
6.823

Handout #4

 1

 6.823 Computer System Architecture
 Bus-Based MIPS Implementation

http://csg.csail.mit.edu/6.823/

General Overview

Figure H4-A shows a diagram of a bus-based implementation of the MIPS architecture. In this

architecture, the different components of the machine share a common 32-bit bus through which

they communicate. Control signals determine how each of these components is used and which

components get to use the bus during a particular clock cycle. These components and their

corresponding control signals are described below.

For this handout, we shall use a positive logic convention. Thus, when we say signal X is

“asserted”, we mean that signal X is a logical 1, and that the wire carrying signal X is raised to

the “HIGH” voltage level.

Figure H4-A: A bus-based datapath for MIPS.

IR A B

RegWrt

enReg

MemWrt

enMem

MA

addr addr

data data

rs
rt
rd

32(PC)
31(Link)

RegSel

busy? zero?

ALUOp

Opcode

ldIR ldA ldB ldMA

IntRq

Memory

32 GPRs +
PC +

IRA + ...

(32-bit regs)
ALU

enALU

Immed
Extend

enImm

ExSel

Bus

6.823

Handout #4

 2

The Enable Signals

Since the bus is shared by different components, there is a need to make sure that only one

component is driving (“writing”) the bus at any point in time. We do this by using tri-state

buffers at the output of each component that can write to the bus. A tri-state buffer is a simple

combinational logic buffer with enable control. When enable is 1, then the output of the buffer

simply follows its input. When enable is 0, then the output of the buffer “floats” -- i.e.,

regardless of its input, the tri-state buffer will not try to drive any voltage on the bus. Floating

the buffer‟s output allows some other component to drive the bus.
1

In the bus-based MIPS, we have four enable signals: enImm, enALU, enReg, and enMem. As

shown, enImm and enALU are connected directly to the enable of a tri-state buffer. On the other

hand, enReg and enMem are used in more complex circuitry to be explained later in the section

on the register file. When setting these signals, it is important to make sure that at any one time,

at most one device should be driving the bus. It is possible not to assert any of the four signals.

In this case, the bus will float and will have an undefined value.

Special Registers and Load Signals

In addition to the registers in the register file, the bus-based MIPS has four other special internal

registers: IR, A, B, and MA. These registers are 32-bit edge triggered registers with load enable

control. As shown, these registers take their data inputs from the bus. If a register‟s enable is

asserted during a particular cycle, then the value on the bus during that cycle will be copied into

the register at the next clock edge. If the enable control is 0, then register‟s value is not changed.

We call these register enable signals load signals, and give them names of the form “ldXX” (i.e.,

ldIR, ldA, ldB, and ldMA). In addition, the RegWrt and MemWrt signals are also load signals,

but their exact functionality will be discussed later. It is possible to assert more than one load

signal at a time. In this case, the value on the bus will be loaded to all registers whose load

signals are asserted.

The Instruction Register

The instruction register is used to hold the current 32-bit instruction word. As explained in the

Handout #4 (RISC ISA- MIPS64), the opcode and function fields (see the MIPS64 instruction

format) are used by the microcode control hardware to identify the instruction and run the

appropriate microcode. As shown in Figure H4-A, the immediate field is connected to a sign

1 You can also think of a tri-state buffer as an electronically controlled switch. If enable is 1, then the switch

connects the input and the output as if they were connected by a wire. If enable is 0, then the input is electrically

disconnected from the output. Note that the tri-state buffer is a memoryless device, and is not the same as a latch or

a flip-flop.

6.823

Handout #4

 3

extender and then to the bus. Finally, as described below, the register specifier fields go to a

multiplexer connected to the register file address input.

The Sign Extender

The box named “Immed Extend” in the diagram is a sign extender module that extends a number

(16 bits or 26 bits) to a 32-bit number. The sign extender can have one of four possible values.

If ExSel is uExt16, then no sign extension is performed, and the most significant bits are just

padded with 0‟s. In this case, the input to the sign extender must be a 16-bit number. If ExSel is

uExt26, then no sign extension is performed either, but the input to the sign extender must be a

26-bit number. If ExSel is sExt16, then the number is sign extended by taking its MSB and

using it to pad the most significant bits of the 32-bit value. (Note: we use 2‟s complement to

represent negative numbers.) In this case, the input to the sign extender must be a 16-bit number.

If ExSel is sExt26, then the input must be a 26-bit number, and it is sign extended by taking its

MSB and using it to pat the most significant bits of the 32-bit value.

The ALU

The ALU takes 3 inputs: two 32-bit operand inputs, connected to the A and B registers, and an

ALUOp input. ALUOp selects the operation to be performed on the operands. Assume that the

ALU can perform the following operations by default, if not explicitly stated otherwise:

ALUOp ALU Result Output

COPY_A A

COPY_B B

INC_A_1 A+1

DEC_A_1 A-1

INC_A_4 A+4

DEC_A_4 A-4

ADD A+B

SUB A-B

Table H4-1: ALU Operations for Handout #4.

In order to implement the entire MIPS ISA, we will need a few more ALU operations.

The ALU is purely combinational logic. It has two outputs, a 32-bit main result output, and 1-bit

zero flag output, zero. The result output is computed as in Table H4-1. The zero flag simply

indicates if the ALU result output equals to zero. If the result is 0 then zero is 1, otherwise zero is

0. For example, if A=2, B=2, and ALUOp=SUB, then the ALU result will be 0, and zero will be

1. This flag is used to do conditional branches in microcode.

6.823

Handout #4

 4

The Register File

The register file contains the 32 general-purpose registers (GPRs), the PC, and a few other

special-purpose registers. The register file itself has a 6-bit address input (addr) and a 32-bit data

port. The address input determines which register is to be read or written to.

Two control signals determine how the register file is used during a certain cycle: RegWrt and

enReg. RegWrt determines whether the operation to be performed, if any, is a read or a write. If

RegWrt is 1, then it is a write, otherwise it‟s a read. enReg is a general enable control for the

register file. If enReg is 1, then the register reads or writes depending on RegWrt. If enReg is 0,

then nothing is done, regardless of the value of RegWrt. Figure H4-B shows exactly how enReg

and RegWrt are wired to the register controls.

The address input (addr) determines which register in the file is to be used. Read operations are

assumed to be combinational. That is, if you change the value at the addr input, then the value at

the data output will change appropriately (after some delay), even if no clock edge occurs. Write

operations, on the other hand, are edge triggered, such that data from the register‟s data input is

only stored in the selected address at the next clock edge.

Figure H4-B: Control signals and bus connections for the register file and the memory.

While the addr input selects which register is used, the RegSel control signal selects what value

is used as the addr input. As shown, RegSel controls a multiplexer that chooses between (at

least) 5 possible values. The first two are the hardwired values 32 and 31, corresponding to the

PC and the Link register respectively. The next three, rs, rt, and rd, are taken from the register

specifier fields of the IR. The following figure shows which fields rs, rt, and rd correspond to:

6 bits 5 bits 5 bits 5 bits 11 bits

Opcode rs rt rd . . .

ChipEnable Write/Read

RAM
Cell Array din

dout

we

bus

addr

6.823

Handout #4

 5

The exact meaning of these fields depends on the instruction and instruction-type. Please refer to

H&P and the lecture notes. Note that these fields are 5 bits wide, while addr is 6 bits wide. This

is because our register file here contains more than just the 32 GPR‟s. Just assume that the 5-bit

fields are converted to a 6-bit address by padding the MSB with a 0. When specifying the value

of RegSel, you should just use the symbols PC, Link, rs, rt, and rd.

The Memory

The memory module is very similar to the register file except that the address input is taken from

an edge triggered register, MA. Thus, it takes two steps to access a particular memory location.

First, you load the MA with the desired memory address. Then, you perform the desired

memory operation. The MemWrt and enMem controls work just like RegWrt and enReg. Any

operations to be performed on memory are performed on the location specified by the current

value of MA. As in the register file, we assume that reads are combinational, while writes are

edge triggered.

The main difference between memory module and the register file is the busy signal. Unlike the

register file, the memory may take more than one cycle to complete a read or write (e.g., if you

get a cache miss). The busy signal indicates that the memory isn‟t done reading or writing yet.

The microcode can then respond to the busy signal appropriately.

The Clock Period and Timing Issues

We will assume that the clock period is long enough to guarantee that the results of all

combinational logic paths are valid and stable before the setup time of any edge triggered

components attempting to latch these results.

Remember that these combinational paths include not only computational elements like the sign

extender, and the ALU, but also the register file and the memory during read operations.

Specifically, the path from addr to the data output in both the register file and the memory is

purely combinational. As mentioned above, if you change the value at the addr input, then the

value at the data output will change appropriately (after some delay), even if no clock edge

occurs.

Also remember that the path from data input to data output is not combinational. This applies

not only to the register file and memory, but also to other edge triggered registers (i.e., IR, A, B,

and MA). When performing a write to any of these components, the value at the data input is not

stored until the next clock edge, and can thus only be read during the next clock cycle.

Finally, we will assume that there are no hold time violation problems.

6.823

Handout #4

 6

Microprogramming on the Bus-Based MIPS Implementation

In the past, simple CISC machines employed a bus-based architecture wherein the different

components of the machine (ALU, memory, etc.) communicated through a common bus. This

type of architecture is easy and inexpensive to implement, but has the disadvantage of requiring

all data movement between components to use the bus. Because of this bottleneck, an instruction

on such an architecture typically took several cycles to execute.

Microprogramming makes it easy to generate the control signals for such multi-cycle

instructions. A microcode program is basically a finite state machine description. Each line of

microcode corresponds to some state of the machine, and contains a “microinstruction” which

specifies the outputs for that state, and the next state. The outputs are used to control the

different components in the datapath. The next state depends on the current state and possibly on

certain other signals (e.g., condition flags). As we shall see, this simple FSM model proves to be

very powerful, allowing complex operations like conditional branches and loops to be

performed.

Table H4-3 in Appendix B shows a microcode table for the bus-based MIPS implementation.

Some lines have been filled in as examples. The first column in the microcode table contains the

state label of each microinstruction. For brevity, we assume that the states are listed in

increasing numerical order, and we only label important states. For example, we label state

FETCH0, and assume that the unlabeled line immediately following it corresponds to state

(FETCH1). The second column contains a pseudo-code explanation of the microinstruction in

RTL-like notation. The rest of the columns, except the last two, represent control signals that are

asserted during the current cycle. „Don‟t care‟ entries are marked with a „*‟.

The last two columns specify the next state. The Br (microbranch) column represents a 2-bit

field with four possible values: N, J, Z, and D. If Br is N (next), then the next state is simply

(current state + 1). If it is J (jump), then the next state is unconditionally the state specified in

the Next State column (i.e., it‟s an unconditional microbranch). If it is Z (branch-if-zero), then

the next state depends on the value of the ALU‟s zero output signal (i.e., it‟s a conditional

microbranch). If zero is asserted (== 1), then the next state is that specified in the Next State

column, otherwise, it is (current state + 1). If Br is D (dispatch), then the FSM looks at the

opcode and function fields in the IR and goes into the corresponding state. In this handout, we

assume that the dispatch goes to the state labeled (MIPS-instruction-name + “0”). For example,

if the instruction in the IR is SW, then the dispatch will go to state SW0.

The first three lines in the table (starting at FETCH0) form the instruction fetch stage. These

lines are responsible for fetching the next instruction opcode, incrementing the PC, and then

going to the appropriate microcode line based on the particular opcode fetched. The instruction

fetch stage is performed for every instruction, and every instruction‟s microcode should always

end by executing an instruction fetch for the next instruction. The easiest way to do this is by

having the last microinstruction of an instruction‟s microcode do a microbranch to FETCH0.

The microcode for NOP provides a simple example. For the rest of the instructions, their

microcodes were not given intentionally; we expect students to fill out the table themselves.

6.823

Handout #4

 7

Appendix A. A Cheat Sheet for the Bus-based MIPS Implementation

For your reference, we’ve also included the actual bus-based datapath as well as rehash of some

important information about microprogramming in the bus-based architecture.

Remember that you can use the following ALU operations:

ALUOp ALU Result Output

COPY_A A

COPY_B B

INC_A_1 A+1

DEC_A_1 A-1

INC_A_4 A+4

DEC_A_4 A-4

ADD A+B

SUB A-B

Table H4-2: Available ALU operations

Also remember that Br (microbranch) column in Table H4-3 represents a 2-bit field with four

possible values: N, J, Z, and D. If Br is N (next), then the next state is simply (current state +

1). If it is J (jump), then the next state is unconditionally the state specified in the Next State

column (i.e., it‟s an unconditional microbranch). If it is Z (branch-if-zero), then the next state

depends on the value of the ALU‟s zero output signal (i.e., it‟s a conditional microbranch). If

zero is asserted (== 1), then the next state is that specified in the Next State column, otherwise, it

is (current state + 1). If Br is D (dispatch), then the FSM looks at the opcode and function

fields in the IR and goes into the corresponding state.

IR A B

RegWrt

enReg

MemWrt

enMem

MA

addr addr

data data

rs
rt
rd

32(PC)
31(Link)

RegSel

busy? zero?

ALUOp

Opcode

ldIR ldA ldB ldMA

IntRq

Memory

32 GPRs +
PC +

IRA + ...

(32-bit regs)
ALU

enALU

Immed
Extend

enImm

ExSel

Bus

6.823

Handout #4

 8

Appendix B. Microcode Table for the Bus-based MIPS Implementation

State PseudoCode ld

IR
Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

ld
MA

Mem
W

en
Mem

Ex
Sel

en
Imm

B
r

Next State

FETCH0: MA <- PC;
A <- PC

0 PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 N *

 PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

0 * * 0 * * * 0 * * 0 * 0 J FETCH0

ADDM0:

Table H4-3 (Worksheet 1)

