

Page 1 of 2

6.823 Spring 2014
Handout #14 – Multi-producer/Single-consumer Messaging Queues

http://csg.csail.mit.edu/6.823/

You are writing a queue to be used in a multi-producer/single-consumer application.

(Producer threads write messages that are read by one consumer.) We assume here a

queue with infinite space.

TST rs, Imm(rt) is the test-and-set instruction, which atomically loads the value at

Imm(rt) into rs, and if the value is zero, updates the memory location at Imm(rt) to

1. This atomic instruction is useful for implementing locks: a value of 1 at the memory

location indicates that someone holds the lock, and a value of 0 means the lock is free.

Producer pushes a message onto queue: (memory operations in bold)

void push(int** tail_ptr, int* tail_write_lock, int message) {

while (lock_try(tail_write_lock) == false);

**tail_ptr = message;

*tail_ptr++;

lock_release(tail_write_lock);

}

R1 – contains address of data to enqueue

R2 – contains the address of the tail pointer of queue

R3 – address of tail pointer write lock

P1 SpinLock:TST R4, 0(R3) # try to acquire tail write lock

P2 BNEZ R4, R4, SpinLock

P3 LD R4, 0(R2) # get tail pointer

P4 ST R1, 0(R4) # write message to tail

P5 ADD R4, R4, 4 # update tail pointer

P6 ST R4, 0(R2)

P7 ST R0, 0(R3) # release lock

Page 2 of 2

Consumer pops a message off queue: (memory operations in bold)

int pop(int** head_ptr, int** tail_ptr) {

while (*head_ptr == *tail_ptr);

int message = **head_ptr;

*head_ptr++;

return message;

}

R1 – will receive address contained in message

R2 – contains the address of the head pointer of queue

R3 – contains the address of the tail pointer of the queue

C1 Retry: LD R4, 0(R2) # get head pointer

C2 LD R5, 0(R3) # get tail pointer

C3 SUB R5, R4, R5 # is there a message?

C4 BNEZ R5, Pop

C5 JMP Retry

C6 Pop: LD R1, 0(R4) # read message from queue

C7 ADD R4, R4, 4 # update head pointer

C8 ST R4, 0(R2)

