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 6.823 Computer System Architecture  
 Bus-Based MIPS Implementation  

   
 

http://csg.csail.mit.edu/6.823/ 
 

 

General Overview 

 

Figure H4-A shows a diagram of a bus-based implementation of the MIPS architecture.  In this 

architecture, the different components of the machine share a common 32-bit bus through which 

they communicate.  Control signals determine how each of these components is used and which 

components get to use the bus during a particular clock cycle.  These components and their 

corresponding control signals are described below.   

For this handout, we shall use a positive logic convention.  Thus, when we say signal X is 

“asserted”, we mean that signal X is a logical 1, and that the wire carrying signal X is raised to 

the “HIGH” voltage level. 

 

 
 

Figure H4-A: A bus-based datapath for MIPS. 
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The Enable Signals 

 

Since the bus is shared by different components, there is a need to make sure that only one 

component is driving (“writing”) the bus at any point in time.  We do this by using tri-state 

buffers at the output of each component that can write to the bus.  A tri-state buffer is a simple 

combinational logic buffer with enable control.  When enable is 1, then the output of the buffer 

simply follows its input.  When enable is 0, then the output of the buffer “floats” -- i.e., 

regardless of its input, the tri-state buffer will not try to drive any voltage on the bus.  Floating 

the buffer‟s output allows some other component to drive the bus.
1
   

In the bus-based MIPS, we have four enable signals: enImm, enALU, enReg, and enMem.  As 

shown, enImm and enALU are connected directly to the enable of a tri-state buffer.  On the other 

hand, enReg and enMem are used in more complex circuitry to be explained later in the section 

on the register file.  When setting these signals, it is important to make sure that at any one time, 

at most one device should be driving the bus.  It is possible not to assert any of the four signals.  

In this case, the bus will float and will have an undefined value. 

 

Special Registers and Load Signals 

 

In addition to the registers in the register file, the bus-based MIPS has four other special internal 

registers: IR, A, B, and MA.  These registers are 32-bit edge triggered registers with load enable 

control.  As shown, these registers take their data inputs from the bus.  If a register‟s enable is 

asserted during a particular cycle, then the value on the bus during that cycle will be copied into 

the register at the next clock edge.  If the enable control is 0, then register‟s value is not changed. 

We call these register enable signals load signals, and give them names of the form “ldXX” (i.e., 

ldIR, ldA, ldB, and ldMA).  In addition, the RegWrt and MemWrt signals are also load signals, 

but their exact functionality will be discussed later.  It is possible to assert more than one load 

signal at a time.  In this case, the value on the bus will be loaded to all registers whose load 

signals are asserted. 

 

The Instruction Register 

 

The instruction register is used to hold the current 32-bit instruction word.  As explained in the 

Handout #4 (RISC ISA- MIPS64), the opcode and function fields (see the MIPS64 instruction 

format) are used by the microcode control hardware to identify the instruction and run the 

appropriate microcode.  As shown in Figure H4-A, the immediate field is connected to a sign 

                                                 
1 You can also think of a tri-state buffer as an electronically controlled switch.  If enable is 1, then the switch 

connects the input and the output as if they were connected by a wire.  If enable is 0, then the input is electrically 

disconnected from the output.  Note that the tri-state buffer is a memoryless device, and is not the same as a latch or 

a flip-flop. 
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extender and then to the bus.  Finally, as described below, the register specifier fields go to a 

multiplexer connected to the register file address input. 

 

The Sign Extender 

 

The box named “Immed Extend” in the diagram is a sign extender module that extends a number 

(16 bits or 26 bits) to a 32-bit number.  The sign extender can have one of four possible values.  

If ExSel is uExt16, then no sign extension is performed, and the most significant bits are just 

padded with 0‟s.  In this case, the input to the sign extender must be a 16-bit number.  If ExSel is 

uExt26, then no sign extension is performed either, but the input to the sign extender must be a 

26-bit number.  If ExSel is sExt16, then the number is sign extended by taking its MSB and 

using it to pad the most significant bits of the 32-bit value.  (Note: we use 2‟s complement to 

represent negative numbers.)  In this case, the input to the sign extender must be a 16-bit number.  

If ExSel is sExt26, then the input must be a 26-bit number, and it is sign extended by taking its 

MSB and using it to pat the most significant bits of the 32-bit value. 

 

The ALU 

 

The ALU takes 3 inputs: two 32-bit operand inputs, connected to the A and B registers, and an 

ALUOp input.  ALUOp selects the operation to be performed on the operands.  Assume that the 

ALU can perform the following operations by default, if not explicitly stated otherwise: 

ALUOp ALU Result Output 

COPY_A A 

COPY_B B 

INC_A_1 A+1 

DEC_A_1 A-1 

INC_A_4 A+4 

DEC_A_4 A-4 

ADD A+B 

SUB A-B 

Table H4-1:  ALU Operations for Handout #4. 

In order to implement the entire MIPS ISA, we will need a few more ALU operations.   

The ALU is purely combinational logic.  It has two outputs, a 32-bit main result output, and 1-bit 

zero flag output, zero.  The result output is computed as in Table H4-1.  The zero flag simply 

indicates if the ALU result output equals to zero. If the result is 0 then zero is 1, otherwise zero is 

0.  For example, if A=2, B=2, and ALUOp=SUB, then the ALU result will be 0, and zero will be 

1.  This flag is used to do conditional branches in microcode. 
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The Register File 

 

The register file contains the 32 general-purpose registers (GPRs), the PC, and a few other 

special-purpose registers.  The register file itself has a 6-bit address input (addr) and a 32-bit data 

port.  The address input determines which register is to be read or written to.   

Two control signals determine how the register file is used during a certain cycle: RegWrt and 

enReg.  RegWrt determines whether the operation to be performed, if any, is a read or a write.  If 

RegWrt is 1, then it is a write, otherwise it‟s a read.  enReg is a general enable control for the 

register file.  If enReg is 1, then the register reads or writes depending on RegWrt.  If enReg is 0, 

then nothing is done, regardless of the value of RegWrt.  Figure H4-B shows exactly how enReg 

and RegWrt are wired to the register controls. 

The address input (addr) determines which register in the file is to be used.  Read operations are 

assumed to be combinational.  That is, if you change the value at the addr input, then the value at 

the data output will change appropriately (after some delay), even if no clock edge occurs.  Write 

operations, on the other hand, are edge triggered, such that data from the register‟s data input is 

only stored in the selected address at the next clock edge. 

 

 
Figure H4-B:  Control signals and bus connections for the register file and the memory. 
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The exact meaning of these fields depends on the instruction and instruction-type.  Please refer to 

H&P and the lecture notes.  Note that these fields are 5 bits wide, while addr is 6 bits wide.  This 

is because our register file here contains more than just the 32 GPR‟s.  Just assume that the 5-bit 

fields are converted to a 6-bit address by padding the MSB with a 0.  When specifying the value 

of RegSel, you should just use the symbols PC, Link, rs, rt, and rd. 

 

The Memory 

 

The memory module is very similar to the register file except that the address input is taken from 

an edge triggered register, MA.  Thus, it takes two steps to access a particular memory location.  

First, you load the MA with the desired memory address.  Then, you perform the desired 

memory operation.  The MemWrt and enMem controls work just like RegWrt and enReg.  Any 

operations to be performed on memory are performed on the location specified by the current 

value of MA.  As in the register file, we assume that reads are combinational, while writes are 

edge triggered. 

The main difference between memory module and the register file is the busy signal.  Unlike the 

register file, the memory may take more than one cycle to complete a read or write (e.g., if you 

get a cache miss).  The busy signal indicates that the memory isn‟t done reading or writing yet.  

The microcode can then respond to the busy signal appropriately.   

 

The Clock Period and Timing Issues 

 

We will assume that the clock period is long enough to guarantee that the results of all 

combinational logic paths are valid and stable before the setup time of any edge triggered 

components attempting to latch these results. 

Remember that these combinational paths include not only computational elements like the sign 

extender, and the ALU, but also the register file and the memory during read operations.  

Specifically, the path from addr to the data output in both the register file and the memory is 

purely combinational.  As mentioned above, if you change the value at the addr input, then the 

value at the data output will change appropriately (after some delay), even if no clock edge 

occurs. 

Also remember that the path from data input to data output is not combinational.  This applies 

not only to the register file and memory, but also to other edge triggered registers (i.e., IR, A, B, 

and MA).  When performing a write to any of these components, the value at the data input is not 

stored until the next clock edge, and can thus only be read during the next clock cycle.   

Finally, we will assume that there are no hold time violation problems. 
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Microprogramming on the Bus-Based MIPS Implementation 

 

In the past, simple CISC machines employed a bus-based architecture wherein the different 

components of the machine (ALU, memory, etc.) communicated through a common bus.  This 

type of architecture is easy and inexpensive to implement, but has the disadvantage of requiring 

all data movement between components to use the bus. Because of this bottleneck, an instruction 

on such an architecture typically took several cycles to execute.   

Microprogramming makes it easy to generate the control signals for such multi-cycle 

instructions.  A microcode program is basically a finite state machine description. Each line of 

microcode corresponds to some state of the machine, and contains a “microinstruction” which 

specifies the outputs for that state, and the next state.  The outputs are used to control the 

different components in the datapath.  The next state depends on the current state and possibly on 

certain other signals (e.g., condition flags).  As we shall see, this simple FSM model proves to be 

very powerful, allowing complex operations like conditional branches and loops to be 

performed. 

Table H4-3 in Appendix B shows a microcode table for the bus-based MIPS implementation.  

Some lines have been filled in as examples. The first column in the microcode table contains the 

state label of each microinstruction.  For brevity, we assume that the states are listed in 

increasing numerical order, and we only label important states.  For example, we label state 

FETCH0, and assume that the unlabeled line immediately following it corresponds to state 

(FETCH1).  The second column contains a pseudo-code explanation of the microinstruction in 

RTL-like notation.  The rest of the columns, except the last two, represent control signals that are 

asserted during the current cycle.  „Don‟t care‟ entries are marked with a „*‟.   

The last two columns specify the next state.  The Br (microbranch) column represents a 2-bit 

field with four possible values: N, J, Z, and D.  If Br is N (next), then the next state is simply 

(current state + 1).  If it is J (jump), then the next state is unconditionally the state specified in 

the Next State column (i.e., it‟s an unconditional microbranch).  If it is Z (branch-if-zero), then 

the next state depends on the value of the ALU‟s zero output signal (i.e., it‟s a conditional 

microbranch).  If zero is asserted (== 1), then the next state is that specified in the Next State 

column, otherwise, it is (current state + 1).  If  Br is D (dispatch), then the FSM looks at the 

opcode and function fields in the IR and goes into the corresponding state.  In this handout, we 

assume that the dispatch goes to the state labeled (MIPS-instruction-name + “0”).  For example, 

if the instruction in the IR is SW, then the dispatch will go to state SW0. 

The first three lines in the table (starting at FETCH0) form the instruction fetch stage.  These 

lines are responsible for fetching the next instruction opcode, incrementing the PC, and then 

going to the appropriate microcode line based on the particular opcode fetched.  The instruction 

fetch stage is performed for every instruction, and every instruction‟s microcode should always 

end by executing an instruction fetch for the next instruction.  The easiest way to do this is by 

having the last microinstruction of an instruction‟s microcode do a microbranch to FETCH0.  

The microcode for NOP provides a simple example.  For the rest of the instructions, their 

microcodes were not given intentionally; we expect students to fill out the table themselves. 
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Appendix A. A Cheat Sheet for the Bus-based MIPS Implementation 

 

For your reference, we’ve also included the actual bus-based datapath as well as rehash of some 

important information about microprogramming in the bus-based architecture. 

 

Remember that you can use the following ALU operations: 

 

ALUOp ALU Result Output 

COPY_A A 

COPY_B B 

INC_A_1 A+1 

DEC_A_1 A-1 

INC_A_4 A+4 

DEC_A_4 A-4 

ADD A+B 

SUB A-B 

Table H4-2: Available ALU operations 

Also remember that Br (microbranch) column in Table H4-3 represents a 2-bit field with four 

possible values: N, J, Z, and D.  If Br is N (next), then the next state is simply (current state + 

1).  If it is J (jump), then the next state is unconditionally the state specified in the Next State 

column (i.e., it‟s an unconditional microbranch).  If it is Z (branch-if-zero), then the next state 

depends on the value of the ALU‟s zero output signal (i.e., it‟s a conditional microbranch).  If 

zero is asserted (== 1), then the next state is that specified in the Next State column, otherwise, it 

is (current state + 1).  If  Br is D (dispatch), then the FSM looks at the opcode and function 

fields in the IR and goes into the corresponding state. 

 

IR  A  B 

RegWrt 

enReg 

MemWrt 

enMem 

MA 

addr addr 

data data 

rs 
rt 
rd 

32(PC) 
31(Link) 

RegSel 

busy? zero? 

ALUOp 

Opcode 

ldIR ldA ldB ldMA 

IntRq 

Memory 

32 GPRs +  
PC +  

IRA + ... 

(32-bit regs) 
ALU 

enALU 

Immed 
Extend 

enImm 

ExSel 

Bus 



6.823 

Handout #4 

 8 

Appendix B. Microcode Table for the Bus-based MIPS Implementation 

 
State PseudoCode ld 

IR 
Reg 
Sel 

Reg 
W 

en 
Reg 

ld 
A 

ld 
B 

ALUOp en 
ALU 

ld 
MA 

Mem 
W 

en 
Mem 

Ex 
Sel 

en 
Imm 

B
r 

Next State 

FETCH0: MA <- PC; 
A <- PC 

0 PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 N * 

 PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

0 * * 0 * * * 0 * * 0 * 0 J FETCH0 

ADDM0:                 

                 

                 

                 

                 

                 

                 

                 

                 

Table H4-3 (Worksheet 1) 


