
 

Problem M4.1: Networks-on-Chip 
 
Problem M4.1.A 

 
Consider a flow control method similar to circuit switching but where the request message 
'reserves' each channel for a fixed period of time in the future (for example, for 10 cycles since a 
reservation is made). At each router along the path, a reservation is made if a request from a 
neighbor can be accommodated. If the request cannot be accommodated a NACK is sent that 
cancels all previous recommendations for the connection, and the request is retired. If a request 
reaches the destination, an acknowledgement is sent back to the source, confirming all 
reservations.  
 
Draw a time-space diagram of a situation that demonstrates the advantage of reservation circuit 
switching over conventional circuit switching. 



 

 
Problem M4.1.B 

 
Determine whether the following oblivious routing algorithms are deadlock-free for the 2-D 
mesh. There is only one virtual channel per link and no 180-degree turns are allowed for (c). 
 
(a) Randomized dimension-order: All packets are routed minimally. Half of the packets are 
routed completely in the X dimension before the Y dimension and the other packets are routed Y 
before X.  
 
 
 
(b) Less randomized dimension-order: All packets are routed minimally. Packets whose minimal 
direction is increasing in both X and Y, always route X before Y. Packets whose minimal 
direction is decreasing in both X and Y, always route Y before X. All other packets randomly 
choose between X before Y and vice versa.  
 
 
 
(c) All packets are prohibited to take the two turns in dash: 

 

 
 



 

Problem M4.2: Non-mesh Networks 
 
We have the following network topology with 4 network nodes and 10 links. 
 

A

B D

C
 

 
Note that each link is unidirectional, and only one link exists between A and C (only a link from 
C to A (not from A to C), and only from D to B between B and D. Each link can transfer 1 flit 
per cycle and there is only one virtual channel per link. For all parts, 180-degree turns are not 
allowed. 
 
Problem M4.2.A 

 
Fill in the following table of the properties of this network.  
 

Diameter  

Average Distance  

Bisection Bandwidth  
 
 
Problem M4.2.B 

 
Draw the channel dependency graph of this network.  
 
 
 



 

 
Problem M4.2.C 

 
Is a minimal routing on this network deadlock-free? Show your reasoning and give a deadlock 
scenario if it is not deadlock -free. 
 
 
 
 
 
Problem M4.2.D 

 
Now, we use a possibly non-minimal routing on this network. Plus, we prohibited the following 
two movements on the non-minimal routing: 1) A to D then D to C and 2) B to C then C to D. 
 

 
Is this routing deadlock-free? Show your reasoning and give a deadlock scenario if it is not 
deadlock -free. 
 
 
 
 
Problem M4.2.D 

 
Still having the two movements in M4.2.D prohibited, we added another restriction in routing: 
the link from C to A can be used only by packets generated at C, before the packets are 
transferred to any other nodes (it should be the first link those packets ever take). Also, the link 
from D to B can be used only by packets generated at D with the same condition (however, 
routes may be non-minimal).  
 
Is this rou ting deadlock-free? Sho w your re asoning and g ive a  deadlock sc enario if it is no t 
deadlock -free. 
 



Last updated: 
11/28/2011 

Problem M4.3: Sequential Consistency [? Hours] 
 
For this problem we will be using the following sequences of instructions. These are small 
programs, each executed on a different processor, each with its own cache and register set. In the 
following R is a register and X is a memory location. Each instruction has been named (e.g., B3) 
to make it easy to write answers. 
 
Assume data in location X is initially 0. 
 

Processor A Processor B Processor C 
A1: ST X, 1 B1: R := LD X C1: ST X, 6 
A2: R := LD X B2: R := ADD R, 1 C2: R := LD X 
A3: R := ADD R, R B3: ST X, R C3: R := ADD R, R 
A4: ST X, R B4: R:= LD X C4: ST X, R 
 B5: R := ADD R, R  
 B6: ST X, R  

 
 
For each of the questions below, please circle the answer and provide a short explanation 
assuming the program is executing under the SC model.  No points will be given for just 
circling an answer! 
 
 
Problem M4.3.A 

 
Can X hold value of 4 after all three threads have completed? Please explain briefly. 
 
Yes   /   No 
 
 
 
Problem M4.3.B 

 
Can X hold value of 5 after all three threads have completed? 
 
Yes   /   No 
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Problem M4.3.C 
 
Can X hold value of 6 after all three threads have completed? 
 
Yes   /   No 
 
 
 
 
Problem M4.3.D 

 
For this particular program, can a processor that reorders instructions but follows local 
dependencies produce an answer that cannot be produced under the SC model? 
 
Yes   /   No 
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Problem M4.4: Synchronization Primitives [? Hours] 
 
One of the common instruction sequences used for synchronizing several processors are the 
LOAD RESERVE/STORE CONDITIONAL pair (from now on referred to as LdR/StC pair). 
The LdR instruction reads a value from the specified address and sets a local reservation for the 
address. The StC attempts to write to the specified address provided the local reservation for the 
address is still held. If the reservation has been cleared the StC fails and informs the CPU.  
 
 
Problem M4.4.A 

 
Describe under what events the local reservation for an address is cleared. 
 
 
 
 
Problem M4.4.B 

 
Is it possible to implement LdR/StC pair in such a way that the memory bus is not affected, i.e., 
unaware of the addition of these new instructions?  Explain 
 
 
 
 
Problem M4.4.C 

 
Give two reasons why the LdR/StC pair of instructions is preferable over atomic read-test-
modify instructions such as the TEST&SET instruction.  
 
 
 
 
 
Problem M4.4.D 

 
LdR/StC pair of instructions were conceived in the context of snoopy busses. Do these 
instructions make sense in our directory-based system in Handout #11? Do they still offer an 
advantage over atomic read-test-modify instructions in a directory-based system? Please explain. 
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Problem M4.5: Implementing Directories  
 
Ben Bitdiddle is implementing a directory-based cache coherence invalidate protocol for a 64-
processor system.  He first builds a smaller prototype with only 4 processors to test out the 
cache coherence protocol described in Handout #11.  To implement the list of sharers, S, kept 
by home, he maintains a bit vector per cache block to keep track of all the sharers.  The bit 
vector has one bit corresponding to each processor in the system.  The bit is set to one if the 
processor is caching a shared copy of the block, and zero if the processor does not have a copy of 
the block.  For example, if Processors 0 and 3 are caching a shared copy of some data, the 
corresponding bit vector would be 1001. 
 
 
Problem M4.5.A 

 
The bit vector worked well for the 4-processor prototype, but when building the actual 64-
processor system, Ben discovered that he did not have enough hardware resources.  Assume 
each cache block is 32 bytes.  What is the overhead of maintaining the sharing bit vector for a 
4-processor system, as a fraction of data storage bits?  What is the overhead for a 64-
processor system, as a fraction of data storage bits? 
 
 
 
Overhead for a 4-processor system: ________________________ 
  
Overhead for a 64-processor system: _______________________ 
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Problem M4.5.B 
 
Since Ben does not have the resources to keep track of all potential sharers in the 64-processor 
system, he decides to limit S to keep track of only 1 processor using its 6-bit ID as shown in 
Figure M4.5-A (single-sharer scheme).  When there is a load [C2P_Req(a) S] request for a 
shared cache block, Ben invalidates the existing sharer to make room for the new sharer (home 
sends a invalidate request [P2C_Req(a) I] to the existing sharer, the existing sharer sends 
an invalidate response [C2P_Rep(a) I] to home, home replaces the exiting sharer's ID with 
the new sharer's ID and sends the load response [P2C_Rep(a) I S] to the new sharer). 
 
                                         

6 
Sharer ID 

 
Figure M4.5-A 

 
Consider a 64-processor system.  To determine the efficiency of the bit-vector scheme and 
single-sharer scheme, fill in the number of invalidate-requests that are generated by the 
protocols for each step in the following two sequences of events.  Assume cache block B is 
uncached initially for both sequences. 
 
 
Sequence 1 bit-vector scheme 

# of invalidate-requests 
single-sharer scheme 

# of invalidate-requests 
Processor #0 reads B 0 0 
Processor #1 reads B   
Processor #0 reads B   
 
 
 
Sequence 2 bit-vector scheme 

# of invalidate-requests 
single-sharer scheme 

# of invalidate-requests 
Processor #0 reads B 0 0 
Processor #1 reads B   
Processor #2 writes B   
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Problem M4.5.C 

 
Ben thinks that he can improve his original scheme by adding an extra “global bit” to S as 
shown in Figure M4.5-B (global-bit scheme).  The global bit is set when there is more than 1 
processor sharing the data, and zero otherwise.   
 
                                               

1 6 
0 Sharer ID  

    
     global    

        Figure M4.5-B 
 
When the global bit is set, home stops keeping track of a specific sharer and assumes that all 
processors are potential sharers.   
 
 

1 6 
1 XXXXXX 

     
              global 
         Figure M4.5-C 
 
 
Consider a 64-processor system. To determine the efficiency of the global-bit scheme, fill in the 
number of invalidate-requests that are generated for each step in the following two sequences 
of events.  Assume cache block B is uncached initially for both sequences. 
 
 

Sequence 1 global-bit scheme 
# of invalidate-requests 

Processor #0 reads B 0 
Processor #1 reads B  
Processor #0 reads B  

 
 

Sequence 2 global-bit scheme 
# of invalidate-requests 

Processor #0 reads B 0 
Processor #1 reads B  
Processor #2 writes B  
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Problem M4.6: Tracing the Directory-based Protocol [? Hours]  
 
For the problem we will be using the following sequences of instructions. These are small 
programs, each executed on a different processor, each with its own cache and register set. In the 
following R is a register and X is a memory location. Each instruction has been named (e.g., B3) 
to make it easy to write answers. 
 
Assume data in location X is initially 0. 
 

Processor A Processor B Processor C 
A1: ST X, 1 B1: R := LD X C1: ST X, 6 
A2: R := LD X B2: R := ADD R, 1 C2: R := LD X 
A3: R := ADD R, R B3: ST X, R C3: R := ADD R, R 
A4: ST X, R B4: R:= LD X C4: ST X, R 
 B5: R := ADD R, R  
 B6: ST X, R  

 
These questions relate to the directory-based protocol in Handout #11 (as well as Lecture 23). 
Unless specified otherwise, assume all caches are initially empty and no voluntary responses are 
sent (i.e. responses are sent only on receiving a request).  
 
Problem M4.6.A 

 
Suppose we execute Program A, followed by Program B, followed by Program C and all caches 
are initially empty. Write down the sequence of messages that will be generated. We have 
omitted ADD instructions because they cannot generate any messages.  EO indicates the global 
execution order.   
 
Processor A Processor B Processor C 

Ins EO Messages Ins EO Messages Ins EO Messages 

A1 1 
<M,A,Req,x,M> 

<A,M,Rep,x,I,M,0> 
B1 4  C1 8  

A2 2  B3 5  C2 9  

A4 3  B4 6  C4 10  

   B6 7     

 
How many messages are generated?   ___________________ 
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Problem M4.6.B 
 
Is there an execution sequence that will generate even fewer messages?  Fill in the EO columns 
to indicate the global execution order.  Also, fill in the messages. 
 
Processor A Processor B Processor C 

Ins EO Messages Ins EO Messages Ins EO Messages 

A1   B1   C1   

A2   B3   C2   

A4   B4   C4   

   B6      

 
 
How many messages are generated?   ___________________ 
 
 
 
Problem M4.6.C 

 
Can the number of messages in Problem M4.6.B be decreased by using voluntary responses?  
Explain. 
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Problem M4.6.D 
 
What is the execution sequence that generates the most messages without any voluntary 
responses?  Fill in the global execution order (EO) and the messages generated. Partial credit 
will be given for identifying a bad, but not necessarily the worst sequence. 
 
Processor A Processor B Processor C 

Ins EO Messages Ins EO Messages Ins EO Messages 

A1   B1   C1   

A2   B3   C2   

A4   B4   C4   

   B6      

 
 
How many messages are generated?   ___________________ 
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Problem M4.7: Snoopy Cache Coherent Shared Memory [? Hours] 
 
In this problem, we investigate the operation of the snoopy cache coherence protocol in Handout 
#12.   
 
The following questions are to help you check your understanding of the coherence protocol.  
 
 Explain the differences between CR, CI, and CRI in terms of their purpose, usage, and the 

actions that must be taken by memory and by the different caches involved. 
 Explain why WR is not snooped on the bus. 
 Explain the I/O coherence problem that CWI helps avoid. 
 
 
Problem M4.7.A Where in the Memory System is the Current Value

 
In Table M4.7-1, M4.7-2, and M4.7-3, column 1 indicates the initial state of a certain address X 
in a cache. Column 2 indicates whether address X is currently cached in any other cache. (The 
“cached” information is known to the cache controller only immediately following a bus 
transaction. Thus, the action taken by the cache controller must be independent of this signal, but 
state transition could depend on this knowledge.) Column 3 enumerates all the available 
operations on address X, either issued by the CPU (read, write), snooped on the bus (CR, CRI, 
CI. etc), or initiated by the cache itself (replacement). Some state-operation combinations are 
impossible; you should mark them as such. (See the first table for examples). In columns 6, 7, 
and 8 (corresponding to this cache, other caches and memory, respectively), check all possible 
locations where up-to-date copies of this data block could exist after the operation in 
column 3 has taken place and ignore column 4 and 5 for now.  Table M4.7-1 has been 
completed for you. Make sure the answers in this table make sense to you. 
 
 
 
Problem M4.7.B MBus Cache Block State Transition Table

 
In this problem, we ask you to fill out the state transitions in Column 4 and 5. In column 5, 
fill in the resulting state after the operation in column 3 has taken place. In column 4, list the 
necessary MBus transactions that are issued by the cache as part of the transition. Remember, the 
protocol should be optimized such that data is supplied using CCI whenever possible, and only 
the cache that owns a line should issue CCI. 
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Problem M4.7.C Adding atomic memory operations to MBus
 
We have discussed the importance of atomic memory operations for processor synchronization.  
In this problem you will be looking at adding support for an atomic fetch-and-increment to the 
MBus protocol. 
 
Imagine a dual processor machine with CPUs A and B.  Explain the difficulty of CPU A 
performing fetch-and-increment(x) when the most recent copy of x is cleanExclusive in CPU B’s 
cache.  You may wish to illustrate the problem with a short sequence of events at processor A 
and B. 
 
Fill in the rest of the table below as before, indicating state, next state, where the block in 
question may reside, and the CPU A and MBus transactions that would need to occur atomically 
to implement a fetch-and-increment on processor A. 
 

State other 
cached 

ops actions by this 
cache 

next 
state 

this 
cache 

other 
caches 

mem 

Invalid yes read      
  write      
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initial state other 
cached 

ops actions by this 
cache 

final 
state 

this 
cache 

other 
caches 

mem 

Invalid no none none I   
  CPU read CR CE   
  CPU write CRI OE    
  replace none Impossible 
  CR none I   
  CRI none I    
  CI none Impossible 
  WR none Impossible 
  CWI none I   

Invalid yes none  I   
  CPU read  CS   
  CPU write  OE    
  replace same Impossible 
  CR as I   
  CRI above I    
  CI  I    
  WR  I   
  CWI  I   

 
initial state other 

cached 
ops actions by this 

cache 
final 
state 

this 
cache 

other 
caches 

mem 

cleanExclusive no none none CE    
  CPU read      
  CPU write      
  replace      
  CR  CS    
  CRI      
  CI      
  WR      
  CWI      

Table M4.7-1 
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initial state other 
cached 

ops actions by this 
cache 

final 
state 

this 
cache 

other 
caches 

mem 

ownedExclusive no none none OE    
  CPU read      
  CPU write      
  replace      
  CR  OS    
  CRI      
  CI      
  WR      
  CWI      

 
initial state other 

cached 
ops actions by this 

cache 
final 
state 

this 
cache 

other 
caches 

mem 

cleanShared no none none CS    
  CPU read      
  CPU write      
  replace      
  CR      
  CRI      
  CI      
  WR      
  CWI      

cleanShared yes none      
  CPU read      
  CPU write      
  replace same     
  CR as     
  CRI above     
  CI      
  WR      
  CWI      

Table M4.7-2 
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initial state other 
cached 

ops actions by this 
cache 

final 
state 

this 
cache 

other 
caches 

mem 

ownedShared no none none OS    
  CPU read      
  CPU write      
  replace      
  CR      
  CRI      
  CI      
  WR      
  CWI      

ownedShared yes none      
  CPU read      
  CPU write      
  replace same     
  CR as     
  CRI above     
  CI      
  WR      
  CWI      

Table M4.7-3 
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Problem M4.8: Snoopy Cache Coherent Shared Memory [? Hours] 
 
This problem improves the snoopy cache coherence protocol presented in Handout #12.  As a 
review of that protocol:  
 

When multiple shared copies of a modified data block exist, one of the caches owns the current copy of the data 
block instead of the memory (the owner has the data block in the OS state).  When another cache tries to 
retrieve the data block from memory, the owner uses cache to cache intervention (CCI) to supply the data 
block.  CCI provides a faster response relative to memory and reduces the memory bandwidth demands.  
However, when multiple shared copies of a clean data block exist, there is no owner and CCI is not used when 
another cache tries to retrieve the data block from memory.   

 
To enable the use of CCI when multiple shared copies of a clean data block exist, we introduce a 
new cache data block state: Clean owned shared (COS).  This state can only be entered from 
the clean exclusive (CE) state.  The state transition from CE to COS is summarized as follows: 

initial state other 
cached 

ops actions by this 
cache 

final 
state 

cleanExclusive (CE) no CR CCI COS 
 
There is no change in cache bus transactions but a slight modification of cache data block states. 
Here is a summary of the possible cache data block states (differences from problem set 
highlighted in bold): 
 
 Invalid (I): Block is not present in the cache. 
 Clean exclusive (CE): The cached data is consistent with memory, and no other cache has it.  

This cache is responsible for supplying this data instead of memory when other caches 
request copies of this data.  

 Owned exclusive (OE): The cached data is different from memory, and no other cache has it. 
This cache is responsible for supplying this data instead of memory when other caches 
request copies of this data. 

 Clean shared (CS): The data has not been modified by the corresponding CPU since cached. 
Multiple CS copies and at most one OS copy of the same data could exist. 

 Owned shared (OS): The data is different from memory. Other CS copies of the same data 
could exist. This cache is responsible for supplying this data instead of memory when other 
caches request copies of this data. (Note, this state can only be entered from the OE state.)  

 Clean owned shared (COS): The cached data is consistent with memory. Other CS 
copies of the same data could exist. This cache is responsible for supplying this data 
instead of memory when other caches request copies of this data. (Note, this state can 
only be entered from the CE state.)  
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Problem M4.8.A 
 
Fill out the state transition table for the new COS state: 
 

initial state other 
cached 

ops actions by this 
cache 

final 
state 

COS yes none none COS 
  CPU read   
  CPU write   
  replace   
  CR   
  CRI   
  CI   
  WR   
  CWI   

 
Problem M4.8.B 

 
The COS protocol is not ideal.  Complete the following table to show an example sequence of 
events in which multiple shared copies of a clean data block (block B) exist, but CCI is not used 
when another cache (cache 4) tries to retrieve the data block from memory. 
 

cache transaction 
source 
for data 

state for data block B 
cache 1 cache 2 cache 3 cache 4 

0. initial state — I I I I 
1. cache 1 reads data block B memory CE I I I 
2. cache 2 reads data block B CCI  COS CS I I 
3. cache 3 reads data block B CCI COS CS CS I 
4.       
5.      

 
 
Problem M4.8.C 

 
As an alternative protocol, we could eliminate the CE state entirely, and transition directly from I 
to COS when the CPU does a read and the data block is not in any other cache.  This modified 
protocol would provide the same CCI benefits as the original COS protocol, but its performance 
would be worse.  Explain the advantage of having the CE state.  You should not need more 
than one sentence. 
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Problem M4.9: Snoopy Caches [? Hours] 
 
This part explores multi-level caches in the context of the bus-based snoopy protocol discussed 
in Lecture 22 (2011).  Real systems usually have at least two levels of cache, smaller, faster L1 
cache near the CPU, and the larger but slower L2. The two caches are usually inclusive, that is, 
any address in L1 is required to be present in L2.  L2 is able to answer every snooper inquiry 
immediately but usually operates at 1/2 to 1/4th the speed of CPU-L1 interface. For performance 
reasons it is important that snooper steals as little bandwidth as possible from L1, and does not 
increase the latency of L2 responses.  
 
 
Problem M4.9.A 

 
Consider a situation when the L2 cache has a cache line marked Sh, and an ExReq comes on the 
bus for this cache line. The snooper asks both L1 and L2 caches to invalidate their copies but 
responds OK to the request, even before the invalidations are complete.  Suppose the CPU ends 
up reading this value in L1 before it is truly discarded. What must the cache and snooper system 
do to ensure that sequential consistency is not violated here?  
 
Hint: Consider how much processing can be performed safely on the following sequences after 
an invalidation request for x has been received 
 
Ld x; Ld y; Ld x  
 
 
Ld x; St y; Ld x  
 
 
 
Problem M4.9.B 

 
Consider a situation when L2 has a cache line marked Ex and a ShReq comes on the bus for this 
cache line. What should the snooper do in this case, and why? 
 
 
 
Problem M4.9.C 

 
When an ExReq message is seen by the snooper and there is a Wb message in the C2M queue 
waiting to be sent, the snooper replies retry. If the cache line is about to be modified by another 
processor, why is it important to first write back the already modified cache line? Does your 
answer change if cache lines are restricted to be one word? Explain. 
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Problem M4.10: Relaxed Memory Models [? Hours] 
 
Consider a system which uses Weak Ordering, meaning that a read or a write may complete 
before a read or a write that is earlier in program order if they are to different addresses and there 
are no data dependencies. 
 
Our processor has four fine-grained memory barrier instructions: 

 MEMBARRR guarantees that all read operations initiated before the MEMBARRR will be seen 
before any read operation initiated after it. 

 MEMBARRW guarantees that all read operations initiated before the MEMBARRW will be seen 
before any write operation initiated after it. 

 MEMBARWR guarantees that all write operations initiated before the MEMBARWR will be 
seen before any read operation initiated after it. 

 MEMBARWW guarantees that all write operations initiated before the MEMBARWW will be 
seen before any write operation initiated after it. 

 
We will study the interaction between two processes on different processors on such a system: 
 

P1 P2
P1.1: LW R2, 0(R8) P2.1: LW R4, 0(R9) 
P1.2: SW R2, 0(R9) P2.2: SW R5, 0(R8) 
P1.3: LW R3, 0(R8) P2.3: SW R4, 0(R8) 

 
We begin with following values in registers and memory (same for both processes): 
 

register/memory Contents 
R2 0 
R3 0 
R4 0 
R5 8 
R8 0x01234567 
R9 0x89abcdef 

M[R8] 6 
M[R9] 7 

 
 
After both processes have executed, is it possible to have the following machine state? Please 
circle the correct answer. If you circle Yes, please provide sequence of instructions that lead to 
the desired result (one sequence is sufficient if several exist). If you circle No, please explain 
which ordering constraint prevents the result.
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Problem M4.10.A 
 
Memory contents 
M[R8] 7 
M[R9] 6 
 
 
Yes         No 
 
 
 
Problem M4.10.B 

 
memory Contents 
M[R8] 6 
M[R9] 7 
 
 
Yes         No 
 
 
 
 
Problem M4.10.C 

 
Is it possible for M[R8] to hold 0? 
 
 
Yes         No 
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Now consider the same program, but with two MEMBAR instructions. 
 

P1 P2
P1.1: LW R2, 0(R8) P2.1: LW R4, 0(R9) 
P1.2: SW R2, 0(R9) MEMBARRW

 MEMBARWR P2.2: SW R5, 0(R8) 
P1.3: LW R3, 0(R8) P2.3: SW R4, 0(R8) 

 
We want to compare execution of the two programs on our system. 
 
 
Problem M4.10.D 

 
If both M[R8] and M[R9] contain 6, is it possible for R3 to hold 8? 
 
 
Without MEMBAR instructions?  Yes       No 
 
 
 
 
With MEMBAR instructions?   Yes       No 
 
 
 
 
Problem M4.10.E 

 
If both M[R8] and M[R9] contain 7, is it possible for R3 to hold 6? 
 
 
Without MEMBAR instructions?  Yes       No 
 
 
 
 
With MEMBAR instructions?   Yes       No 
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Problem M4.10.F 

 
Is it possible for both M[R8] and M[R9] to hold 8? 
 
 
Without MEMBAR instructions?  Yes       No 
 
 
 
 
With MEMBAR instructions?   Yes       No 
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Problem 4.11: Memory Models 
 
Consider a system which uses Sequential Consistency (SC). There are three processes, P1, P2 
and P3, on different processors on such a system (the values of RA, RB, RC were all zeros 
before the execution): 
 

P1 P2 P3 

P1.1: ST (A), 1 P2.1: ST (B), 1  P3.1: ST (C), 1 

P1.2: LD RC, (C) P2.2: LD RA, (A) P3.2: LD RB, (B) 

 
Problem 4.11.A            
 
After all processes have executed, it is possible for the system to have multiple machine states. For 
example,  {RA, RB, RC}= {1,1,1} is possible if the execution sequence of instructions is 
P1.1→P2.1→P3.1→P1.2→P2.2→P3.2. Also, {RA, RB, RC}= {1,1,0} is 
possible if the sequence is P1.1 → P1.2 → P2.1 → P3.1 → P2.2 → P3.2. 
 
For each state of {RA, RB, RC} below, specify the execution sequence of instructions that 
results in the corresponding state. If the state is NOT possible with SC, just put X. 
 

{0,0,0} : X 
 
{0,1,0} : P2.1 P2.2 P1.1P1.2P3.1 P3.2 
 
{1,0,0} : P1.1 P1.2 P3.1 P3.2 P2.1 P2.2 
 
{0,0,1} : P3.1 P3.2 P2.1 P2.2 P1.1 P1.2 
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Problem 4.11.B            
 
Now consider a system which uses Weak Ordering(WO), meaning that a read or a write may 
complete before a read or a write that is earlier in program order if they are to different addresses 
and there are no data dependencies.  
 
Does WO allow the machine state(s) that is not possible with SC? If yes, provide an execution 
sequence that will generate the machine states(s). 
 
Yes.  {0,0,0} by P1.2→P2.2→P3.2→P1.1→P2.1→P3.1 
 
 
Problem 4.11.C            
 
The WO system in Problem 4.11.B provides four fine-grained memory barrier instructions. 
Below is the description of these instructions. 
 
- MEMBARRR guarantees that all read operations initiated before the MEMBARRR will be seen 
before any read operation initiated after it. 
- MEMBARRW guarantees that all read operations initiated before the MEMBARRW will be seen 
before any write operation initiated after it. 
- MEMBARWR guarantees that all write operations initiated before the MEMBARWR will be seen 
before any read operation initiated after it. 
- MEMBARWW guarantees that all write operations initiated before the MEMBARWW will be seen 
before any write operation initiated after it. 
 
Using the minimum number of memory barrier instructions, rewrite P1, P2 and P3 so the 
machine state(s) that is not possible with SC by the original programs is also not possible with 
WO by your programs. 
 
 

P1 P2 P3 

 
 
P1.1: ST (A), 1 

 
 
P2.1: ST (B), 1  

 
 
P3.1: ST (C), 1 

MEMBARWR MEMBARWR MEMBARWR 

P1.2: LD RC, (C) 
 
 

P2.2: LD RA, (A) 
 
 

P3.2: LD RB, (B) 
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Problem M4.12: Directory-based Protocol 
 

Problem 4.12.A            
 

The following questions deal with the directory-based protocol discussed in class. Assume XY 
routing, and message passing is FIFO. (XY routing algorithm first routes packets horizontally, 
towards their X coordinates, and then vertically towards their Y coordinates.) Protocol messages 
with the same source and destination sites are always received in the same order as that in which 
they were sent. For this question, assume that the cache coherence protocol is free from 
deadlock, livelock and starvation. 

 
 
Assume the node 6 serves as the home directory, where the states for memory blocks are stored. 
Assume all caches are initially empty and no responses are sent voluntarily (i.e. every response is 
caused by a request) 
 
        Processor 1     Processor 4       Processor 5 
I1.1:  ST X, 10                   I4.1:  LD R1, X             I5.1:   ST X, 20 
 
Suppose the global execution order is as follows: 
 

I4.1   =>   I5.1   =>   I1.1 
 
Assume that the next instruction will start its execution only when the previous instruction has 
completed. For each instruction, list all protocol messages that are sent over the link 5 -> 6 (the 
purple link in the above figure).  
 

I4.1: ShReq (I4.1), 
 
I5.1: ExReq/InvRep (I5.1), 
 
I1.1: FlushRep (I1.1) 



Last updated: 
11/28/2011 

Page 25 of 25 

 
Problem 4.12.B            
 
For the directory protocol, we assume the message passing to be FIFO, meaning protocol 
messages with the same source and destination are always received in the same order as that in 
which they were sent. Now suppose messages can be delivered out-of-order for the same source 
and destination pairs. Describe one scenario that the cache coherence protocol will break due to 
this out-of-order delivery. 
 

1. Core A: ShReq => home -> A: ShRep (not yet reached) 
2. Core B: ExReq => home -> A: InvReq 

If InvReq arrives earlier than ShRep, the InvReq will be ignored, and the core A will not send 
any InvRep to home. Deadlock. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem 4.12.C            
 
Under the 6823 directory-based protocol, a cache will receive a writeback request from the 
directory <M2C_Req, a, S> for address “a” when it is in state M and another cache wants a 
shared copy. Is it possible for a cache in the S state to receive <M2C_Req, a, S> ? Describe how 
this scenario can occur using the messages passed between the cache and the memory, and the 
state transitions. 
 
 
Cache A in C-exclusive, does voluntary WbRep and goes to C-shared. Now Cache B in C-
nothing does a ShReq, Mem which hasn’t received WbRep yet, sends WbReq when Cache A is 
in C-shared 
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