CALL: MA <- R[ra]; 
A <- R[ra] 

0 ra 0 1 1 0 * 0 1 * 0 * 0 N * 

 Mem <- B 0 * * 0 0 0 COPY_B 1 * 1 1 * 0 N * 

 R[ra] <- A - 4 0 ra 1 1 * 0 DEC_A_4 1 * * 0 * 0 N * 

 A <- sExt16(IR) * * * 0 1 0 * 0 * * 0 sExt16 1 N * 

 PC <- A+B; 
jump to FETCH0 

* PC 1 1 * * ADD 1 * * 0 * 0 J FETCH0 

                 

                 

                 

Worksheet M14.1-4:  Implementation of the CALL Instruction 
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Problem M14.1.F Exponentiation 
 
In the given code, ‘m’ and ‘n’ are always nonnegative integers. Therefore, we don’t have to worry about the cases 
where ‘i’ is larger than ‘n’ or ‘j’ is larger than ‘m’. Also, for this problem, 0 raised to any power is just 0, while any 
nonzero value raised to the 0th power is 1. Note that the pseudo code that is given returns a value of 0 when 0 is 
raised to the 0th power. However, the actual pow() function in the standard C library returns a value of 1 for this 
case. We present the solution that implements the pseudo code given in the problem rather than C’s pow() 
function. 
 
# 
# R5: temp, R6: j 
# 
 

ADD  R3, R0, R0  ; put 0 in result 
BEQZ  R1, _END_I  ; if m is 0, end 
ADDI R3, R0, #1  ; put 1 in result 

  BEQZ R2, _END_I  ; if n is 0, the loop is over; we set  
; i equal to n and count down to 0—since 
; R2 does not have to be preserved, we 
; use it for i 

  SUBI R5, R1, #1  ; temp = m – 1 
  BEQZ  R5, _END_I  ; if m is 1, the result will be 1, 

; so end the program 
_START_I: 

ADD R5, R0, R3  ; temp = result 
SUBI R6, R1, #1  ; j = m – 1 (the number of times to  

; execute the second loop) 
_START_J: 

 ADD R3, R3, R5  ; result += temp 
SUBI R6, R6, #1  ; j--  
BNEZ R6, _START_J ; Re-execute loop until j reaches 0 

_END_J: 
SUBI R2, R2, #1  ; i--  
BNEZ R2, _START_I ; Re-execute loop until i reaches 0 

_END_I: 
 
To compute the number of instructions and cycles to execute this code, let us consider subsets of the code. 
 

Code # of instructions # of cycles 
ADD   R3, R0, R0 
BEQZ  R1, _END_I 

2 6´1 + 8´1 = 14 (m = 0) 
6´1 + 5´1 = 11 (m > 0) 

ADDI R3, R0, #1   
 BEQZ R2, _END_I 

2 (if m > 0) 6´1 + 8´1 = 14 (n = 0) 
6´1 + 5´1 = 11 (n > 0) 

 SUBI  R5, R1, #1 
BEQZ  R5, _END_I 

2 (if m > 0 and n > 0) 6´1 + 8´1 = 14 (m =1) 
6´1 + 5´1 = 11 (m > 1) 

_START_I: 
      ADD R5, R0, R3 
      SUBI R6, R1, #1 

 
2n (if m > 1 and n > 0) 

 
(6´2)´n = 12n 

_START_J: 
 ADD R3, R3, R5 

SUBI R6, R6, #1 
      BNEZ R6, _START_J 

 
3n(m-1)  

(if m > 1 and n > 0) 

 
(6´2 + 5´1)´n + (6´2 + 8´1) ´(m-
2)´n = 17n + 20n(m-2) 

_END_J: 
SUBI R2, R2, #1 

      BNEZ R2, _START_I 

 
2n (if m > 1 and n > 0) 

 
(6 + 8)´n – 3 = 14n-3 
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From the above table, we can complete the table given in the problem. 
 

m,n Instructions Cycles 
0, 1 2 14 
1, 0 4 25 
2, 2 20 116 
3, 4 46 282 
M, N (M = 0) 2 14 
M, N (M > 0, N = 0) 4 25 
M, N (M = 1, N > 0) 6 36 
M, N (M > 1, N > 0) 3N(M-1)+4N+6 20N(M-2)+43N+30 

 
 
Problem M14.1.G Microcontroller Jump Logic 

 
One way to start designing the microcontroller jump logic is to write out a table of the input signals and the output 
bits. For clarity, the bits that encode the µJumpTypes are labeled A, B and C, from left to right. The output bits are 
labeled H and L, also from left to right. So the table we need to implement is the following (where asterisks are for 
the input bits that we don’t care about).  
 

Input bits Output bits 
A B C Zero Busy H L 
0 0 0 * * 0 0 
0  0 1 * 0 0 0 
0 0 1 * 1 0 1 
0 1 0 * * 1 0 
1 0 0 * * 1 1 
1 1 0 0 * 0 0 
1 1 0 1 * 1 0 
1 1 1 0 * 1 0 
1 1 1 1 * 0 0 

 
Writing out boolean equations for the H and L output bits (by directly recognizing only the lines which have logical 
ones as output) we find 
 

 

 
Also, we do not care about the output when the µJump type is 011 or 101, since those are invalid encodings. Thus 
we can simplify the equations to 
 

CBAbusyCBAL

zeroABCzeroCABCBACBAH

+×=

×+×++=

BAbusyCBL

zeroACzeroCABABAH

+×=

×+×++=



 

Drawing this out as gates we get 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

A 

 C     

B 

busy 

H 

zero 

L 
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Problem M14.2: VLIW Programming 
 
 
Problem M14.2.A  

 
To get 1 cycle per vector element performance, we need to use loop unrolling and software 
pipelining. The original loop is unrolled four times and software pipelined. Two registers (F3 
and F7) are used for saving partial sums, which are summed at the end.  
 
At the start of the program n may be any value. By making successive checks and providing fix-
up code, n can be guaranteed to be positive and a multiple of 4 by the prolog. 
 
// R1 - points to X 
// R2 - points to Y 
// R5 - n 
// F7 – result 
 
    // clear partial sum registers 
    MOVI2FP F3,R0 
    MOVI2FP F7,R0 
 
    // clear temporary registers used for multiply results 
    MOVI2FP F2,R0 
    MOVI2FP F6,R0 
    MOVI2FP F10,R0 
    MOVI2FP F14,R0 
 
    // n must be greater than 0 
    SGT     R3,R5,R0 
    BEQZ    R3,end     // if !(n>0) goto end 
 
    // n must be greater than 0 
    ANDI  R3,R5,#3 
    BEQZ  R3,prolog 
 
    // (n>0) && ((n%4)!=0) 
    SUB   R5,R5,R3 
L1:  
    L.S   F3,0(R1); L.S  F4,0(R2); SUBI R3,R3,#1 
    MUL.S F3,F3,F4; ADDI R1,R1,#4;  
    ADD.S F7,F7,F3; ADDI R2,R2,#4; BNEZ R3,L1 
 
    BEQZ  R5,end 
 
    // (n>=4) && ((n%4)==0) 
prolog: 
    L.S  F0, 0(R1); L.S  F1, 0(R2); SUBI R5,R5,#4 
    L.S  F4, 4(R1); L.S  F5, 4(R2); ADDI R1,R1,#16 
    L.S  F8,-8(R1); L.S  F9, 8(R2); ADDI R2,R2,#16 
    L.S F12,-4(R1); L.S F13,-4(R2); BEQZ R5,epilog 
 
    L.S  F0, 0(R1); L.S  F1, 0(R2); MUL.S  F2, F0, F1; SUBI R5,R5,#4 
    L.S  F4, 4(R1); L.S  F5, 4(R2); MUL.S  F6, F4, F5; ADDI R1,R1,#16  
    L.S  F8,-8(R1); L.S  F9, 8(R2); MUL.S F10, F8, F9; ADDI R2,R2,#16 
    L.S F12,-4(R1); L.S F13,-4(R2); MUL.S F14,F12,F13; BEQZ R5,epilog 
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loop: 
    L.S  F0, 0(R1); L.S  F1, 0(R2); MUL.S  F2, F0, F1; ADD.S F3,F3, F2; SUBI R5,R5,#4 
    L.S  F4, 4(R1); L.S  F5, 4(R2); MUL.S  F6, F4, F5; ADD.S F7,F7, F6; ADDI R1,R1,#16 
    L.S  F8,-8(R1); L.S  F9, 8(R2); MUL.S F10, F8, F9; ADD.S F3,F3,F10; ADDI R2,R2,#16 
    L.S F12,-4(R1); L.S F13,-4(R2); MUL.S F14,F12,F13; ADD.S F7,F7,F14; BNEZ R5,loop 
 
epilog: 
    MUL.S  F2, F0, F1; ADD.S F3,F3, F2 
    MUL.S  F6, F4, F5; ADD.S F7,F7, F6 
    MUL.S F10, F8, F9; ADD.S F3,F3,F10 
    MUL.S F14,F12,F13; ADD.S F7,F7,F14 
 
    ADD.S F3,F3, F2 
    ADD.S F7,F7, F6 
    ADD.S F3,F3,F10 
    ADD.S F7,F7,F14 
 
    ADD.S F7,F7,F3 
    
end: 
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Problem M14.3: Trace Scheduling 
 
Problem M14.3.A  

 
       Program’s control flow graph                                       Decision tree 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem M14.3.B  

 
ACF: ld r1, data 
  div r3, r6, r7 ;; X <- V2/V3 
  mul r8, r6, r7 ;; Y <- V2*V3 
D:  andi r2, r1, 3  ;; r2 <- r1%4 
  bnez r2, G 
A:  andi r2, r1, 7  ;; r2 <- r1%8 
  bnez r2, E 
B:  div r3, r4, r5 ;; X <- V0/V1 
E:  mul r8, r4, r5 ;; Y <- V0*V1 
G: 
 
 
Problem M14.3.C  

 
Assume that the load takes x cycles, divide takes y cycles, and multiply takes z cycles.  
Approximately how many cycles does the original code take? (ignore small constants)  
x+max(y,z) 

Approximately how many cycles does the new code take in the best case?   max(x,y,z) 

A 

B C 

D 

E F 

G 

A 

B C 

D D 

E E F F 

G G G G 
 

1/8 1/8 0 6/8 
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Problem M14.4: VLIW machines 
 
Problem M14.4.A  

 
See Table M14.4-1 on the next page. 
 
 
 
Problem M14.4.B  

 
12 cycles, 2/12=0.17 flops per cycle 
 
 
 
Problem M14.4.C  

 
3 instructions, because there are 5 memory ops and 5 ALU ops, and we can only issue 2 of them 
per instruction. (OR 4 instructions, because the slowest operation has a 4-cycle latency.) 
 
Here is the resulting code. 
 

add r1, r1, 4 add r2, r2, 4 ld f1, 0(r1) ld f2, 0(r2)  fmul f4, f2, f1 

add r3, r3, 4 add r4, r4, -1 ld f3, -4(r3) st f4, -8(r1) fadd f5, f4, f3  

 bnez r4, loop  st f5, -12(r3)   

 
for a particular instruction, white background corresponds to first iteration of the loop, grey 
background to the second iteration, yellow background to third, and blue to fourth. Note, one 
does not need to write the code to get an answer, because it’s just a question of how many 
instructions are needed to express all the operations. 
 
 
 
 
Problem M14.4.D  

 
2/3=0.67 flops per cycle, 4 iterations at a time. 
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ALU1 ALU2 MU1 MU2 FADD FMUL 

add r1, r1, 4 add r2, r2, 4 ld f1, 0(r1) ld f2, 0(r2)   

add r3, r3, 4 add r4, r4, -1 ld f3, 0(r3)    

      

     fmul f4, f2, f1 

      

      

      

   st f4, -4(r1) fadd f5, f4, f3  

      

      

      

 bnez r4, loop st f5, -4(r3)    

      

      

      
 

Table M14.4-1: VLIW Program 
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Problem M14.4.E  

 
We would need 5 instructions to execute two iterations and we would get 4/5=0.8 flops/cycle. 
 
 
 
Problem M14.4.F  

 
Same as above - 0.8 flops/cycle. We are fully utilizing the memory units, so we can’t execute 
more loops/cycle. 
 
 
 
Problem M14.4.G  

 
No. We need to unroll the loop once to have an even number of memory ops. Use of the rotating 
registers would not allow us to squeeze in more memory ops per iteration, so we'd still need 5 
instructions. 
 
 
 
Problem M14.4.H  

 
This is actually rather tricky. The correct answer is 5, because without interlocks, we can use the 
registers just as values come in for them, using the execution units to “store” the loops. The 
intuitive answer is 100 though. 
 
 
 
Problem M14.4.I  

 
There are approximately 100 instructions required, because maximum latency will be 100 cycles. 
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Problem M14.5: VLIW & Vector Coding 
 
Ben Bitdiddle has the following C loop, which takes the absolute value of elements within a 
vector. 
 
for (i = 0; i < N; i++) { 
    if (A[i] < 0) 
        A[i] = -A[i]; 
} 
 
 
Problem M14.5.A  

 
 
; Initial Conditions:  
; R1 = N 
; R2 = &A[0] 
 
 
 SGT R3, R1, R0 

BEQZ R3, end     ; R3 = (N > 0) | special case N £ 0 
loop: LW R4, 0(R2) | SUBI R1, R1, #1  ; R4 = A[i] | N-- 
 SLT R5, R4, R0 | ADDI R2, R2, #4  ; R5 = (A[i] < 0) | R2 = &A[i+1] 
 BEQZ R5, next |     ; skip if (A[i]³0) 

SUB R4, R0, R4 |    ; A[i] = -A[i]  
SW R4, -4(R2) |    ; store updated value of A[i] 

next: BNEZ R1, loop |    ; continue if N > 0 
end: 
 
Average Number of Cycles: ½ ´ (6 + 4) = 5 
 
 
; SOLUTION #2 
 
 SGT R3, R1, R0  

BNEZ R3, end     ; R3 = (N > 0) | special case N £ 0 
loop: LW R4, 0(R2) | SUBI R1, R1, #1  ; R4 = A[i] | N-- 
 SLT R5, R4, R0 | ADDI R2, R2, #4  ; R5 = (A[i] < 0) | R2 = &A[i+1] 
 BNEZ R5, next | SUB R4, R0, R4  ; skip if (A[i]³0) | A[i] = -A[i] 
 SW R4, -4(R2) |    ; store updated value of A[i] 
next: BNEZ R1, loop |    ; continue if N > 0 
end: 
 
Average Number of Cycles: ½ ´ (5 + 4) = 4.5 
 
NOTE: Although this solution minimizes code size and average number of cycles per element for 
this loop, it causes extra work because  it subtracts regardless of whether it has to or not. 
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Problem M14.5.B  

 
 

SGT R3, R1, R0   
BNEZ R3, end     ; R3 = (N > 0) | if N £ 0 

loop: LW R4, 0(R2)  | SUBI R1, R1, #1 ; R4 = A[i] | N-- 
 CMPLTZ P0, R4      | ADDI R2, R2, #4 ; P0 = (A[i]<0) | R2 = &A[i+1] 

(P0) SUB R4, R0, R4 |   ; A[i] = -A[i]  
(P0) SW R4, -4(R2) | BNEZ R1, loop ; store updated value of A[i] 

end:        ; continue if N > 0 
 
Average Number of Cycles: ½ ´ (4 + 4) = 4 Cycles 
 
 
 
Problem M14.5.C  

 
 

; Initial Conditions:  
; R1 = N 
; R2 = &A[i] 
 
R3 = N > 0 
R4 = A[i] 
R5 = N odd 
R6 = A[i+1] 
 

SGT R3, R1, R0   
BEQZ R3, end  | ANDI R5, R1, #1 
BEQZ R5, loop  | LW R4, 0(R2) 
CMPLTZ P0, R4  | SUBI R1, R1, #1 
ADDI R2, R2, #4  | (P0) SUB R4, R0, R4  
(P0) SW R4, -4(R2) | BEZ R1, end 

 
loop: LW R4, 0(R2)  | SUBI R1, R1, #2 

CMPLTZ P0, R4  | LW R6, 4(R2) 
(P0) SUB R4, R0, R4 | CMPLTZ P1, R6 
(P0) SW R4, 0(R2)  | (P1) SUB R6 R0, R6 

     | (P1) SW R6 4(R2)  
 ADDI R2, R2, #8  | BNEZ R1, loop 
end: 
 
Average Number of Cycles: 6 for 2 elements = 3 cycles per element 
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Problem M14.5.D  
 
; Initial Conditions:  
; R1 = N 
; R2 = &A[i] 
 

L.D F0, #0 
MTC1 VLR R1   # operate on all N elements 
CVM 
LV V1, R2   # load A 
SLTVS.D V1, F0  # setup the mask vector 
SUBSV.D V1, F0, V1 # negate appropriate elements 
SV R2, V1   # store back changes 

 
Average Number of Cycles: » (N/2 + N/2) / N  » 1 cycle per element (assuming chaining) 
 
Note: Because there is only one ALU per lane, only the load and the SLT (Set-Less-Than) can be 
chained together, while the subtract and the store can be chained together. Execution time (per 
element) of the other instructions is negligible when N is large. 
 
 
 
Problem M14.5.E  

 
; assume m = known vector length 
; Initial Conditions:  
; R1 = N  
; R2 = &A[i] 
 

L.D F0, #0 
ANDI R3, R1, (m-1) # get N%m - assume m is a power of 2 
MTC1 VLR R3   # operate on first N%m elements 
LV V1, R2   # load A 
SLTVS.D V1, F0  # setup the mask vector 
SUBSV.D V1, F0, V1 # negate appropriate elements 
SV R2, V1   # store back changes 
SUB R1, R1, R3  # decrease i by N%m (i is divisible by m now) 
SLLI R3, R3, #2  # (we’re counting i down) 
ADDI R2, R2, R3  # advance A pointer 
BEQZ R1, end  # i == 0 -> done 
ADDI R3, R0, m 
MTC1 VLR R3   # operate on all elements 

 
loop: 
 CVM 

LV V1, R2   # load A 
SLTVS.D V1, F0  # setup the mask vector 
SUBSV.D V1, F0, V1 # negate appropriate elements 
SV R2, V1   # store back changes 
ADDI R2, R2, (m*4) # advance A pointer 
SUBI R1, R1, m  # decrease i by m 
BNEZ R1, loop  # done? 
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end: 
CVM 
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Problem M14.6: Predication and VLIW 
 
Problem M14.6.A  

 
 

        l.s   f1, 0(r1)     ; f1 = *r1 
        seq.s r5, f10, f1   ; r5 = (f10==f1) 
        cmpnez p1, r5       ; p1 = (r5!=0) 
  (p1)  add.s f2, f1, f11   ; if (p1) f2 = f1+f11 
  (!p1) add.s f2, f1, f12   ; if(!p1) f2 = f1+f12 
        s.s   f2, 0(r2)     ; *r2 = f2 

 
 
 
Problem M14.6.B  

 
See the next page (Table M14.6-2). 
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Label integer op floating point add memory op branch 
loop:   l.s f1,0(r1)  
   l.s f3,4(r1)  
 addi r1, r1, #8 cmpnez p1, f1   
  cmpnez p3, f3   
  (p1) add.s f2, f1, f1   
  (p3) add.s f4, f3, f3   
   (p1) s.s f2, -8(r1)  
   (p3) s.s f4, -4(r1) bneq r1, r2, loop 

Table M14.6-1 
 
label integer op floating point add memory op branch 

   l.s f1,0(r1)  

   l.s f3,4(r1)  

 addi r1, r1, #8 cmpnez p1, f1   

  cmpnez p3, f3  beq r1, r2, epilog 
loop:  (p1) add.s f2, f1, f1 l.s f1,0(r1)  

  (p3) add.s f4, f3, f3 l.s f3,4(r1)  

 addi r1, r1, #8 cmpnez p1, f1 (p1) s.s f2, -8(r1)  

  cmpnez p3, f3 (p3) s.s f4, -12(r1) bneq r1, r2,loop 
epilog:  (p1) add.s f2, f1, f1   
  (p3) add.s f4, f3, f3   
   (p1) s.s f2, -8(r1)  
   (p3) s.s f2, -4(r1)  

Table M14.6-2
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Problem M14.7: Vector Machines 
 
 
Problem M14.7.A  

 
Consider the implementation of the C-code on the vector machine that executes in a minimum 
number of cycles. Assuming the following initial values, insert vector instructions to complete 
the implementation. 
 

o R1 points to A[0] 
o R2 points to B[0] 
o R3 points to C[0] 
o R4 contains the value 328 

 
 
 ANDI R5, R4, 31  # 328 mod 32 
 MTC1 VLR, R5   # set VLR to remainder 
loop: 
 LV V1, R1   # load A 
 LV V2, R2   # load B 
 LV V3, R3   # load C 
 MULV V4, V2, V1  # A * B 
 ADDV V5, V3, V4  # C + A 
 SV V4, R1   # store A 
 SV V5, R3    # store C 
 SLL R7, R5, 2  
 ADD R1, R1, R7  # increment A ptr 
 ADD R2, R2, R7   # increment B ptr 
 ADD R3, R3, R7  # increment C ptr 
 SUB R4, R4, R5   # update loop counter 
 LI R5, 32   # reset VLR to max 
 MTC1 VLR, R5  
 BGTZ R4, loop  
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Problem M14.7.B  
 
The following supplementary information explains the diagram. 

Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and writeback (W). 
A vector instruction is also fetched (F) and decoded (D).  Then, it stalls (—) until its required vector 
functional unit is available.  With no chaining, a dependent vector instruction stalls until the previous 
instruction finishes writing back ALL of its elements.  A vector instruction is pipelined across all the lanes in 
parallel.  For each element, the operands are read (R) from the vector register file, the operation executes on 
the load/store unit (M) or the ALU (X) or the MUL (Y), and the result is written back (W) to the vector 
register file. Assume that there is no structural conflict on the writeback port. A stalled vector instruction does 
not block a scalar instruction from executing. 
LV1 and LV2 refer to the first and second LV instructions in the loop. 
 
 

instr. 
cycle 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
LV1 F D R M1 M2 M3 M4 W                                 
LV1    R M1 M2 M3 M4 W                                
LV1     R M1 M2 M3 M4 W                               
LV1      R M1 M2 M3 M4 W                              
LV2  F D ¾ ¾ ¾ R M1 M2 M3 M4 W                             
LV2        R M1 M2 M3 M4 W                            
LV2         R M1 M2 M3 M4 W                           
LV2          R M1 M2 M3 M4 W                          
LV3   F D ¾ ¾ ¾ ¾ ¾ ¾ R M1 M2 M3 M4 W                         
LV3            R M1 M2 M3 M4 W                        
LV3             R M1 M2 M3 M4 W                       
LV3              R M1 M2 M3 M4 W                      

MULV    F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ R Y1 Y2 W                      
MULV                 R Y1 Y2 W                     
MULV                  R Y1 Y2 W                    
MULV                   R Y1 Y2 W                   
ADDV     F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ R X1 W                
ADDV                        R X1 W               
ADDV                         R X1 W              
ADDV                          R X1 W             

SV1      F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ R M1 M2 M3 M4 W             
SV1                        R M1 M2 M3 M4 W            
SV1                         R M1 M2 M3 M4 W           
SV1                          R M1 M2 M3 M4 W          
SV2       F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ R M1 M2 M3 M4 W       
SV2                              R M1 M2 M3 M4 W      
SV2                               R M1 M2 M3 M4 W     
SV2                                R M1 M2 M3 M4 W    
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Problem M14.7.C  
 
 

instr. 
cycle 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
LV1 F D R M1 M2 M3 M4 W                                 
LV1    R M1 M2 M3 M4 W                                
LV1     R M1 M2 M3 M4 W                               
LV1      R M1 M2 M3 M4 W                              
LV2  F D ¾ ¾ ¾ R M1 M2 M3 M4 W                             
LV2        R M1 M2 M3 M4 W                            
LV2         R M1 M2 M3 M4 W                           
LV2          R M1 M2 M3 M4 W                          
LV3   F D ¾ ¾ ¾ ¾ ¾ ¾ R M1 M2 M3 M4 W                         
LV3            R M1 M2 M3 M4 W                        
LV3             R M1 M2 M3 M4 W                       
LV3              R M1 M2 M3 M4 W                      

MULV    F D ¾ ¾ ¾ ¾ ¾ ¾ R Y1 Y2 W                          
MULV             R Y1 Y2 W                         
MULV              R Y1 Y2 W                        
MULV               R Y1 Y2 W                       
ADDV     F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ R X1 W                       
ADDV                 R X1 W                      
ADDV                  R X1 W                     
ADDV                   R X1 W                    

SV1      F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ R M1 M2 M3 M4 W                     
SV1                R M1 M2 M3 M4 W                    
SV1                 R M1 M2 M3 M4 W                   
SV1                  R M1 M2 M3 M4 W                  
SV1       F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ R M1 M2 M3 M4 W                 
SV2                    R M1 M2 M3 M4 W                
SV2                     R M1 M2 M3 M4 W               
SV2                      R M1 M2 M3 M4 W              

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19                   
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Problem M14.7.D  
 
What is the performance (flops/cycle) of the program with chaining? 
 
2*32/19 
 
 
 
Problem M14.7.E  

 
Would loop unrolling of the assembly code improve performance without chaining? Explain. 
(You may rearrange the instructions when performing loop unrolling.) 
 
Yes. We can overlap some of the vector memory instructions from different loops. 
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Problem M14.8: Vector Machines 
 
 
Problem M14.8.A  

 
The following supplementary information explains the diagram: 

Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and writeback (W). 
A vector instruction is also fetched (F) and decoded (D).  Then, it stalls (—) until its required vector 
functional unit is available.  With no chaining, a dependent vector instruction stalls until the previous 
instruction finishes writing back all of its elements.  A vector instruction is pipelined across all the lanes in 
parallel.  For each element, the operands are read (R) from the vector register file, the operation executes on 
the load/store unit (M) or the ALU (X), and the result is written back (W) to the vector register file. 
A stalled vector instruction does not block a scalar instruction from executing. 
LV1 and LV2 refer to the first and second LV instructions in the loop. 

 

instr. 
cycle 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
LV1 F D R M1 M2 M3 M4 W                                 
LV1    R M1 M2 M3 M4 W                                
LV1     R M1 M2 M3 M4 W                               
LV1      R M1 M2 M3 M4 W                              
LV2  F D ¾ ¾ ¾ R M1 M2 M3 M4 W                             
LV2        R M1 M2 M3 M4 W                            
LV2         R M1 M2 M3 M4 W                           
LV2          R M1 M2 M3 M4 W                          

ADDV   F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ R X1 W                       
ADDV                 R X1 W                      
ADDV                  R X1 W                     
ADDV                   R X1 W                    
SUBVS    F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ R X1 W                 
SUBVS                       R X1 W                
SUBVS                        R X1 W               
SUBVS                         R X1 W              

SV     F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ R M1 M2 M3 M4         
SV                             R M1 M2 M3 M4        
SV                              R M1 M2 M3 M4       
SV                               R M1 M2 M3 M4      

ADDI      F D X M W                               
ADDI       F D X M W                              
ADDI        F D X M W                             
SUBI         F D X M W                            
BNEZ          F D X M W                           
LV1           F D ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ R M1 M2 M3 M4 W    
LV1                                 R M1 M2 M3 M4 W   
LV1                                  R M1 M2 M3 M4 W  
LV1                                   R M1 M2 M3 M4 W 
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Problem M14.8.B  
 
 

Vector processor 
configuration 

Number of cycles between 
successive vector instructions Total cycles 

per vector 
loop iter. LV1, 

LV2 
LV2, 

ADDV 
ADDV, 
SUBVS 

SUBVS, 
SV 

SV, 
LV1 

8 lanes, no chaining 4 9 6 6 4 29 

8 lanes, chaining 4 5 4 2 4 19 

16 lanes, chaining 2 5 2 2 2 13 

32 lanes, chaining 1 5 2 2 1 11 
 

Note, with 8 lanes and chaining, the SUBVS can not issue 2 cycles after the ADDV because there 
is only one ALU per lane.  Also, since chaining is done through the register file, 2 cycles are 
required between the ADDV and SUBVS and between the SUBVS and SV even with 32 lanes (if 
bypassing was provided, only 1 cycle would be necessary). 
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Instr. Number Instruction 
I1 LV    V1, R1 
I2 LV    V2, R2 
I6 ADDI  R1, R1, 128 
I7 ADDI  R2, R2, 128 
I10 LV    V5, R1 
I11 LV    V6, R2 
I3 ADDV  V3, V1, V2 
I4 SUBVS V4, V3, R4 
I5 SV    R3, V4 
I12 ADDV  V7, V5, V6 
I13 SUBVS V8, V7, R4 
I8 ADDI  R3, R3, 128 
I14 SV    R3, V8 
I15 ADDI  R1, R1, 128 
I16 ADDI  R2, R2, 128 
I17 ADDI  R3, R3, 128 
I9 SUBI  R5, R5, 32 
I18 SUBI  R5, R5, 32 
I19 BNEZ  R5, loop 

 
This is only one possible solution.  Scheduling the second iteration’s LV’s (I10 and I11) before 
the first iteration’s SV (I5) allows the LV’s to execute while the load/store unit would otherwise 
be idle. Interleaving instructions from the two iterations (for example, if I12 were placed 
between I3 and I4) could hide the functional unit latency seen with no chaining. However, doing 
so would delay the first SV (I5), and hence, increase the overall latency. This tension makes the 
optimal solution very tricky to find.  Note that to preserve the instruction dependencies, I6 and I7 
must execute before I10 and I11, and I8 must execute after I5 and before I14. 

 
Problem M14.8.C 
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Problem M14.9:  Vectorizing memcpy and strcpy 
 
 
Problem M14.9.A  

 
Because there is only one load/store unit, SV instruction should wait at least till the last element 
of the LV instruction is issued. Since there is only one lane, each SV and LV instruction takes 32 
cycles to issue. In steady state, it takes 32 (LV) + 10 (dead time) + 32 (SV) + 10 (dead time) 
cycles per 32 elements, and 2.62 cycles per element. All scalar instructions can be overlapped 
with SV. 
 
 
Problem M14.9.B  

 
We can vectorize strcpy using SEQSV and CLZM.  The algorithm is as follows. First, we load 
32 elements. Second, we use SEQSV to check whether each element has ‘\0’ or not. Third, we 
use CLZM to count the number of the elements before the first ‘\0’ in the vector and set the 
vector length to that number. Then, we do a vector store. If no element has ‘\0’ (i.e. the 
number is 32), we go back to the first step and load the next 32 elements. If a vector has ‘\0’, 
strcpy ends. As discussed in the function definition, our strcpy copies one word at a time, 
and assumes that the string is word-aligned with the terminating character of 32-bit ‘\0’.  
 
    ADD     R5,R1,R0 ; store destination address in R5 
    ADD     R4,R2,R0 ; store source address in R4 
    ADDI    R6,R0,#32   
    MTC1    VLR,R6  ; set vector length to 32 
    CVM 
    MOVI2FP F0,R0 
loop: 
    LV      V1,R4 
    ADDI    R4,R4,#128 ; bump source pointer 
    SEQSV   F0,V1  ; setup the mask register 
    CLZM    R6,VM        ; number elements before ‘\0’ 
    MTC1    VLR,R6 
    SV      R5,V1 
    ADDI    R5,R5,#128 ; bump destination pointer 
    SUBI    R7,R6,#32    ;  
    BEQZ    R7,loop  ; if no element has ‘\0’ goto loop  
    SLLI    R6,R6,#2     ; move destination pointer to  
    SUBI    R5,R5,#128   ; the end of the string 
    ADD     R5,R5,R6     ; copy ‘\0’ 
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Problem M14.9.C  
 
Without vector chaining, strcpy takes more cycles per element than memcpy since it has one 
additional vector instruction, SEQSV. It takes 32+10 (LV) + 32 (SEQSV) + 1 (CLZM) + 1 (MTC1) 
+ 32 (SV) + 10 (dead time) = 118 cycles per 32 elements or 3.69 cycles per element. 
  
With vector chaining, the first element of V1 can be bypassed to SEQSV instruction after 10 
cycles. Store can be executed only after we get the value of VLR, that is, after SEQSV, CLZM, 
and MTC1. Therefore, it takes 10 (LV) + 32 (SEQSV) + 1 (CLZM) + 1 (MTC1) + 32 (SV) + 10 
(dead time) = 86 cycles per 32 elements or 2.69 cycles per element. 
 
In memcpy, both vector instructions (SV and LV) use the same functional unit. Therefore, the 
execution of two instructions cannot be overlapped even with vector chaining. Copying each 
element takes 2.62 cycles as in M14.9.A. With vector chaining, the performance of strcpy is 
comparable to that of memcpy. 
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Problem M14.10: Performance of Vector Machines 
 
 
 
Problem M14.10.A  

 
With 8 lanes, a 2-cycle dead time and no vector chaining, we get the following pipeline diagram. 
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Since each vector has 32 elements, and there are 8 lanes, the vector register file needs to be read 
4 times for each instruction. Although I2 does not need the results of I1, both instructions use the 
vector add unit, so I2 must wait until after I1 completes its last read, plus an additional 2 cycles 
for dead time before beginning its first read. And because there is no chaining, I3, which is 
dependent on I2, needs to wait until I2 has finished its last write back before beginning its first 
read. 
 
The execution time is 18 cycles (from cycle 6 to cycle 23, inclusive). 
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Problem M14.10.B  
 
With 8 lanes, no dead time and flexible chaining, we get the following pipeline diagram. 
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With no dead time, I2 can issue its first read after the last read of I1. And with flexible chaining, 
I3 can begin its first read in the same cycle as the first write of I2. 
 
The execution time is 12 cycles (from cycle 6 to cycle 17, inclusive).  
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Problem M14.10.C  
 
With 16 lanes, no dead time and flexible chaining, we get the following pipeline diagram. 
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Since each vector has 32 elements, and there are 16 lanes, the vector register file needs to be read 
2 times for each instruction. 
 
The execution time is 8 cycles (from cycle 6 to cycle 13, inclusive). 
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Problem M14.11: Let's Talk About Loads (Spring 2014 Quiz 3, Part A) 
 
Consider the following code sequence: 
 
… 
I1: DIV R3, R1, 8 
I2: BNEZ R9, Somewhere 
I3: ST R2, 0(R3) 
I4: LD R1, 8(R4) 
I5: ADD R5, R1, 8 
I6: SUB R10, R6, R7 
I7: MUL R8, R9, R10 
I8: BEQZ R8, Somewhere else 
… 
 
We will explore how this program behaves on different architectural styles. In all cases, assume 
the following execution latencies: 

• ADD, SUB: 2 cycles 
• BNEZ, BEQZ: 2 cycles 
• LD: 2 cycles if cache hit, 8 cycles if miss 
• MUL: 5 cycles 
• DIV: 10 cycles 

 
Additionally, the LD (I4) in this sequence misses in the data cache and therefore has a long 
latency of 8 cycles. 
 
Assume that the branch at I2 is not taken and fetch and decode never stall (e.g., by missing on 
the instruction cache or the BTB). Also assume that there are no structural hazards. 
 
  
Problem M14.11.A  

 
Loads are often a bottleneck in processor performance, and as such compilers will try to move 
the loads as early as possible in the program to “hide” their latency. However, in the preceding 
code sequence, an optimizing compiler cannot move the load earlier in the program. Explain 
why in one or two sentences. 
 
We need to explain why the LD can’t be moved before the ST. (Otherwise, it could be moved 
earlier, even if not to the very beginning.) The reason is that there could be a RAW hazard 
through memory—maybe 0(R3)==8(R4). 
 
Answers that there is a control hazard at I2 or a WAW hazard with I1 do not explain the 
difficulty of moving the LD earlier. 
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Problem M14.11.B  
 
Show how this program would work on a single-issue in-order pipeline that tracks dependencies 
with a simple scoreboard. Instructions are issued (i.e., dispatched for execution) in order, but can 
complete out of order. Assume infinite functional units and full bypassing. Fill in the remainder 
of the table below. 
 
Instruction Issue Cycle Completion Cycle 
I1: DIV R3, R1, 8 1 11 
I2: BNEZ R9 2 4 
I3: ST R2, 0(R3) 11 n/a 
I4: LD R1, 8(R4) 12 20 
I5: ADD R5, R1, 8 20 22 
I6: SUB R10, R6, R7 21 23 
I7: MUL R8, R9, R10 23 28 
I8: BEQZ R8 28 30 
 
There is no hazard preventing issue of I6, so it can issue at 21. It can’t issue earlier because the 
processor is in-order. Following I6 is a string of RAW dependencies, so the latency of I6, I7, and 
I8 determine the code sequence’s completion time. 
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Problem M14.11.C  
 

Assuming a single-issue out-of-order processor, show at which cycles instructions are issued 
(i.e., dispatched for execution) and complete. Assume that instructions are dispatched in program 
order if multiple are ready in the same cycle, and do not speculate on data dependencies. Again 
assume infinite functional units and full bypassing. 
 
Instruction Issue Cycle Completion Cycle 
I1: DIV R3, R1, 8 1 11 
I2: BNEZ R9 2 4 
I3: ST R2, 0(R3) 11 n/a 
I4: LD R1, 8(R4) 12 20 
I5: ADD R5, R1, 8 20 22 
I6: SUB R10, R6, R7 3 5 
I7: MUL R8, R9, R10 5 10 
I8: BEQZ R8 10 12 
 
Because we are not speculating on data dependencies, we cannot issue the LD before we know 
the ST address. So the earliest that the LD can issue is when I1 completes. Since the ST appears 
earlier in program order, it is issued first, and the LD is delayed until cycle 12. We can, however, 
begin issuing I6 at cycle 3 while waiting for I1 to complete. 
 
In one or two sentences, what is the advantage of an out-of-order architecture vs. the in-order 
pipeline for this code sequence? 
 
We are able to execute I6, I7, and I8 while the processor is waiting on memory, shortening the 
completion time. 
 
Problem M14.11.D  

 
Suppose the out-of-order processor chose to execute the load first, before all other instructions in 
the code sequence. What events could cause the load to be aborted, and what mechanisms are 
required to detect mis-speculation and roll back? Ignore exceptions in your answer. 
 
Two events are relevant: the ST writes the address read by the LD, or the branch at I2 is 
mispredicted. 
 
The former requires a speculative load buffer to detect RAW memory hazards. The latter 
requires detection of mis-speculation and redirecting fetch to the right address. Both require 
flushing the ROB for mis-speculated instructions.  
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Problem M14.11.E  
 

Write VLIW code for this instruction sequence, assuming that the VLIW format is: 
 
Memory operation ALU operation ALU operation / Branch 

 
Try to make your VLIW code as efficient as possible, including re-ordering any instructions that 
do not have dependencies. For this VLIW code just use standard MIPS instructions to fill slots 
without predication or new, VLIW-specific instructions. (That is, simply schedule the 
instructions already provided.) Assume that the VLIW architecture has a scoreboard that stalls 
when a result is used before it is ready (e.g., on a cache miss). 
 
 DIV R3, R1, 8 BNEZ R9 
ST R2, 0(R3) SUB R10, R6, R7  
LD R1, 8(R4)   
 MUL R8, R9, R10  
 ADD R5, R1, 8 BEQZ R8 
   
   
   
 
This code schedule is effectively what the OOO processor does, with some independent 
operations scheduled in parallel. I6 is moved earlier in the program, and I7 & I8 execute while 
the LD is waiting. The one subtlety of this code is that the MUL is delayed one instruction so 
that the LD is not delayed. This is important because the critical path of this computation is 
DIVàSTàLDàADD (issued). 
 
In one or two sentences, what is the advantage/disadvantage of a VLIW architecture for this code 
sequence vs. the out-of-order pipeline? 
 
For this code sequence, the VLIW code can achieve similar performance to an OOO processor 
with much simpler hardware logic. This is possible because it pushes the scheduling complexity 
into the compiler.  
 
The disadvantage is similar—for VLIW to work well, the compiler must be able to schedule 
instructions effectively. Often this is not possible in practice. 
 
Josh Fisher points out that if it has a scoreboard, it’s not a true VLIW. How would the code 
sequence change if we didn’t have a scoreboard? 
 
We would need to schedule NOPs explicitly to handle the latency of each operation. This 
becomes complicated with variable latency operations, like LDs with a cache. 
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Problem M14.11.F  
 
VLIW architectures rely heavily on the compiler to expose instruction-level parallelism in the 
program, so hiding load latency is a major challenge. VLIW compilers developed a technique 
called trace scheduling that merges multiple basic blocks into a single code sequence with 
software checks to ensure correctness. We profile our program and find that the first branch (I2) 
is almost never taken, so merging both basic blocks is a good idea.  
 
If we use trace scheduling to move the load (I4) to be the first instruction, what conditions must 
software check to ensure correctness of the load for this code sequence? Ignore exceptions in 
your answer. 
 
The answer is: “Same as OOO, except in software.” We must check that there was no RAW 
hazard between STàLD. We also must check R9 to make sure that the I2 branch was not taken.  
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Problem M14.11.G  
 
To mitigate load latency, you decide to implement a prefetch instruction. 
PREFETCH Imm(rs) takes a single argument, an address, and hints to the processor that the 
given address may be used soon. Crucially, PREFETCH is side-effect free—the processor can 
choose to ignore PREFETCH’s without affecting program behavior. 
 
Now consider the following simplified code sequence: 
 
DIV R3, R1, 8 
ST R2, 0(R3) 
LD R1, 8(R4) 
ADD R5, R1, 8 
 
The diagram below shows how this code executes on an in-order issue processor with 
scoreboarding. Show how performance can be improved using PREFETCH. 
  
 
Cycle In-order In-order w/ Prefetch 
1 DIV DIV 
2  PREFETCH 
3   
4   
5   
6   
7   
8   
9   
10   
11 ST ST 
12 LD LD 
13   
14  ADD 
15   
16  Complete 
17   
18   
19   
20 ADD  
21   
22 Complete  
 
Scheduling the PREFETCH before the DIV is correct but wastes a cycle unnecessarily.  
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Problem M14.11.H  
 
In lecture we discussed an alternative instruction, “load-speculate”: 

LD.S rt, Imm(rs) 
Load-speculate will fetch the value from memory but if the access faults it instead returns zero 
and does not cause an exception. Unlike prefetch, it gives not just the address but the source 
address and the destination register, which receives a value from memory. A load-speculate is 
followed in the program by a “load-check”: 

CHK.S rt, cleanup 
Load-check checks if the register was written by a LD.S that should have caused an exception 
(e.g., due to a page fault). If it was, then CHK.S branches to somewhere else to service the 
exception and handle any necessary cleanup. CHK.S executes in 1 cycle. 
 
Show how to use LD.S/CHK.S to speed up the code even further than was possible with 
PREFETCH. Assume scoreboarding and infinite functional units. Assume that in this case the 
compiler knows that the load (I4) can be scheduled before the store (I3) safely. Do not show 
cleanup code. 
 
Cycle In-order In-order+LD.S+CHK.S 
1 DIV DIV 
2  LD.S 
3   
4   
5   
6   
7   
8   
9   
10  ADD 
11 ST ST 
12 LD CHK.S 
13  Complete 
14   
15   
16   
17   
18   
19   
20 ADD  
21   
22 Complete  
 
The benefit of LD.S is that it allows for speculative computation on data before the check 
occurs. This can lead to significant performance gains. 


