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Warning: This lab introduces a new tool that will be unfamiliar to most of you. In addition, the 
simulations alone for this lab may take up to a few hours to run if you are sweeping multiple 
parameters depending on your implementation. Do not put it off until the last minute.  

 

Summary 
 
The memory bottleneck is one of the paramount design concerns in modern 

processors. As we saw in lectures, while processor speeds have increased exponentially 
over the last 40 years, main memory speeds have only increased linearly since memories 
have been optimized for capacity rather than latency. Since memories are slow relative to 
the processor and memory accesses are frequent (one per loaded instruction!), a major area 
of architectural research is improving the perceived latency of the memory. 

In order to improve the perceived latency of memory accesses, we, as architects, 
must first understand the nature of memory accesses. It has been the experience of 
architects that software memory accesses exhibit high temporal and spatial locality. 
Temporal locality means that the accessed memory location is likely to be accessed again 
in the near future. Spatial locality means that memory locations near the address of the 
accessed memory location are likely to be accessed in the near future. 

In this lab, we will explore the concept of memory caching which is a common and 
highly effective mechanism for improving memory latency. A cache is a fast, but 
necessarily small memory that contains recently accessed areas of memory. The cache has 
a much lower access and update latency than the main memory; thus, if the memory 
locations that the process requires are present in the cache, the processor can obtain the 
data in a small number of cycles (as opposed to the many hundreds of cycles it would take 
to access the main memory), thereby improving processor performance. Since we 
ultimately measure the performance of the cache by its usefulness, which is the percentage 
of time that it is able to satisfy processor requests, statistics like write hit percentage and 
read hit percentage are often used to evaluate caches. 

We will evaluate the behavior of various cache organizations using Pin, a dynamic 
binary instrumentation tool provided by Intel. As always, this lab is to be completed 
individually. You are encouraged to discuss lab concepts with fellow classmates. 
  



 

Short Introduction to Pin 
  
 In order to develop architectures that run programs efficiently, architects must 
thoroughly understand the properties of representative programs. There are a few 
approaches that can be used to evaluate the behavior of a program. One is simulation. In 
this case, a software model of a processor is built, and the program executed on the model. 
Simulators have the advantage of being arbitrarily detailed – in theory one could build a 
SPICE processor simulator. Typically, architectural simulators give cycle-accurate timing 
estimates. The penalty for this level of detail is simulation speed: the more detailed a 
software simulator is, the slower it executes programs; advanced software simulators can 
simulate at rates of tens of KIPS (kilo instructions per second).  
 A second option is program instrumentation. Instrumentation inserts code into a 
program to collects information about program characteristics. Code instrumentation may 
be less detailed than simulation, but is often faster to implement and enjoys faster program 
execution. Thus, code instrumentation can be very useful in guiding architectural decisions 
early in the development process, before detailed simulators are available. You’ve almost 
certainly used a simple form of manual instrumentation, by inserting print statements into 
a program to generate a log of program activity. However, manual instrumentation is time-
consuming if you want to record the characteristics of complex programs, both in terms of 
writing code and collecting execution results. A better choice is to use a meta language to 
describe the code instrumentation and develop a tool that will efficiently instrument the 
target program at compile or runtime. 
 Pin is an industrial-grade binary instrumentation tool produced by Intel and used 
widely in industry and academia. Pin accepts as inputs a compiled Pintool and a generic 
binary executable. A Pintool consists of C++ code that tells Pin where to insert code 
(instrumentation) and what code to insert (analysis). At runtime, executable itself is just-
in-time recompiled by Pin with the analysis inserted. The code is then executed on the host 
machine. 

A major advantage of Pin is that it can instrument programs without requiring 
recompilation of the executable from its original source code. Thus, even legacy binaries 
can be analyzed. Since Pin executes large portions of the target program natively, it can be 
very fast. However, this constrains the programs analyzed to the host architecture, namely 
x86. Yet, Pin is surprisingly versatile: new instructions can be emulated by hijacking 
unused x86 opcodes. Pin can be downloaded from http://www.pintool.org/ and run on any 
Linux or Windows platform. 

In this lab and future labs (lab 2 and 4), we will be using Pin 2.14. If you are not 
familiar with Pin, we highly recommend that you watch the Pin tutorial video 
(recorded in Spring 2021) posted on the course website. This lab will assume that you 
are familiar with the contents of the video. If you are still confused about Pin concepts 
or want to learn more about the API, we advise you to refer to the Pin 2.14 user guide 
(https://software.intel.com/sites/landingpage/pintool/docs/71313/Pin/html/). 
 

  
  



 

Setting up 
 
We will use Git for lab submissions. If you are not familiar with Git source control, git 
help is a good command to remember. In general, we will provide skeleton code that you 
will edit and check in before the submission deadline. As specified in the syllabus, no late 
hand-ins will be accepted, so submit early and often. 
 
 Although you can develop Pintools on your laptop or any Athena computer, we will 
have thirteen dedicated machines we have configured for class use. These machines are:  

 
vlsifarm-01.mit.edu 
vlsifarm-02.mit.edu 

… 
… 

vlsifarm-08.mit.edu 
and, 

eecs-ath-45.mit.edu 
eecs-ath-46.mit.edu 

… 
eecs-ath-49.mit.edu 

 
These class machines use Athena passwords, but only class members may log into 

them. If you have trouble using a class machine, report the issue to the TA, and try logging 
into another machine. Additionally, the lab starter code and your individual git repositories 
are stored on Athena AFS. If you are unable to access the lab files, please contact your TA 
to obtain the AFS permissions.  

 
Note that the eecs-ath machines have much newer hardware, so it is advisable 

that you use them over the vlsifarm machines if they aren't too overloaded. 
 
Each and every time you log in to the class machine, you must set up your environment 
for the labs. On the lab machines, you can do this by sourcing the file 
/mit/6.823/Fall21/setup.sh. For example: 
 
     % ssh <athena username>@vlsifarm-01.mit.edu 
     % add 6.823 
     % source /mit/6.823/Fall21/setup.sh 

 
To obtain the materials for lab 1, use the following commands: 
 
     % mkdir ~/6.823 && cd ~/6.823 
     % git clone $GITROOT 
          % cd $USER 
          % cp -r $LAB1FILES ./ 
          % git add lab1handout 
          % git commit -m "Lab 1 Initial Check-in" 
          % git push origin master 



 

git clone $GITROOT will clone your repository with your user name. The cp -r 
$LAB1FILES ./ will create a copy of the starter code in a directory named 
lab1handout. 
 In the lab1handount directory that just got created, you should find a make file, 
some sample source code, and a test script. To build your Pintool, type the following at the 
command prompt: 
   
   % cd lab1handout 
  % make 
 
 The caches Pintool can be invoked from the command line in the following 
manner: 
 
  % pin.sh -ifeellucky -t caches -- 
[target_executable] 
 
 We have provided a test perl script lab1test.pl. The perl script will invoke Pin using 
the caches Pintool on multiple SPEC binaries. To invoke the perl script, type: 
 
  % ./lab1test.pl  
 
 Although we provide a script that will test your Pintool, the script will not verify 
your Pintool, and we will not release the expected results of the test cases (which is what 
would happen in industry if you were designing the next-generation microarchitecture). 
Further, we reserve the right to run test cases not included in the released test script. You 
are encouraged to compare your results with your classmates. 
 
Lab Task 
 
Overview 

The purpose of this lab is to generate a set of parametric cache models that will help 
us analyze the behavior of various cache configurations. A cache can be described in terms 
of a relatively small number of parameters. We can view a cache as a data array containing 
R sets (or rows), each of which contains A (the set associativity or ways) data blocks of size 
B and some metadata (tag, valid bit) about B. When the data array is presented an address, 
it outputs the associated block data. The address can be broken down as 
<tag><index><block offset>. 

The index bits are used to access a particular set of the cache. Each cache also 
defines a replacement policy that determines which existing block in a set to evict on a 
cache fill. Commonly used replacement policies include random replacement, least-
recently-used, and not-most-recently-used. The following diagram depicts cache 
organization in terms of these parameters. 

The behavior and implementation of the cache will also depend on some system-
wide parameters. The caches that use virtual addresses must know the size of a memory 
page in the system; depending on the hardware the size of virtually indexed cache may be 
constrained by this parameter (Why?). Although the size of the physical memory does not 



 

affect cache organization, it will affect cache performance as pages are swapped in and out 
of the physical memory. 

In the lab, you will design a set of parameterized L1 data cache models based on 
the diagram. Note that, in the diagram, the input memory addresses accessed could be either 
virtual or physical. We have covered the distinction between virtual and physical addresses 
in class (Lectures 4-5). We will experiment with both styles of cache in this lab. 

 
Starter Code 

With all of the above background, we can discuss the starter code, which is located 
in caches.cpp. All the caches that you will implement will inherit the CacheModel base 
class. Notice that the base class implements some of the cache metadata for you, although 
you will have to add some metadata of your own. The following is a description of the 
CacheModel functions. You are expected to implement the bold-faced function for each 
cache. 

access: This function is a read or a write request from the processor to the 
cache. The processor will present a virtual address, and whether the request 
is a read or a write. You will then update the appropriate cache metadata and 
statistics according to the cache type, following a least recently used (LRU) 
replacement policy. 
dumpResults: This function will print out the cache statistics that access 
has been tracking. We will call this function at the end of the Pin run from 
the code that we have provided you. Don't modify this code or you'll break 
our testbenches, which will be tragic for the correctness portion of your lab 
grade. 

 
 The lab assumes 32-bit Virtual Addresses, and logPhysicalMemSize-bit Physical 
Addresses. The following global function will be used to translate between virtual and 
physical addresses:  



 

getPhysicalPageNumber: This function translates virtual page numbers 
from Pin into 'physical' page numbers, akin to the translation look-aside 
buffer and page table. It produces physical page numbers of size 
(logPhysicalMemSize - logPageSize). You should note that different virtual 
addresses may map to the same physical address (aliasing). You do not need 
to worry about solving this in your implementation.  

 
 In this lab you will implement the above boldface function which will track the 
cache metadata, thereby simulating the behavior of a real cache. The metadata that you will 
track includes the cache valid bits, the cache tags, and information for the least recently 
used (LRU) replacement policy. Recall that least recently used replacement means that 
when a cache block needs to be evicted, the block that was read or written farthest in the 
past will be chosen for eviction.  

Notice that the CacheModel base class has a number of constructor parameters, 
such as associativityParam, logNumRowsParam, and logBlockSizeParam. You will use 
these parameters to implement your functions in such a way that multiple cache sizes and 
associativities can be tested rapidly. We use the logVariable naming convention to denote 
that the parameter is given as a base 2 logarithm of the actual size, thus if 
logBlockSizeParam is 4 then the block size is 2^4 = 16 bytes. Notice that our instantiations 
of the cache classes that you will implement use Pin command line parameters to obtain 
parameters. Thus, you can test your caches with many configurations, even though our 
public testbench will only examine a trivial configuration. The baseline caches that you 
will be implementing will use the appropriate number of low order bits of either the virtual 
or physical index as the hash function for accessing the rows of the ways. You should use 
the scheme in the above diagram to organize your cache. 
 
Lab Goal 

You will implement three cache models, one that is virtually indexed and virtually 
tagged (VIVT), one that is virtually indexed and physically tagged (VIPT), and one that is 
physically indexed and physically tagged (PIPT). Each cache will be an extension of the 
base CacheModel class. Each cache model will track a variety of statistics. You will track 
the total number of read accesses, the total number of write accesses, the number of read 
hits, and the number of write hits. Your labs will be evaluated for accuracy based on these 
statistics on both the public testbench (which you can run with lab1test.pl) and private 
testbench.  

Note that the only parts of the code you have to edit for this lab are the analysis 
routine of the Pintool -- the instrumentation routine (which inserts the analysis routine 
cacheLoad() and cacheStore() before every memory load or store) has already been defined 
for you. In addition, the Fini function will be called at the end of program execution and 
will produce an output file that stores the number of requests and cache hits for 
reads/writes. You are welcome to make temporary changes to the Fini function to debug 
your Pintool. However, do not modify the Fini function for the final submission, or you 
will not pass our test benches. There should also be no additional print statements in 
the Pintool that generate unnecessary outputs. 

x86 is a rather quirky architecture. Recall that some architectures like MIPS allow 
only 4B word-aligned memory accesses. Aligned memory accesses means that the bottom 



 

bits of the address of the requested data must be zero. Thus, the address of a four-byte 
access must always end in 2'b00. X86, however, allows unaligned memory accesses, which 
will introduce some potential inaccuracy into our cache models. We will ignore handling 
unaligned memory accesses by assuming that the appropriate bottom bits of the access 
address are zeroed out. 

Although your solution will not be graded on its performance in terms of wall clock 
time, you should note that your Teaching Assistant is impatient. The TA solution runs the 
sample testbench in less than 30 minutes on the class machines (with nominal load). For 
grading purposes, we will allow your pin tool to run for an order of magnitude more time 
than ours requires (around 5 hours). After that time, we will kill it and assign a grade based 
on progress to that point. Do not write horrendously inefficient code: it makes kittens sad. 

We have provided you an additional script to enable you to run all the SPEC binaries 
for different cache configurations from command line. 

 
% ./lab1test_param.pl -b <logBlockSize> -r <logNumRows> 

-a <associativity> 
 
When you have completed the lab to your satisfaction, submit your changes to your 

git repository. The deadline for submission is 23:59:59 EDT 1 October 2021. We'll grade 
whatever code you have committed and pushed by the deadline. No Late Submissions will 
be accepted! Seriously. 
 
Lab Questions 
 
 Your response to the lab questions should be typed in lab1questions.pdf (or 
lab1questions.docx) in the lab1handout directory. Some questions may require coding, and 
as such should not be put off until the last minute. All figures and data necessary to 
understand your report must be included in it. 
 

1. Hit and miss. Using your physically indexed, physically tagged cache model, 
starting from a base configuration (Rows = 512, Block Size = 4 bytes, Associativity 
= 1), vary the number of rows, block size, associativity, and capacity of your cache 
models. Explain any general trends in hit and miss rate that you observe (show 
graphs). Are there significant differences between the three cache models? Why? 
 
2. SPEC interrogation.  

a. Using your physically indexed, physically tagged (PIPT) cache model, 
determine the size of the working set (lookup what it means) for the 
SPEC2000 benchmarks, justifying your answer with a graph. Are the 
working sets of the SPEC benchmarks intended to fit in a processor cache 
(lookup the typical sizes of L1 these days)? Why or why not?  

b. Again, using the PIPT cache model, do you notice a difference between the 
SPECINT and SPECFP programs in terms of hit and miss rates? Explain 
why this difference occurs.  

c. Would you choose different cache configurations (block size, associativity 
and number of rows) given the same cache size, for floating point programs 



 

and integer programs? Which configuration(s) would you choose and why? 
(Remember that an associative cache takes more chip area and power than 
a direct mapped cache of the same capacity). 

 
3. Make the common case fast. We asked you to implement three cache models. 
A potential fourth cache model is a physically indexed, virtually tagged cache. Does 
this cache configuration make sense? Explain why or why not. Take timing issues 
in to account. 
 
4. Make the uncommon case correct. For this problem, ignore the case when 
multiple virtual addresses map to a single physical address. Although our baseline 
test bench only behaves as if the simulated machine has a single process running, 
real machines almost always have more than one process at a time. Uh-oh, it seems 
like one of the cache models may not work in the presence of multiple processes. 
Which one, and why? Explain what modifications are necessary to make this cache 
model work in the presence of multiple processes. 
 
5. You assume too much. We assumed that all memory accesses were aligned like 
in the case of MIPS. Design a simple experiment to determine how many unaligned 
memory accesses occur in the SPEC benchmarks. What do you observe? Does our 
assumption make sense? 

 
When you have answered these questions to your satisfaction, put them in a file 

called lab1questions.pdf (or lab1questions.docx) in your lab1handout directory, then run 
the following to add, commit, and push them. 
 

% git add lab1questions.pdf 
% git commit -m "Lab 1 Questions Check-In" 
% git push origin master 

 
As with the lab code, we'll grade whatever you have checked in by the deadline. 

 

Lab Grading 
 
10%: Submission compiles 
20%: Submission passes public test bench 
20%: Submission passes private test bench 
50%: Quality of lab question responses 
 
Advice on Mine Sweeping 
 
 There may be bugs in either our code or infrastructure. If you notice any ̀ interesting' 
or `unexpected' behavior it could be a problem in the code or infrastructure that we 
provided. Report these bugs immediately on Piazza, using a private Piazza post if sharing 
any information about your code. This will help to ensure prompt fixing of any issues that 
may arise. 



 

 
Additional Resources: 
http://www.pintool.org/ - Pin home page 
https://software.intel.com/sites/landingpage/pintool/docs/71313/Pin/html/ - Pin 2.14 User 
Guide 
https://help.github.com/articles/git-and-github-learning-resources - Git learning resources 
https://git-scm.com/book/en/v2 – ProGit ebook 
 


