

Page 1 of 18

Computer System Architecture
6.823 Quiz #3

December 8th, 2021

Name: _________SOLUTIONS_________

This is a closed book, closed notes exam.

80 Minutes
 16 Pages (+2 Scratch)

Notes:
• Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.
• Please carefully state any assumptions you make.
• Show your work to receive full credit.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with other students who have not

yet taken the quiz.
• Pages 17 and 18 are scratch pages. Use them if you need more space to

answer one of the questions, or for rough work.

 Part A ________ 30 Points
 Part B ________ 20 Points
 Part C ________ 24 Points
 Part D ________ 12 Points
 Part E ________ 14 Points

TOTAL ________ 100 Points

Page 2 of 18

Part A: VLIW with Predication (30 points)

For this part, refer to the predication handout for details on the VLIW processor and its
support for predication. Ben Bitdiddle is running the following code on his VLIW machine:

 int A[N];

int B[N];
int C[N];
int D[N];
int x, y;
...

for (int i = 0; i < N; i++) {
 if (A[i] >= 0) {
 C[i] = A[i] * x + B[i] * y;
 } else {
 D[i] = A[i] * B[i];
 }
}

The following is the corresponding MIPS assembly code:

 ;; Initial values:

;; R1 := &A[0], R2 := &B[0], R3 := &C[0], R4 := &D[0]
;; R5 := x, R6 := y
;; R20 := &A[N] (first address after array A)

loop: LW R7, 0(R1)
 LW R8, 0(R2)
 BLT R7, R0, else ; A[i] >= 0?
 MUL R7, R7, R5
 MUL R8, R8, R6
 ADD R8, R7, R8
 SW R8, 0(R3) ; C[i] = A[i] * x + B[i] * y
 J next
else: MUL R8, R7, R8
 SW R8, 0(R4) ; D[i] = A[i] * B[i]
next: ADDI R1, R1, 4
 ADDI R2, R2, 4
 ADDI R3, R3, 4
 ADDI R4, R4, 4
 BNE R1, R20, loop

Page 3 of 18

Here we have converted the assembly code above into VLIW code:

Label Simple Int. Op Simple Int. Op Mul/Div Op Memory Op

loop ADDI R1, R1, 4 ADDI R2, R2, 4 LW R7, 0(R1)

 ADDI R3, R3, 4 ADDI R4, R4, 4 LW R8, -4(R2)

 BLT R7, R0, else

if MUL R7, R7, R5

 MUL R8, R8, R6

 ADD R8, R7, R8

 J next SW R8, -4(R3)

else MUL R9, R7, R8

 SW R9, -4(R4)

next BNE R1, R20, loop

Page 4 of 18

Question 1 (10 points)

Rewrite the VLIW code by using predication to eliminate the branch within the loop as
described in the handout. Your code should use as few VLIW instructions as possible.

Label Simple Int. Op Simple Int. Op Mul/Div Op Memory Op
loop ADDI R1, R1, 4 ADDI R2, R2, 4 LW R7, 0(R1)

 ADDI R3, R3, 4 ADDI R4, R4, 4 LW R8, -4(R2)

 SETPGE p1, R7, R0

 (p1)MUL R11, R7, R5

 (p1)MUL R12, R8, R6

 (!p1)MUL R13, R7, R8

 (p1)ADD R11, R11, R12

 (p1)SW R11, -4(R3)

 BNE R1, R20, loop (!p1)SW R12, -4(R4)

There is a solution that completes in 9 cycles if you only predicate the stores, exploiting
the fact that computing the register-destined operations both ways does not matter since
the effect is not visible to the rest of the program. We gave full points for both solutions.

Page 5 of 18

Question 2 (6 points)

Assume that you are able to unroll or software-pipeline the predicated code as much as
possible. What is the lowest number of cycles/iteration you can achieve? Hint: You should
be able to answer this question without writing down the loop-unrolled or software-
pipelined code.

With full unrolling and software pipelining, we need to look at which functional unit will
be the bottleneck. With 4 memory operations and a single memory operation slot, each
iteration must take at least 4 VLIW instructions, so it's 4 cycles/iteration.

Question 3 (7 points)

Ben wants to unroll the original code without any predication. Since each iteration can take
different paths of the if-else branch, his initial approach is to simply compute one iteration
after another in the unrolled loop body. However, Alyssa P. Hacker points out that this
implementation does not help performance much, as the unrolled loop only computes one
iteration at a time.

Alyssa P. Hacker thinks that she can unroll the original code and overlap the computation
from several iterations within the loop body to significantly improve execution time. Do
you think this is possible? If so, describe at a high level how you can resolve different
iterations of the unrolled loop taking different paths of the if-else statement. If not, briefly
describe why it is impossible to unroll this loop without using Ben's inefficient approach.

One way is to create a branch target for each possible combination of branching paths the
code can take. For a factor of N unrolling this will be 2^N targets. Then, for each target
you unroll the loop given the branch resolution for each element.

Another way is to use trace scheduling like in Question 4 -- we profile the program and
create a basic block consisting of the most commonly taken path. Then, you add fixup code
for each of the branches (so there will be a total of N fixup code targets for N-level
unrolling). Note that since the branches are data-dependent this may not work as well as
expected if the values of array A are not regular and/or change between runs of the program.

Lastly, you can simply unroll the multiplies and the adds and only compute the stores in
each branch, as suggested in the alternate solution to Question 1.

Page 6 of 18

Question 4 (7 points)

Ben profiles the code and finds that most elements of A will be greater than or equal to
zero. Thus, he optimizes the above code sequence via trace scheduling by merging the not-
taken path into a single basic block. He also adds a compensation code at location comp to
jump to in case the branch is taken:

Label Simple Int. Op Simple Int. Op Mul/Div Op Memory Op

loop ADDI R1, R1, 4 ADDI R2, R2, 4 LW R7, 0(R1)

 ADDI R3, R3, 4 ADDI R4, R4, 4 LW R8, -4(R2)

 MOV R17, R7 MOV R18, R8

 MUL R7, R7, R5

 MUL R8, R8, R6

 ADD R8, R7, R8 BLT R17, R0, comp

 SW R8, -4(R3)

next BNE R1, R20, loop

Write down what the compensation code should be for this assembly code to be
functionally correct. You should use as few VLIW instructions as possible.

No need to undo any action from the trace-scheduled block since it never stores to
memory, so we can simply do the operations in the taken path.

Label Simple Int. Op Simple Int. Op Mul/Div Op Memory Op

comp MUL R9, R17, R18

 J next SW R9, -4(R4)

Page 7 of 18

Part B: Vector Processors (20 points)

We will explore several different options for implementing vector masks. Recall that a
vector mask allows a vector processor to selectively operate on elements whose
corresponding masks are set. We explore three different design options which differ in
terms of when the mask is read, and what action to perform after reading the mask.

Consider a vector processor with 4-elements long vectors. The machine has a single vector
lane with an ALU that takes 4 cycles to process each element, including writeback. The
ALU unit is also fully-pipelined such that it is able to process one vector element after
another in consecutive cycles (i.e., if the first element is issued at cycle X, then the first
result will be written back at cycle X+4, the next result at cycle X+5, etc).

To illustrate the different design options, we will look at the following piece of vectorized
code:

 SGE.VS V1, R0
MUL.VV V4, V2, V3

We provide the relevant descriptions for these vector instructions in the table below:

Instruction Meaning
SGE.VS Vd, Rs Compare the elements in Vd and Rs. For each element in

Vd, if the element is greater than or equal to Rs, set the
corresponding bit of the vector mask register to 1, and 0
otherwise.

MUL.VV Vd, Vs, Vt Multiply elements in Vs and Vt, and store result in Vd. This
instruction reads the vector mask register to selectively
operate on elements whose corresponding masks are set.

Question 1 (6 points)

First consider an issue-time masking implementation. This works by having the vector
instruction read the vector mask register at issue, and sending the corresponding mask bit
with the element to the vector lane. The lane will either perform the operation (if the mask
is set) or do nothing for the element (if the mask is not set).

Suppose SGE.VS finishes writing to the vector mask register at cycle 8, and can be read
the cycle after. What is the earliest cycle at which the first element of MUL.VV can be
issued? Given your issue cycle, at what cycle is the last result written back?

Issue cycle: 9
Last written back: 9 + 4 (4 cycle latency) + 3 (3 more elements) = 16

Page 8 of 18

Question 2 (7 points)

Now consider a writeback-time masking implementation. This works by having the vector
lane read the vector mask register at the writeback stage, and squashing the write if the
corresponding mask bit is not set.

Again, suppose SGE.VS finishes writing to the vector mask register at cycle 8, and can be
read the cycle after. What is the earliest cycle at which the first element of MUL.VV can be
issued? Given your issue cycle, at what cycle is the last result written back?

Issue cycle: 5, since it can now be read 4 cycles later (the amount of ALU latency)
Last written back: 5 + 4 (4 cycle latency) + 3 (3 more elements) = 12

Question 3 (7 points)

Now consider an issue-time masking with skipping implementation. Just like issue-time
masking, each vector instruction reads the vector mask at issue. The difference here is that
it only sends the masked vector elements to the (single-lane) ALU.

Again, suppose SGE.VS finishes writing to the vector mask register at cycle 8, and can be
read the cycle after. Assume only half of V1's elements are non-negative. What is the
earliest cycle at which the first element of MUL.VV can be issued? Given your issue cycle,
at what cycle is the last result written back?

Issue cycle: 9
Last written back: 9 + 4 (4 cycle latency) + 1 (1 more element due to skipping) = 14

Page 9 of 18

Part C: Transactional Memory (24 points)

In this part you will analyze the operation of different hardware TM (HTM) designs, and
the concurrency they achieve for different transaction schedules on a 2-core system. For
any HTM design, the memory system dynamically tracks the set of addresses read or
written by each transaction (i.e., its read set and write set) as accesses are performed.

Consider two HTM designs:

• Eager & Pessimistic HTM uses eager version management and pessimistic
conflict detection. For every transactional load, the memory system checks whether
this load reads an address in the write set of any other transaction, and declares a
conflict if so. For every transactional store, the memory system checks whether this
store writes an address in the read set or write set of any other transaction, and
declares a conflict if so. Upon a conflict, the transaction receiving an invalidation
or downgrade aborts, i.e. the requester wins.

• Lazy & Optimistic HTM uses lazy version management and optimistic conflict
detection. Conflicts are detected when a transaction attempts to commit. The
finished transaction validates its write-set with coherence actions. If any of its
writes appear in the read- or write-set of other transactions in the system, a conflict
is declared. Analogous to pessimistic requester-wins, the committer wins.

The system runs a program consisting of the following two transactions.

Txn X Txn Y
Begin Begin
Read A Read B
Write B Write A
Read C Write C
End End

In the following questions, for timing, assume conflict detection and coherence happen in
the same cycle a memory access executes.

Page 10 of 18

Question 1 (8 points)

Suppose transaction X starts at cycle 0 and transaction Y starts at cycle 5, and they would
produce the following schedule in the absence of conflict detection:

Cycle 0 5 10 15 20 25 30 35 40 45

Txn X Begin Rd A Wr B Rd C End
Txn Y Begin Rd B Wr A Wr C End

a) In the absence of conflict detection (i.e. no HTM), if the memory operations interleaved

in the given order, would the transactions be serializable in general? If so, circle what
would be the apparent commit order of the transactions, or circle “Not serializable”.

If your answer is "Not serializable", provide the earliest cycle after 5 at which
transaction Y can start such that the two transactions become serializable.

X before Y Y before X Not serializable

Txn Y needs to be issued at cycle 11 at the earliest for Rd B to be ordered after Wr B,
such that Txn X is ordered before Txn Y.

b) Given the two mentioned HTM designs, indicate in the following table at what cycle a

conflict is detected, if any, and which transaction aborts (or neither).

 Conflict cycle Aborted Transaction
(X, Y, or Neither)

Eager &
Pessimistic 20 Y

Lazy &
Optimistic 40 Y

Page 11 of 18

Question 2 (8 points)

Now suppose transaction X starts at cycle 0 and transaction Y starts at cycle 5, and they
would produce the following schedule in the absence of conflict detection:

Cycle 0 5 10 15 20 25 30 35 40 45 50 55
Txn X Begin Rd A Wr B Rd C End
Txn Y Begin Rd B Wr A Wr C End

a) In the absence of conflict detection (i.e. no HTM), if the memory operations interleaved

in the given order, would the transactions be serializable? If so, circle what would be
the apparent commit order of the transactions, or circle “Not serializable”.

If your answer is "Not serializable", provide the earliest cycle after 5 at which
transaction Y can start such that the two transactions become serializable.

X before Y Y before X Not serializable

b) Given the two mentioned HTM designs, indicate in the following table at what cycle a

conflict is detected, if any, and which transaction aborts (or neither).

 Conflict cycle Aborted Transaction
(X, Y, or Neither)

Eager &
Pessimistic 25 X

Lazy &
Optimistic 35 Y

Page 12 of 18

Question 3 (8 points)

Consider a different program consisting of the following three transactions:

Txn V Txn W Txn Z
Begin Begin Begin
Read A Read A Read A
Write A Write A Write A
Write B Read B Write B
End End End

Suppose transaction V starts at cycle 0, transaction W starts at cycle 5, transaction Z
starts at cycle 10, resulting in the following schedule.

Cycle 0 5 10 15 20 25 30 35 40 45 50 55 60
Txn V Begin Rd A Wr A Wr B End
Txn W Begin Rd A Wr A Rd B End
Txn Z Begin Rd A Wr A Wr B End

a) In the absence of conflict detection (i.e. no HTM), if the memory operations interleaved

in the given order, would the transactions be serializable? If so, what is the serialization
order? (e.g., V before W before Z).

Not serializable.

b) Given the two mentioned HTM designs, indicate in the following table at what cycle

the first conflict is detected, if any, and which transaction aborts (or none).

 Conflict cycle Aborted Transactions
(V, W, Z, or None)

Eager &
Pessimistic 15 V

Lazy &
Optimistic 50 V, W

Page 13 of 18

Part D: Security (12 points)

Consider an out-of-order processor. The processor has very precise timers, and has a simple
branch predictor consisting of a table of 1-bit counters indexed by the lower bits of the PC.
The processor is running an OS that has the following piece of kernel code:

I0:
I1:
I2:
I3:

kernel_syscall(int X) {
 // X is allocated to register R1
 int secret; // Allocated to register R2
 int counter; // Allocated to register R3

 // long sequence of instructions
 bool condition = secret > X; // SLT R4, R1, R2
 if (condition) // BEQZ R4, I3
 counter++; // ADDI R3, R3, 1
 ... // ...
 // long sequence of instructions
}

There exists an exploit for this syscall that relies on the branch predictor we described
above to leak the secret, where the attacker has control over the variable X. Answer the
following series of questions to relate the concepts we have learned to this exploit (2 points
each):

1) What is the microarchitectural side-channel for transmitting the secret in this code?

Be specific in your answer (i.e., don't just answer "the branch predictor").

The branch predictor entry that I1 aliases into.

2) Is an active receiver needed? If so, how does the receiver precondition the channel?

Yes. The receiver needs to precondition the branch predictor entry to be in a known
state such that it can detect when the branch is taken

Page 14 of 18

3) Which instruction(s) are the transmitter? You should answer in terms of their labels
provided in the code above (e.g., I0 and I2).

I1 is the transmitter since it modulates the channel based on the value of secret. Also
accepted the answer that I0 and I1 and both part of the transmitter since I0 is needed
to set up the transmission.

4) How does the transmitter modulate the channel?

It sets the branch predictor entry to 1 if the secret is greater than X, and 0 otherwise.

5) How does the receiver decode the modulation on the channel?

The receiver first primes the branch predictor entry to 0 by evaluating a not-taken
branch that aliases into the same branch table entry, and runs the syscall. After the
transmission, it probes the channel by again evaluating the not-taken branch again. If
the branch resolution is slow, secret is greater than X because the branch predictor
will mispredict.

6) What information is contained in one transmission?

Whether secret is greater than X.

Bonus: Given this "bandwidth", we can figure out all the bits in the secret within 32
transmissions (since the secret is 32 bits) assuming no noise.

Page 15 of 18

Part E: Accelerators (14 points)

For a given compute kernel, we define a tensor's reuse interval (RI) as the number of
different elements of that tensor that have been referenced between each re-reference of
the same element. For example, consider the following:

 for m in [0, M)

 for n in [0, N)
 Z[m, n] = A[m] * B[n]

Since A's element is used at every iteration of the inner loop, its RI is 1. Each element of B
is re-referenced after N references, so its RI is N. Z has "infinite" reuse interval (i.e., no
data reuse) since no element is re-referenced throughout the computation:

RI of A = 1
RI of B = N
RI of Z = infinite / no reuse

Question 1 (4 points)

Consider the following Matrix-Matrix multiply pseudocode, which multiplies two dense
matrices A and B to produce Z:

 ;; Multiply two matrices A and B to produce Z

;; First matrix A is MxK
;; Second matrix B is KxN
;; Thus, resulting matrix Z is MxN

for m in [0, M)
 for n in [0, N)
 for k in [0, K)
 Z[m, n] += A[m, k] * B[k, n]

What are the reuse intervals for the three matrices? Provide your answers in terms of M, N,
and K.

RI of A = K
RI of B = N*K
RI of Z = 1

Page 16 of 18

Question 2 (5 points)

Now consider the following where we re-order the loop nest:

 for k in [0, K)

 for m in [0, M)
 for n in [0, N)
 Z[m, n] += A[m, k] * B[k, n]

What are the reuse intervals for the three matrices? Provide your answers in terms of M, N,
and K.

RI of A = 1
RI of B = N
RI of Z = M*N

Question 3 (5 points)

Now consider the following scenario:

• M = 500, N = 1000, and K = 30
• A, B, and Z are dense matrices.
• The matrices are resident in DRAM at the beginning of the computation kernel.

Your wish to design a matrix-matrix multiply accelerator given the above assumptions.
Your goal is to maximize compute intensity, defined as the average number of
computations you perform per DRAM access. You are given the following hardware
budget:

• A multiply-accumulate (MAC) unit with a flip-flop on each input and the output.
• An SRAM array large enough to store 32 elements.

Which order of loop nest would you choose, and given the order how would you partition
the SRAM budget among the different elements to maximize compute intensity? You can
reorder the loop nests from Questions 1 and 2, but do not add more loops (e.g., no tiling).

Use the loop nest from Question 1 (output stationary), and allocate 30 elements for the
entire row of A. This row will be used for the entire computation of a single element of Z,
then never reused again. The other two elements can be used to store anything else and will
not impact computational intensity much.

Page 17 of 18

Scratch Space

Use these extra pages if you run out of space or for your own personal notes. We will not
grade these unless you tell us explicitly in the earlier pages.

Page 18 of 18

Scratch Space

Use the table below if you run out of space when answering questions in Problem 1.

Label Simple Int. Op Simple Int. Op Mul/Div Op Memory Op

