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Computer System Architecture  
6.823 Quiz #3 

December 8th, 2021 
 
 
 

 
Name: _________SOLUTIONS_________        

 
This is a closed book, closed notes exam. 

80 Minutes 
 16 Pages (+2 Scratch) 

 
Notes: 
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 
• Please carefully state any assumptions you make. 
• Show your work to receive full credit. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. 
• Pages 17 and 18 are scratch pages. Use them if you need more space to 

answer one of the questions, or for rough work. 
 

   Part A ________     30 Points     
   Part B  ________     20 Points 
   Part C ________     24 Points 
   Part D  ________     12 Points 
   Part E  ________     14 Points 

 
TOTAL          ________  100 Points 
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Part A: VLIW with Predication (30 points) 
 
For this part, refer to the predication handout for details on the VLIW processor and its 
support for predication. Ben Bitdiddle is running the following code on his VLIW machine:  
 
 int A[N]; 

int B[N]; 
int C[N]; 
int D[N]; 
int x, y; 
... 
 
for (int i = 0; i < N; i++) {  
  if (A[i] >= 0) {  
    C[i] = A[i] * x + B[i] * y;  
  } else { 
    D[i] = A[i] * B[i]; 
  } 
} 

 
The following is the corresponding MIPS assembly code: 
 
 ;; Initial values: 

;;  R1 := &A[0], R2 := &B[0], R3 := &C[0], R4 := &D[0] 
;;  R5 := x, R6 := y 
;;  R20 := &A[N] (first address after array A) 
 
loop: LW  R7, 0(R1) 
      LW  R8, 0(R2)       
      BLT R7, R0, else ; A[i] >= 0? 
      MUL R7, R7, R5 
      MUL R8, R8, R6 
      ADD R8, R7, R8    
      SW  R8, 0(R3)    ; C[i] = A[i] * x + B[i] * y 
      J   next 
else: MUL R8, R7, R8 
      SW  R8, 0(R4)    ; D[i] = A[i] * B[i] 
next: ADDI R1, R1, 4  
      ADDI R2, R2, 4  
      ADDI R3, R3, 4        
      ADDI R4, R4, 4        
      BNE  R1, R20, loop 
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Here we have converted the assembly code above into VLIW code: 
 

Label Simple Int. Op Simple Int. Op Mul/Div Op Memory Op 

loop ADDI R1, R1, 4 ADDI R2, R2, 4  LW  R7, 0(R1) 

 ADDI R3, R3, 4 ADDI R4, R4, 4  LW  R8, -4(R2) 

     

 BLT R7, R0, else    

if   MUL R7, R7, R5  

   MUL R8, R8, R6  

     

 ADD R8, R7, R8    

 J   next   SW  R8, -4(R3) 

else   MUL R9, R7, R8  

     

    SW  R9, -4(R4) 

next BNE R1, R20, loop    
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Question 1 (10 points) 
 
Rewrite the VLIW code by using predication to eliminate the branch within the loop as 
described in the handout. Your code should use as few VLIW instructions as possible. 
 

Label Simple Int. Op Simple Int. Op Mul/Div Op Memory Op 
loop ADDI R1, R1, 4 ADDI R2, R2, 4  LW  R7, 0(R1) 

 ADDI R3, R3, 4 ADDI R4, R4, 4  LW  R8, -4(R2) 

     

 SETPGE p1, R7, R0    

   (p1)MUL R11, R7, R5  

   (p1)MUL R12, R8, R6  

   (!p1)MUL R13, R7, R8  

 (p1)ADD R11, R11, R12    

    (p1)SW  R11, -4(R3) 

 BNE R1, R20, loop   (!p1)SW  R12, -4(R4) 

     

     

     

     

     

     

     

     

     

     

     

     

 
There is a solution that completes in 9 cycles if you only predicate the stores, exploiting 
the fact that computing the register-destined operations both ways does not matter since 
the effect is not visible to the rest of the program. We gave full points for both solutions. 
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Question 2 (6 points) 
 
Assume that you are able to unroll or software-pipeline the predicated code as much as 
possible. What is the lowest number of cycles/iteration you can achieve? Hint: You should 
be able to answer this question without writing down the loop-unrolled or software-
pipelined code. 
 
With full unrolling and software pipelining, we need to look at which functional unit will 
be the bottleneck. With 4 memory operations and a single memory operation slot, each 
iteration must take at least 4 VLIW instructions, so it's 4 cycles/iteration. 
 
 
 
 
 
Question 3 (7 points) 
 
Ben wants to unroll the original code without any predication. Since each iteration can take 
different paths of the if-else branch, his initial approach is to simply compute one iteration 
after another in the unrolled loop body. However, Alyssa P. Hacker points out that this 
implementation does not help performance much, as the unrolled loop only computes one 
iteration at a time. 
 
Alyssa P. Hacker thinks that she can unroll the original code and overlap the computation 
from several iterations within the loop body to significantly improve execution time. Do 
you think this is possible? If so, describe at a high level how you can resolve different 
iterations of the unrolled loop taking different paths of the if-else statement. If not, briefly 
describe why it is impossible to unroll this loop without using Ben's inefficient approach. 
 
One way is to create a branch target for each possible combination of branching paths the 
code can take. For a factor of N unrolling this will be 2^N targets. Then, for each target 
you unroll the loop given the branch resolution for each element.  
 
Another way is to use trace scheduling like in Question 4 -- we profile the program and 
create a basic block consisting of the most commonly taken path. Then, you add fixup code 
for each of the branches (so there will be a total of N fixup code targets for N-level 
unrolling). Note that since the branches are data-dependent this may not work as well as 
expected if the values of array A are not regular and/or change between runs of the program. 
 
Lastly, you can simply unroll the multiplies and the adds and only compute the stores in 
each branch, as suggested in the alternate solution to Question 1. 
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Question 4 (7 points) 
 
Ben profiles the code and finds that most elements of A will be greater than or equal to 
zero. Thus, he optimizes the above code sequence via trace scheduling by merging the not-
taken path into a single basic block. He also adds a compensation code at location comp to 
jump to in case the branch is taken: 
 

Label Simple Int. Op Simple Int. Op Mul/Div Op Memory Op 

loop ADDI R1, R1, 4 ADDI R2, R2, 4  LW  R7, 0(R1) 

 ADDI R3, R3, 4 ADDI R4, R4, 4  LW  R8, -4(R2) 

 MOV R17, R7 MOV R18, R8   

   MUL R7, R7, R5  

   MUL R8, R8, R6  

     

 ADD R8, R7, R8 BLT R17, R0, comp   

    SW  R8, -4(R3) 

next BNE R1, R20, loop    

 
Write down what the compensation code should be for this assembly code to be 
functionally correct. You should use as few VLIW instructions as possible. 
 
No need to undo any action from the trace-scheduled block since it never stores to 
memory, so we can simply do the operations in the taken path. 
 

Label Simple Int. Op Simple Int. Op Mul/Div Op Memory Op 

comp   MUL R9, R17, R18  

     

 J    next   SW  R9, -4(R4) 
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Part B: Vector Processors (20 points) 
 
We will explore several different options for implementing vector masks. Recall that a 
vector mask allows a vector processor to selectively operate on elements whose 
corresponding masks are set. We explore three different design options which differ in 
terms of when the mask is read, and what action to perform after reading the mask. 
 
Consider a vector processor with 4-elements long vectors. The machine has a single vector 
lane with an ALU that takes 4 cycles to process each element, including writeback. The 
ALU unit is also fully-pipelined such that it is able to process one vector element after 
another in consecutive cycles (i.e., if the first element is issued at cycle X, then the first 
result will be written back at cycle X+4, the next result at cycle X+5, etc). 
 
To illustrate the different design options, we will look at the following piece of vectorized 
code: 
 

 SGE.VS  V1, R0 
MUL.VV  V4, V2, V3 

 

We provide the relevant descriptions for these vector instructions in the table below: 
 
Instruction Meaning 
SGE.VS Vd, Rs Compare the elements in Vd and Rs. For each element in 

Vd, if the element is greater than or equal to Rs,  set the 
corresponding bit of the vector mask register to 1, and 0 
otherwise. 

MUL.VV Vd, Vs, Vt Multiply elements in Vs and Vt, and store result in Vd. This 
instruction reads the vector mask register to selectively 
operate on elements whose corresponding masks are set. 

 
Question 1 (6 points) 
 
First consider an issue-time masking implementation. This works by having the vector 
instruction read the vector mask register at issue, and sending the corresponding mask bit 
with the element to the vector lane. The lane will either perform the operation (if the mask 
is set) or do nothing for the element (if the mask is not set).  
 
Suppose SGE.VS finishes writing to the vector mask register at cycle 8, and can be read 
the cycle after. What is the earliest cycle at which the first element of MUL.VV can be 
issued? Given your issue cycle, at what cycle is the last result written back? 
 
Issue cycle: 9 
Last written back: 9 + 4 (4 cycle latency) + 3 (3 more elements) = 16 
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Question 2 (7 points) 
 
Now consider a writeback-time masking implementation. This works by having the vector 
lane read the vector mask register at the writeback stage, and squashing the write if the 
corresponding mask bit is not set. 
 
Again, suppose SGE.VS finishes writing to the vector mask register at cycle 8, and can be 
read the cycle after. What is the earliest cycle at which the first element of MUL.VV can be 
issued? Given your issue cycle, at what cycle is the last result written back? 
 
Issue cycle: 5, since it can now be read 4 cycles later (the amount of ALU latency) 
Last written back: 5 + 4 (4 cycle latency) + 3 (3 more elements) = 12 
 
 
 
 
 
 
 
 
 
 
 
 
Question 3 (7 points) 
 
Now consider an issue-time masking with skipping implementation. Just like issue-time 
masking, each vector instruction reads the vector mask at issue. The difference here is that 
it only sends the masked vector elements to the (single-lane) ALU. 
 
Again, suppose SGE.VS finishes writing to the vector mask register at cycle 8, and can be 
read the cycle after. Assume only half of V1's elements are non-negative. What is the 
earliest cycle at which the first element of MUL.VV can be issued? Given your issue cycle, 
at what cycle is the last result written back? 
 
Issue cycle: 9 
Last written back: 9 + 4 (4 cycle latency) + 1 (1 more element due to skipping) = 14 
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Part C: Transactional Memory (24 points) 
 
In this part you will analyze the operation of different hardware TM (HTM) designs, and 
the concurrency they achieve for different transaction schedules on a 2-core system. For 
any HTM design, the memory system dynamically tracks the set of addresses read or 
written by each transaction (i.e., its read set and write set) as accesses are performed. 
 
Consider two HTM designs: 
 

• Eager & Pessimistic HTM uses eager version management and pessimistic 
conflict detection. For every transactional load, the memory system checks whether 
this load reads an address in the write set of any other transaction, and declares a 
conflict if so. For every transactional store, the memory system checks whether this 
store writes an address in the read set or write set of any other transaction, and 
declares a conflict if so. Upon a conflict, the transaction receiving an invalidation 
or downgrade aborts, i.e. the requester wins.  
 

• Lazy & Optimistic HTM uses lazy version management and optimistic conflict 
detection. Conflicts are detected when a transaction attempts to commit. The 
finished transaction validates its write-set with coherence actions. If any of its 
writes appear in the read- or write-set of other transactions in the system, a conflict 
is declared. Analogous to pessimistic requester-wins, the committer wins. 

 
The system runs a program consisting of the following two transactions.  
 

Txn X  Txn Y 
Begin  Begin 
Read A  Read B 
Write B  Write A 
Read C  Write C 
End  End 

 
In the following questions, for timing, assume conflict detection and coherence happen in 
the same cycle a memory access executes. 
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Question 1 (8 points) 
 
Suppose transaction X starts at cycle 0 and transaction Y starts at cycle 5, and they would 
produce the following schedule in the absence of conflict detection: 
 
Cycle 0 5 10 15 20 25 30 35 40 45 

Txn X Begin  Rd A  Wr B  Rd C  End  
Txn Y  Begin  Rd B  Wr A  Wr C  End 
 
 
a) In the absence of conflict detection (i.e. no HTM), if the memory operations interleaved 

in the given order, would the transactions be serializable in general? If so, circle what 
would be the apparent commit order of the transactions, or circle “Not serializable”. 
 
If your answer is "Not serializable", provide the earliest cycle after 5 at which 
transaction Y can start such that the two transactions become serializable. 
 

 
X before Y Y before X Not serializable 

 
Txn Y needs to be issued at cycle 11 at the earliest for Rd B to be ordered after Wr B, 
such that Txn X is ordered before Txn Y. 
 
 
 

 
b) Given the two mentioned HTM designs, indicate in the following table at what cycle a 

conflict is detected, if any, and which transaction aborts (or neither). 
  

 

 Conflict cycle Aborted Transaction 
(X, Y, or Neither) 

Eager & 
Pessimistic 20 Y 

Lazy & 
Optimistic 40 Y 
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Question 2 (8 points) 
 
Now suppose transaction X starts at cycle 0 and transaction Y starts at cycle 5, and they 
would produce the following schedule in the absence of conflict detection: 
 
 

Cycle 0 5 10 15 20 25 30 35 40 45 50 55 
Txn X Begin  Rd A  Wr B  Rd C End     
Txn Y  Begin    Rd B   Wr A  Wr C  End 

 
 
a) In the absence of conflict detection (i.e. no HTM), if the memory operations interleaved 

in the given order, would the transactions be serializable? If so, circle what would be 
the apparent commit order of the transactions, or circle “Not serializable”. 
 
If your answer is "Not serializable", provide the earliest cycle after 5 at which 
transaction Y can start such that the two transactions become serializable. 

 
X before Y Y before X Not serializable 

 
 
 
 
 
 

 
b) Given the two mentioned HTM designs, indicate in the following table at what cycle a 

conflict is detected, if any, and which transaction aborts (or neither). 
  

 

 Conflict cycle Aborted Transaction 
(X, Y, or Neither) 

Eager & 
Pessimistic 25 X 

Lazy & 
Optimistic 35 Y 
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Question 3 (8 points) 
 
Consider a different program consisting of the following three transactions: 
 

Txn V  Txn W  Txn Z 
Begin  Begin  Begin 
Read A  Read A  Read A 
Write A  Write A  Write A 
Write B  Read B  Write B 
End  End  End 

 
Suppose transaction V starts at cycle 0, transaction W starts at cycle 5, transaction Z 
starts at cycle 10, resulting in the following schedule. 
 

Cycle 0 5 10 15 20 25 30 35 40 45 50 55 60 
Txn V Begin Rd A Wr A     Wr B    End  
Txn W  Begin  Rd A Wr A     Rd B    End 
Txn Z   Begin   Rd A Wr A  Wr B  End   

 
a) In the absence of conflict detection (i.e. no HTM), if the memory operations interleaved 

in the given order, would the transactions be serializable? If so, what is the serialization 
order? (e.g., V before W before Z). 

 
Not serializable. 
 

 
b) Given the two mentioned HTM designs, indicate in the following table at what cycle 

the first conflict is detected, if any, and which transaction aborts (or none). 
  

 

 Conflict cycle Aborted Transactions 
(V, W, Z, or None) 

Eager & 
Pessimistic 15 V 

Lazy & 
Optimistic 50 V, W 

 
 
  



 
 

Page 13 of 18 
 

 

Part D: Security (12 points) 
 
Consider an out-of-order processor. The processor has very precise timers, and has a simple 
branch predictor consisting of a table of 1-bit counters indexed by the lower bits of the PC. 
The processor is running an OS that has the following piece of kernel code: 
 
 
 
 
 
 
 
I0: 
I1: 
I2: 
I3: 

kernel_syscall(int X) { 
  // X is allocated to register R1 
  int secret;       // Allocated to register R2 
  int counter;      // Allocated to register R3 
 
  // long sequence of instructions 
  bool condition = secret > X;     // SLT  R4, R1, R2 
  if (condition)                   // BEQZ R4, I3 
    counter++;                     // ADDI R3, R3, 1 
  ...                              // ... 
  // long sequence of instructions 
} 

 
There exists an exploit for this syscall that relies on the branch predictor we described 
above to leak the secret, where the attacker has control over the variable X. Answer the 
following series of questions to relate the concepts we have learned to this exploit (2 points 
each): 
 
1) What is the microarchitectural side-channel for transmitting the secret in this code? 

Be specific in your answer (i.e., don't just answer "the branch predictor"). 
 
The branch predictor entry that I1 aliases into. 
 
 
 

 
 
2) Is an active receiver needed? If so, how does the receiver precondition the channel? 

 
Yes. The receiver needs to precondition the branch predictor entry to be in a known 
state such that it can detect when the branch is taken 
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3) Which instruction(s) are the transmitter? You should answer in terms of their labels 
provided in the code above (e.g., I0 and I2). 
 
I1 is the transmitter since it modulates the channel based on the value of secret. Also 
accepted the answer that I0 and I1 and both part of the transmitter since I0 is needed 
to set up the transmission. 
 
 
 
 

 
4) How does the transmitter modulate the channel? 

 
It sets the branch predictor entry to 1 if the secret is greater than X, and 0 otherwise. 
 
 
 
 
 
 
 

5) How does the receiver decode the modulation on the channel? 
 
The receiver first primes the branch predictor entry to 0 by evaluating a not-taken 
branch that aliases into the same branch table entry, and runs the syscall. After the 
transmission, it probes the channel by again evaluating the not-taken branch again. If 
the branch resolution is slow, secret is greater than X because the branch predictor 
will mispredict. 
 
 
 
 

6) What information is contained in one transmission? 
 
Whether secret is greater than X.  
 
Bonus: Given this "bandwidth", we can figure out all the bits in the secret within 32 
transmissions (since the secret is 32 bits) assuming no noise. 
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Part E: Accelerators (14 points) 
 
For a given compute kernel, we define a tensor's reuse interval (RI) as the number of 
different elements of that tensor that have been referenced between each re-reference of 
the same element. For example, consider the following: 
 
 for m in [0, M) 

  for n in [0, N) 
      Z[m, n] = A[m] * B[n] 
 

 
Since A's element is used at every iteration of the inner loop, its RI is 1. Each element of B 
is re-referenced after N references, so its RI is N. Z has "infinite" reuse interval (i.e., no 
data reuse) since no element is re-referenced throughout the computation: 
 
RI of A = 1 
RI of B = N 
RI of Z = infinite / no reuse 
 
Question 1 (4 points) 
 
Consider the following Matrix-Matrix multiply pseudocode, which multiplies two dense 
matrices A and B to produce Z: 
 
 ;; Multiply two matrices A and B to produce Z 

;; First matrix A is MxK 
;; Second matrix B is KxN 
;; Thus, resulting matrix Z is MxN 
 
for m in [0, M) 
  for n in [0, N) 
    for k in [0, K) 
      Z[m, n] += A[m, k] * B[k, n] 
 

 
What are the reuse intervals for the three matrices? Provide your answers in terms of M, N, 
and K. 
 
RI of A = K 
RI of B = N*K 
RI of Z = 1 
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Question 2 (5 points) 
 
Now consider the following where we re-order the loop nest: 
 
 for k in [0, K) 

  for m in [0, M) 
    for n in [0, N) 
      Z[m, n] += A[m, k] * B[k, n] 
 

 
What are the reuse intervals for the three matrices? Provide your answers in terms of M, N, 
and K. 
 
RI of A = 1 
RI of B = N 
RI of Z = M*N 
 
Question 3 (5 points) 
 
Now consider the following scenario: 

• M = 500, N = 1000, and K = 30 
• A, B, and Z are dense matrices. 
• The matrices are resident in DRAM at the beginning of the computation kernel. 

 
Your wish to design a matrix-matrix multiply accelerator given the above assumptions. 
Your goal is to maximize compute intensity, defined as the average number of 
computations you perform per DRAM access. You are given the following hardware 
budget: 

• A multiply-accumulate (MAC) unit with a flip-flop on each input and the output. 
• An SRAM array large enough to store 32 elements. 
 

Which order of loop nest would you choose, and given the order how would you partition 
the SRAM budget among the different elements to maximize compute intensity? You can 
reorder the loop nests from Questions 1 and 2, but do not add more loops (e.g., no tiling). 
 
Use the loop nest from Question 1 (output stationary), and allocate 30 elements for the 
entire row of A. This row will be used for the entire computation of a single element of Z, 
then never reused again. The other two elements can be used to store anything else and will 
not impact computational intensity much. 
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Scratch Space 
 
Use these extra pages if you run out of space or for your own personal notes. We will not 
grade these unless you tell us explicitly in the earlier pages. 
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Scratch Space 
 
Use the table below if you run out of space when answering questions in Problem 1. 
 

Label Simple Int. Op Simple Int. Op Mul/Div Op Memory Op 

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

 


