
Pin Optimizations

TA: Nathan Beckmann

Adapted from: Owen Chin 2012, Tushar Krishna
2011, and Intel’s Tutorial at CGO 2010

2/14/2014 6.823 Spring 2014 1

What is Instrumentation?

• Instrumentation is a technique that inserts
extra code into a program to collect runtime
information

• PIN does dynamic binary instrumentation

2/7/2014 6.823 Spring 2014 2

Runtime No need to
re-compile
or re-link

From the last tutorial…

Let’s count the
number of instructions!

Instrumentation: Instruction Count

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter++;

counter++;

counter++;

counter++;

counter++;

Let’s increment
counter by one

before every instruction!

Analysis routine

Instrumentation routine

2/14/2014 6.823 Spring 2014 3

Instrumentation vs. Analysis

• Instrumentation routines define where
instrumentation is inserted

– C Occurs first time an instruction is executed

• Analysis routines define what to do when
instrumentation is activated

– C Occurs every time an instruction is executed

2/14/2014 6.823 Spring 2014 4

Reducing Instrumentation Overhead

Total Overhead = Pin’s Overhead + Pintool’s Overhead

• The job of Pin developers to minimize this

• ~5% for SPECfp and ~20% for SPECint

• Pintool writers can help minimize this!

2/14/2014 6.823 Spring 2014 5

Reducing Pintool’s Overhead

Instrumentation Routines Overhead + Analysis Routines Overhead

Pintool’s Overhead

Frequency of calling an Analysis Routine x Work required in the Analysis Routine

2/14/2014 6.823 Spring 2014 6

Reducing Pintool’s Overhead

Instrumentation Routines Overhead + Analysis Routines Overhead

Pintool’s Overhead

Frequency of calling an Analysis Routine x Work required in the Analysis Routine

2/14/2014 6.823 Spring 2014 7

Instrumentation Granularity
• Instrumentation with Pin can be done at 3 different

granularities:

– Instruction

– Basic block
• A sequence of instructions terminated at a (conditional or

unconditional) control-flow changing instruction

• Single entry, single exit

– Trace
• A sequence of basic blocks terminated at an unconditional control-flow

changing instruction

• Single entry, multiple exits

2/14/2014 6.823 Spring 2014 8

Instrumentation Granularity
• Instrumentation with Pin can be done at 3 different

granularities:

– Instruction

– Basic block
• A sequence of instructions terminated at a (conditional or

unconditional) control-flow changing instruction

• Single entry, single exit

– Trace
• A sequence of basic blocks terminated at an unconditional control-flow

changing instruction

• Single entry, multiple exits

sub $0xff, %edx
cmp %esi, %edx
jle <L1>

mov $0x1, %edi
add $0x10, %eax
jmp <L2>

2/14/2014 6.823 Spring 2014 9

Instrumentation Granularity
• Instrumentation with Pin can be done at 3 different

granularities:

– Instruction

– Basic block
• A sequence of instructions terminated at a (conditional or

unconditional) control-flow changing instruction

• Single entry, single exit

– Trace
• A sequence of basic blocks terminated at an unconditional control-flow

changing instruction

• Single entry, multiple exits

sub $0xff, %edx
cmp %esi, %edx
jle <L1>

mov $0x1, %edi
add $0x10, %eax
jmp <L2>

6 insts

2/14/2014 6.823 Spring 2014 10

Instrumentation Granularity
• Instrumentation with Pin can be done at 3 different

granularities:

– Instruction

– Basic block
• A sequence of instructions terminated at a (conditional or

unconditional) control-flow changing instruction

• Single entry, single exit

– Trace
• A sequence of basic blocks terminated at an unconditional control-flow

changing instruction

• Single entry, multiple exits

sub $0xff, %edx
cmp %esi, %edx
jle <L1>

mov $0x1, %edi
add $0x10, %eax
jmp <L2>

6 insts, 2 basic blocks

2/14/2014 6.823 Spring 2014 11

Instrumentation Granularity
• Instrumentation with Pin can be done at 3 different

granularities:

– Instruction

– Basic block
• A sequence of instructions terminated at a (conditional or

unconditional) control-flow changing instruction

• Single entry, single exit

– Trace
• A sequence of basic blocks terminated at an unconditional control-flow

changing instruction

• Single entry, multiple exits

sub $0xff, %edx
cmp %esi, %edx
jle <L1>

mov $0x1, %edi
add $0x10, %eax
jmp <L2>

6 insts, 2 basic blocks, 1 trace

2/14/2014 6.823 Spring 2014 12

Recap of Pintool 1: Instruction Count

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter++;

counter++;

counter++;

counter++;

counter++;

2/14/2014 6.823 Spring 2014 13

Recap of Pintool 1: Instruction Count

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter++;

counter++;

counter++;

counter++;

counter++;

• Straightforward, but the counting can be more efficient

2/14/2014 6.823 Spring 2014 14

Pintool 3: Faster Instruction Count

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter += 3

counter += 2
basic blocks (bbl)

2/14/2014 6.823 Spring 2014 15

ManualExamples/inscount1.C#include <stdio.h>

#include "pin.H“

UINT64 icount = 0;

void docount(INT32 c) { icount += c; }

void Trace(TRACE trace, void *v) {

for (BBL bbl = TRACE_BblHead(trace);

BBL_Valid(bbl); bbl = BBL_Next(bbl)) {

BBL_InsertCall(bbl, IPOINT_BEFORE, (AFUNPTR)docount,

IARG_UINT32, BBL_NumIns(bbl), IARG_END);

}

}

void Fini(INT32 code, void *v) {

fprintf(stderr, "Count %lld\n", icount);

}

int main(int argc, char * argv[]) {

PIN_Init(argc, argv);

TRACE_AddInstrumentFunction(Trace, 0);

PIN_AddFiniFunction(Fini, 0);

PIN_StartProgram();

return 0;

}

analysis routine

instrumentation routine

162/14/2014 6.823 Spring 2014

Reducing Frequency of Calling
Analysis Routines

• Key:

– Instrument at the largest granularity whenever
possible:

• Trace > Basic Block > Instruction

2/14/2014 6.823 Spring 2014 17

Reducing Pintool’s Overhead

Instrumentation Routines Overhead + Analysis Routines Overhead

Pintool’s Overhead

Frequency of calling an Analysis Routine x Work required in the Analysis Routine

2/14/2014 6.823 Spring 2014 18

Reducing Pintool’s Overhead

Instrumentation Routines Overhead + Analysis Routines Overhead

Pintool’s Overhead

Frequency of calling an Analysis Routine x Work required in the Analysis Routine

Work required for transiting to Analysis Routine + Work done inside Analysis Routine

2/14/2014 6.823 Spring 2014 19

Example: Counting Control Flow Edges

L1: jne <L2>

...

jmp <L3>

L2: call <L4>

...

L3: jne <L1>

...

L4: ...

ret

2/14/2014 6.823 Spring 2014 20

How often is
each branch

taken?

100
60

40

60

40

40

1

Example: Counting Control Flow Edges

2/14/2014 6.823 Spring 2014 21

call

jne

ret

jne

jmp

How often is
each branch

taken?

Edge Counting: a Slower Version
…

void docount2(ADDRINT src, ADDRINT dst, INT32 taken)

{

COUNTER *pedg = Lookup(src, dst);

pedg->count += taken;

}

void Instruction(INS ins, void *v) {

if (INS_IsBranchOrCall(ins))

{

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) docount2,

IARG_INST_PTR, IARG_BRANCH_TARGET_ADDR,

IARG_BRANCH_TAKEN, IARG_END);

}

}

…

2/14/2014 6.823 Spring 2014 22

1 if taken, 0 if not taken

Inefficiency in Program

• About every 5th instruction executed in a typical
application is a branch.

• Lookup will be called whenever these instruction
are executed
– significant application slowdown

• Direct vs. Indirect Branches
– Branch Address in instruction vs. Branch Address in

Register

– Static vs. Dynamic

2/14/2014 6.823 Spring 2014 23

Edge Counting: a Faster Version

void docount(COUNTER* pedge, INT32 taken) {

pedg->count += taken;

}

void docount2(ADDRINT src, ADDRINT dst, INT32 taken) {

COUNTER *pedg = Lookup(src, dst);

pedg->count += taken;

}

void Instruction(INS ins, void *v) {

if (INS_IsDirectBranchOrCall(ins)) {

COUNTER *pedg = Lookup(INS_Address(ins),

INS_DirectBranchOrCallTargetAddress(ins));

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) docount,

IARG_ADDRINT, pedg, IARG_BRANCH_TAKEN, IARG_END);

} else

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) docount2,

IARG_INST_PTR, IARG_BRANCH_TARGET_ADDR,

IARG_BRANCH_TAKEN, IARG_END);

}

…
242/14/2014 6.823 Spring 2014

Why didn’t I use “if”?
void docount2(ADDRINT src, ADDRINT dst, INT32 taken) {

if (!taken)

return;

COUNTER *pedg = Lookup(src, dst);

pedg->count++;

}

void docount2(ADDRINT src, ADDRINT dst, INT32 taken) {

COUNTER *pedg = Lookup(src, dst);

pedg->count += taken;

}

2/14/2014 6.823 Spring 2014 25

vs.

Can be inlined by Pin

Reducing Work Done in Analysis
Routines

• Key:

– Shifting computation from Analysis Routines to
Instrumentation Routines whenever possible

2/14/2014 6.823 Spring 2014 26

Some other optimizations…

• Reduce the number of arguments to analysis
routine.
– For example, instead of passing TRUE/FALSE, create 2

analysis functions.

• If an instrumentation can be inserted anywhere
in a basic block:
– Let Pin know via IPOINT_ANYWHERE

– Pin will find the best point to insert the
instrumentation to minimize register spilling

2/14/2014 6.823 Spring 2014 27

Takeaways..
• Reduce frequency of calling analysis routines by

instrumenting at the largest granularity whenever
possible

• Reduce the amount of work done in analysis routines
by shifting computation from Analysis Routines to
Instrumentation Routines whenever possible

2/14/2014 6.823 Spring 2014 28

