Pin Optimizations

TA: Nathan Beckmann

Adapted from: Owen Chin 2012, Tushar Krishna
2011, and Intel’s Tutorial at CGO 2010

2/14/2014 6.823 Spring 2014

From the last tut:orial... .
What is Instrumentation?

* [nstrumentation is a technique that inserts
extra code into a program to collect runtime
information

e PIN doesinstrumentation

Runtime No need to
re-compile
or re-link

4
Instrumentation: Instruction Count/

Analysis routine

Instrumentation routine
4

Let’s increment
counter by one
before every instruction!

counter++;
sub $0xff, %edx
counter++;
cmp %esi, %edx

—

counter++;

jle <L1>
counter++;

mov S$SO0xl, %edi
counter++;

add $0x10, %eax

2/14/2014 6.823 Spring 2014 3

Instrumentation vs. Analysis

* Instrumentation routines define where
instrumentation is inserted

— < Occurs first time an instruction is executed

* Analysis routines define what to do when
instrumentation is activated

— < Occurs every time an instruction is executed

2/14/2014 6.823 Spring 2014

o

Reducing Instrumentation Overhead '/4

Total Overhead = Pin’s Overhead + Pintool’s Overhead

e The job of Pin developers to minimize this
e ~5% for SPECfp and ~20% for/ SPECint

e Pintool writers can help minimize this!

2/14/2014 6.823 Spring 2014 5

Reducing Pintool’s Overhead }4

Pintool’s Overhead

—
Instrumentation Routines Overhead nalysis Routines Overhea

/\
- T

Frequency of calling an Analysis Routine x Work required in the Analysis Routine

2/14/2014 6.823 Spring 2014 6

Reducing Pintool’s Overhead }4

Pintool’s Overhead

—
Instrumentation Routines Overhead nalysis Routines Overhea

A
- T

@cy of calling an Analys@x Work required in the Analysis Routine

2/14/2014 6.823 Spring 2014 7

;{{

Instrumentation Granularity

 |nstrumentation with Pin can be done at 3 different
granularities:

— Instruction
— Basic block

* A sequence of instructions terminated at a (conditional or
unconditional) control-flow changing instruction

* Single entry, single exit
— Trace

* A sequence of basic blocks terminated at an unconditional control-flow
changing instruction

e Single entry, multiple exits

Instrumentation Granularity

 |nstrumentation with Pin can be done at 3 different

granularities:

— Instruction $0xff, Y%oedx
— Basic block %esi, Yoedx
* A sequence of instrucf . <L1>
unconditional) contro
* Single entry, single exi $0X1, %edi
— Trace $0x10, %eax
* A sequence of basicb <L2>

changing instruction

* Single entry, multiple exits

2/14/2014 6.823 Spring 2014

Instrumentation Granularity 7/

 |nstrumentation with Pin can be done at 3 different

granularities: 6 insts
— Instruction $0xff, Yoedx
— Basic block O/OeSi, o/OedX
* A sequence of instrucf <L1>
unconditional) contro
* Single entry, single exi $0X1, %edi
— Trace $0X10, O/Oeax

* A sequence of basicb <L2> W
changing instruction

* Single entry, multiple exits

2/14/2014 6.823 Spring 2014 10

Instrumentation Granularity

 |nstrumentation with

Pin can be done at 3 different

granularities:
— |Instruction
— Basic block

* A sequence of instrucf
unconditional) contro

* Single entry, single exi
— Trace

* A sequence of basic b
changing instruction

6 insts, 2 basic blocks

sub $0xff, %edx
cmp %esi, %edx
jle <L1>

mov $0x1, %edi
add $0x10, %eax
jmp <L2>

* Single entry, multiple exits

2/14/2014

6.823 Spring 2014

Instrumentation Granularity 7/

 |nstrumentation with Pin can be done at 3 different

granularities: 6 insts, 2 basic blocks, 1 trace
— Instruction sub $0xff, Y%edx
— Basic block Cmp O/OeSi, O/oedX
* A sequence of instrucf Jle i
unconditional) contro
* Single entry, single exi mov $0X1, %%edi
— Trace add $0X10, O/Oeax

jmp <L2>

* A sequence of basic b
changing instruction

* Single entry, multiple exits

2/14/2014 6.823 Spring 2014 12

Recap of Pintool 1: Instruction Count

2/14/2014

counter++;
sub S$SO0xff, %edx
counter++;
cmp %esi, %edx
counter++;

jle <L1>
counter++;

mov $0x1, %edi
counter++;

add $0x10, %eax

6.823 Spring 2014

f

13

Recap of Pintool 1: Instruction Count ’/J

counter++;
sub $0xff, %edx

» Straightforward, but the counting can be more efficient

counter++;
mov $0x1, %edi
counter++;

add $0x10, %eax

2/14/2014 6.823 Spring 2014 14

Pintool 3: Faster Instruction Count#

counter +=3
sub $0xff, %edx

cmp %esli, 3edx \\\\\\\

jle <L1> basic blocks (bbl)

counter +=2
mov $0x1, %edi

add $0x10, %eax

2/14/2014 6.823 Spring 2014 15

o

#include <stdio.h> ManualExamples/inscount1.C
#include "pin.H" i -
UINT64 icount = O0; /'
void docount (INT32 c¢) { icount += c; } ana|ySiS routine

void Trace (TRACE trace, void *v) {
for (BBL bbl = TRACE BblHead(trace);
BBL Valid(bbl); bbl = BBL Next(bbl)) ({
BBL InsertCall (bbl, IPOINT BEFORE, (AFUNPTR)docount,
IARG UINT32, BBL NumIns (bbl), IARG END);

\ Instrumentation routine

void Fini (INT32 code, void *v) {
fprintf (stderr, "Count %$11d\n", icount);
}
int main(int argc, char * argv[]) {
PIN Init(argc, argv);
TRACE AddInstrumentFunction (Trace, 0);
PIN AddFiniFunction(Fini, O0);
PIN StartProgram() ;

return 0;

Reducing Frequency of Calling /‘[
Analysis Routines

* Key:

— Instrument at the largest granularity whenever
possible:

* Trace > Basic Block > Instruction

Reducing Pintool’s Overhead }4

Pintool’s Overhead

—
Instrumentation Routines Overhead nalysis Routines Overhea

A
- T

@cy of calling an Analys@x Work required in the Analysis Routine

2/14/2014 6.823 Spring 2014 18

Reducing Pintool’s Overhead }4

Pintool’s Overhead

—
Instrumentation Routines Overhead nalysis Routines Overhea

A
- T

@cy of calling an Analys@x Work required in the Analysis Routine

Work required for transiting to Analysis Routine +@ne inside Analysis R@

2/14/2014 6.823 Spring 2014 19

o

Example: Counting Control Flow Edges}g

2/14/2014

L1:

L2:

L3:

L4:

jne , <L2> l

jmp | <L3>

call <L4>
jne K <L1>

A

How often is
each branch
taken?

ret

6.823 Spring 2014

Example: Counting Control Flow Edges/

DO

100 40
(ret)4 imp)

40
B

How often is
each branch
taken?

2/14/2014 6.823 Spring 2014

Edge Counting: a Slower Version d
/

{
COUNTER *pedg = Lookup(src, dst);

pedg->count += taken;

}

void Instruction (INS ins, void *v) {

if (INS IsBranchOrCall (ins))

{
INS InsertCall (ins, IPOINT BEFORE, (AFUNPTR) docount2,

TARG_INST_PTR, X(ARG_BRANCH_TARGET ADDR
TARG BRANCH TAKEN,SIARG END) ;
} /

} 1 if taken, 0 if not taken

o

}/

Inefficiency in Program

About every 5th instruction executed in a typical
application is a branch.

Lookup will be called whenever these instruction
are executed

— significant application slowdown

Direct vs. Indirect Branches

— Branch Address in instruction vs. Branch Address in
Register

— Static vs. Dynamic

Edge Counting: a Faster Version d

void docount (COUNTER* pedge, INT32 taken) ({
pedg->count += taken;

}

void docount2 (ADDRINT src, ADDRINT dst, INT32 taken) {
COUNTER *pedg = Lookup(src, dst);
pedg->count += taken;

}

void Instruction (INS ins, void *v) {
if (INS IsDirectBranchOrCall (ins)) {

COUNTER *pedg = Lookup (INS Address(ins),
INS DirectBranchOrCallTargetAddress (ins)) ;

INS InsertCall (ins, IPOINT BEFORE, (AFUNPTH
IARG ADDRINT, pedg, DIARG BRANCH TAKEN, IARG END) ;

} else
INS InsertCall(ins, IPOINT BEFORE, (AFUNPTR) docount2,
IARG INST PTR, IARG BRANCH TARGET ADDR,
IARG BRANCH TAKEN, IARG END) ;

Why didn’t | use “if”?

2/14/2014 6.823 Spring 2014

N

Reducing Work Done in Analysis /‘[
Routines
* Key:

— Shifting computation from Analysis Routines to
Instrumentation Routines whenever possible

}/

Some other optimizations...

* Reduce the number of arguments to analysis
routine.

— For example, instead of passing TRUE/FALSE, create 2
analysis functions.

* If an instrumentation can be inserted anywhere
in a basic block:
— Let Pin know via IPOINT_ANYWHERE

— Pin will find the best point to insert the
instrumentation to minimize register spilling

Takeaways..

* Reduce frequency of calling analysis routines by
instrumenting at the largest granularity whenever
possible

 Reduce the amount of work done in analysis routines
by shifting computation from Analysis Routines to
Instrumentation Routines whenever possible

2/14/2014 6.823 Spring 2014 28

