

Problem M4.1: Networks-on-Chip

Problem M4.1.A

Consider a flow control method similar to circuit switching but where the request message
'reserves' each channel for a fixed period of time in the future (for example, for 10 cycles since a
reservation is made). At each router along the path, a reservation is made if a request from a
neighbor can be accommodated. If the request cannot be accommodated a NACK is sent that
cancels all previous recommendations for the connection, and the request is retired. If a request
reaches the destination, an acknowledgement is sent back to the source, confirming all
reservations.

Draw a time-space diagram of a situation that demonstrates the advantage of reservation circuit
switching over conventional circuit switching.

Problem M4.1.B

Determine whether the following oblivious routing algorithms are deadlock-free for the 2-D
mesh. There is only one virtual channel per link and no 180-degree turns are allowed for (c).

(a) Randomized dimension-order: All packets are routed minimally. Half of the packets are
routed completely in the X dimension before the Y dimension and the other packets are routed Y
before X.

(b) Less randomized dimension-order: All packets are routed minimally. Packets whose minimal
direction is increasing in both X and Y, always route X before Y. Packets whose minimal
direction is decreasing in both X and Y, always route Y before X. All other packets randomly
choose between X before Y and vice versa.

(c) All packets are prohibited to take the two turns in dash:

Problem M4.2: Non-mesh Networks

We have the following network topology with 4 network nodes and 10 links.

A

B D

C

Note that each link is unidirectional, and only one link exists between A and C (only a link from
C to A (not from A to C), and only from D to B between B and D. Each link can transfer 1 flit
per cycle and there is only one virtual channel per link. For all parts, 180-degree turns are not
allowed.

Problem M4.2.A

Fill in the following table of the properties of this network.

Diameter

Average Distance

Bisection Bandwidth

Problem M4.2.B

Draw the channel dependency graph of this network.

Problem M4.2.C

Is a minimal routing on this network deadlock-free? Show your reasoning and give a deadlock
scenario if it is not deadlock -free.

Problem M4.2.D

Now, we use a possibly non-minimal routing on this network. Plus, we prohibited the following
two movements on the non-minimal routing: 1) A to D then D to C and 2) B to C then C to D.

Is this routing deadlock-free? Show your reasoning and give a deadlock scenario if it is not
deadlock -free.

Problem M4.2.D

Still having the two movements in M4.2.D prohibited, we added another restriction in routing:
the link from C to A can be used only by packets generated at C, before the packets are
transferred to any other nodes (it should be the first link those packets ever take). Also, the link
from D to B can be used only by packets generated at D with the same condition (however,
routes may be non-minimal).

Is this rou ting deadlock-free? Sho w your re asoning and g ive a deadlock sc enario if it is no t
deadlock -free.

Last updated:
11/28/2011

Problem M4.3: Sequential Consistency [? Hours]

For this problem we will be using the following sequences of instructions. These are small
programs, each executed on a different processor, each with its own cache and register set. In the
following R is a register and X is a memory location. Each instruction has been named (e.g., B3)
to make it easy to write answers.

Assume data in location X is initially 0.

Processor A Processor B Processor C
A1: ST X, 1 B1: R := LD X C1: ST X, 6
A2: R := LD X B2: R := ADD R, 1 C2: R := LD X
A3: R := ADD R, R B3: ST X, R C3: R := ADD R, R
A4: ST X, R B4: R:= LD X C4: ST X, R
 B5: R := ADD R, R
 B6: ST X, R

For each of the questions below, please circle the answer and provide a short explanation
assuming the program is executing under the SC model. No points will be given for just
circling an answer!

Problem M4.3.A

Can X hold value of 4 after all three threads have completed? Please explain briefly.

Yes / No

Problem M4.3.B

Can X hold value of 5 after all three threads have completed?

Yes / No

Last updated:
11/28/2011

Problem M4.3.C

Can X hold value of 6 after all three threads have completed?

Yes / No

Problem M4.3.D

For this particular program, can a processor that reorders instructions but follows local
dependencies produce an answer that cannot be produced under the SC model?

Yes / No

Last updated:
11/28/2011

Problem M4.4: Synchronization Primitives [? Hours]

One of the common instruction sequences used for synchronizing several processors are the
LOAD RESERVE/STORE CONDITIONAL pair (from now on referred to as LdR/StC pair).
The LdR instruction reads a value from the specified address and sets a local reservation for the
address. The StC attempts to write to the specified address provided the local reservation for the
address is still held. If the reservation has been cleared the StC fails and informs the CPU.

Problem M4.4.A

Describe under what events the local reservation for an address is cleared.

Problem M4.4.B

Is it possible to implement LdR/StC pair in such a way that the memory bus is not affected, i.e.,
unaware of the addition of these new instructions? Explain

Problem M4.4.C

Give two reasons why the LdR/StC pair of instructions is preferable over atomic read-test-
modify instructions such as the TEST&SET instruction.

Problem M4.4.D

LdR/StC pair of instructions were conceived in the context of snoopy busses. Do these
instructions make sense in our directory-based system in Handout #11? Do they still offer an
advantage over atomic read-test-modify instructions in a directory-based system? Please explain.

Last updated:
11/28/2011

Problem M4.5: Implementing Directories

Ben Bitdiddle is implementing a directory-based cache coherence invalidate protocol for a 64-
processor system. He first builds a smaller prototype with only 4 processors to test out the
cache coherence protocol described in Handout #11. To implement the list of sharers, S, kept
by home, he maintains a bit vector per cache block to keep track of all the sharers. The bit
vector has one bit corresponding to each processor in the system. The bit is set to one if the
processor is caching a shared copy of the block, and zero if the processor does not have a copy of
the block. For example, if Processors 0 and 3 are caching a shared copy of some data, the
corresponding bit vector would be 1001.

Problem M4.5.A

The bit vector worked well for the 4-processor prototype, but when building the actual 64-
processor system, Ben discovered that he did not have enough hardware resources. Assume
each cache block is 32 bytes. What is the overhead of maintaining the sharing bit vector for a
4-processor system, as a fraction of data storage bits? What is the overhead for a 64-
processor system, as a fraction of data storage bits?

Overhead for a 4-processor system: ________________________

Overhead for a 64-processor system: _______________________

Last updated:
11/28/2011

Problem M4.5.B

Since Ben does not have the resources to keep track of all potential sharers in the 64-processor
system, he decides to limit S to keep track of only 1 processor using its 6-bit ID as shown in
Figure M4.5-A (single-sharer scheme). When there is a load [C2P_Req(a) S] request for a
shared cache block, Ben invalidates the existing sharer to make room for the new sharer (home
sends a invalidate request [P2C_Req(a) I] to the existing sharer, the existing sharer sends
an invalidate response [C2P_Rep(a) I] to home, home replaces the exiting sharer's ID with
the new sharer's ID and sends the load response [P2C_Rep(a) I S] to the new sharer).

6
Sharer ID

Figure M4.5-A

Consider a 64-processor system. To determine the efficiency of the bit-vector scheme and
single-sharer scheme, fill in the number of invalidate-requests that are generated by the
protocols for each step in the following two sequences of events. Assume cache block B is
uncached initially for both sequences.

Sequence 1 bit-vector scheme

of invalidate-requests
single-sharer scheme

of invalidate-requests
Processor #0 reads B 0 0
Processor #1 reads B
Processor #0 reads B

Sequence 2 bit-vector scheme

of invalidate-requests
single-sharer scheme

of invalidate-requests
Processor #0 reads B 0 0
Processor #1 reads B
Processor #2 writes B

Last updated:
11/28/2011

Page 6 of 25

Problem M4.5.C

Ben thinks that he can improve his original scheme by adding an extra “global bit” to S as
shown in Figure M4.5-B (global-bit scheme). The global bit is set when there is more than 1
processor sharing the data, and zero otherwise.

1 6
0 Sharer ID

 global

 Figure M4.5-B

When the global bit is set, home stops keeping track of a specific sharer and assumes that all
processors are potential sharers.

1 6
1 XXXXXX

 global
 Figure M4.5-C

Consider a 64-processor system. To determine the efficiency of the global-bit scheme, fill in the
number of invalidate-requests that are generated for each step in the following two sequences
of events. Assume cache block B is uncached initially for both sequences.

Sequence 1 global-bit scheme
of invalidate-requests

Processor #0 reads B 0
Processor #1 reads B
Processor #0 reads B

Sequence 2 global-bit scheme
of invalidate-requests

Processor #0 reads B 0
Processor #1 reads B
Processor #2 writes B

Last updated:
11/28/2011

Problem M4.6: Tracing the Directory-based Protocol [? Hours]

For the problem we will be using the following sequences of instructions. These are small
programs, each executed on a different processor, each with its own cache and register set. In the
following R is a register and X is a memory location. Each instruction has been named (e.g., B3)
to make it easy to write answers.

Assume data in location X is initially 0.

Processor A Processor B Processor C
A1: ST X, 1 B1: R := LD X C1: ST X, 6
A2: R := LD X B2: R := ADD R, 1 C2: R := LD X
A3: R := ADD R, R B3: ST X, R C3: R := ADD R, R
A4: ST X, R B4: R:= LD X C4: ST X, R
 B5: R := ADD R, R
 B6: ST X, R

These questions relate to the directory-based protocol in Handout #11 (as well as Lecture 23).
Unless specified otherwise, assume all caches are initially empty and no voluntary responses are
sent (i.e. responses are sent only on receiving a request).

Problem M4.6.A

Suppose we execute Program A, followed by Program B, followed by Program C and all caches
are initially empty. Write down the sequence of messages that will be generated. We have
omitted ADD instructions because they cannot generate any messages. EO indicates the global
execution order.

Processor A Processor B Processor C

Ins EO Messages Ins EO Messages Ins EO Messages

A1 1
<M,A,Req,x,M>

<A,M,Rep,x,I,M,0>
B1 4 C1 8

A2 2 B3 5 C2 9

A4 3 B4 6 C4 10

 B6 7

How many messages are generated? ___________________

Last updated:
11/28/2011

Problem M4.6.B

Is there an execution sequence that will generate even fewer messages? Fill in the EO columns
to indicate the global execution order. Also, fill in the messages.

Processor A Processor B Processor C

Ins EO Messages Ins EO Messages Ins EO Messages

A1 B1 C1

A2 B3 C2

A4 B4 C4

 B6

How many messages are generated? ___________________

Problem M4.6.C

Can the number of messages in Problem M4.6.B be decreased by using voluntary responses?
Explain.

Last updated:
11/28/2011

Problem M4.6.D

What is the execution sequence that generates the most messages without any voluntary
responses? Fill in the global execution order (EO) and the messages generated. Partial credit
will be given for identifying a bad, but not necessarily the worst sequence.

Processor A Processor B Processor C

Ins EO Messages Ins EO Messages Ins EO Messages

A1 B1 C1

A2 B3 C2

A4 B4 C4

 B6

How many messages are generated? ___________________

Last updated:
11/28/2011

Problem M4.7: Snoopy Cache Coherent Shared Memory [? Hours]

In this problem, we investigate the operation of the snoopy cache coherence protocol in Handout
#12.

The following questions are to help you check your understanding of the coherence protocol.

 Explain the differences between CR, CI, and CRI in terms of their purpose, usage, and the

actions that must be taken by memory and by the different caches involved.
 Explain why WR is not snooped on the bus.
 Explain the I/O coherence problem that CWI helps avoid.

Problem M4.7.A Where in the Memory System is the Current Value

In Table M4.7-1, M4.7-2, and M4.7-3, column 1 indicates the initial state of a certain address X
in a cache. Column 2 indicates whether address X is currently cached in any other cache. (The
“cached” information is known to the cache controller only immediately following a bus
transaction. Thus, the action taken by the cache controller must be independent of this signal, but
state transition could depend on this knowledge.) Column 3 enumerates all the available
operations on address X, either issued by the CPU (read, write), snooped on the bus (CR, CRI,
CI. etc), or initiated by the cache itself (replacement). Some state-operation combinations are
impossible; you should mark them as such. (See the first table for examples). In columns 6, 7,
and 8 (corresponding to this cache, other caches and memory, respectively), check all possible
locations where up-to-date copies of this data block could exist after the operation in
column 3 has taken place and ignore column 4 and 5 for now. Table M4.7-1 has been
completed for you. Make sure the answers in this table make sense to you.

Problem M4.7.B MBus Cache Block State Transition Table

In this problem, we ask you to fill out the state transitions in Column 4 and 5. In column 5,
fill in the resulting state after the operation in column 3 has taken place. In column 4, list the
necessary MBus transactions that are issued by the cache as part of the transition. Remember, the
protocol should be optimized such that data is supplied using CCI whenever possible, and only
the cache that owns a line should issue CCI.

Last updated:
11/28/2011

Problem M4.7.C Adding atomic memory operations to MBus

We have discussed the importance of atomic memory operations for processor synchronization.
In this problem you will be looking at adding support for an atomic fetch-and-increment to the
MBus protocol.

Imagine a dual processor machine with CPUs A and B. Explain the difficulty of CPU A
performing fetch-and-increment(x) when the most recent copy of x is cleanExclusive in CPU B’s
cache. You may wish to illustrate the problem with a short sequence of events at processor A
and B.

Fill in the rest of the table below as before, indicating state, next state, where the block in
question may reside, and the CPU A and MBus transactions that would need to occur atomically
to implement a fetch-and-increment on processor A.

State other
cached

ops actions by this
cache

next
state

this
cache

other
caches

mem

Invalid yes read
 write

Last updated:
11/28/2011

initial state other
cached

ops actions by this
cache

final
state

this
cache

other
caches

mem

Invalid no none none I 
 CPU read CR CE  
 CPU write CRI OE 
 replace none Impossible
 CR none I  
 CRI none I 
 CI none Impossible
 WR none Impossible
 CWI none I 

Invalid yes none I  
 CPU read CS   
 CPU write OE 
 replace same Impossible
 CR as I  
 CRI above I 
 CI I 
 WR I  
 CWI I 

initial state other

cached
ops actions by this

cache
final
state

this
cache

other
caches

mem

cleanExclusive no none none CE
 CPU read
 CPU write
 replace
 CR CS
 CRI
 CI
 WR
 CWI

Table M4.7-1

Last updated:
11/28/2011

initial state other
cached

ops actions by this
cache

final
state

this
cache

other
caches

mem

ownedExclusive no none none OE
 CPU read
 CPU write
 replace
 CR OS
 CRI
 CI
 WR
 CWI

initial state other

cached
ops actions by this

cache
final
state

this
cache

other
caches

mem

cleanShared no none none CS
 CPU read
 CPU write
 replace
 CR
 CRI
 CI
 WR
 CWI

cleanShared yes none
 CPU read
 CPU write
 replace same
 CR as
 CRI above
 CI
 WR
 CWI

Table M4.7-2

Last updated:
11/28/2011

initial state other
cached

ops actions by this
cache

final
state

this
cache

other
caches

mem

ownedShared no none none OS
 CPU read
 CPU write
 replace
 CR
 CRI
 CI
 WR
 CWI

ownedShared yes none
 CPU read
 CPU write
 replace same
 CR as
 CRI above
 CI
 WR
 CWI

Table M4.7-3

Last updated:
11/28/2011

Problem M4.8: Snoopy Cache Coherent Shared Memory [? Hours]

This problem improves the snoopy cache coherence protocol presented in Handout #12. As a
review of that protocol:

When multiple shared copies of a modified data block exist, one of the caches owns the current copy of the data
block instead of the memory (the owner has the data block in the OS state). When another cache tries to
retrieve the data block from memory, the owner uses cache to cache intervention (CCI) to supply the data
block. CCI provides a faster response relative to memory and reduces the memory bandwidth demands.
However, when multiple shared copies of a clean data block exist, there is no owner and CCI is not used when
another cache tries to retrieve the data block from memory.

To enable the use of CCI when multiple shared copies of a clean data block exist, we introduce a
new cache data block state: Clean owned shared (COS). This state can only be entered from
the clean exclusive (CE) state. The state transition from CE to COS is summarized as follows:

initial state other
cached

ops actions by this
cache

final
state

cleanExclusive (CE) no CR CCI COS

There is no change in cache bus transactions but a slight modification of cache data block states.
Here is a summary of the possible cache data block states (differences from problem set
highlighted in bold):

 Invalid (I): Block is not present in the cache.
 Clean exclusive (CE): The cached data is consistent with memory, and no other cache has it.

This cache is responsible for supplying this data instead of memory when other caches
request copies of this data.

 Owned exclusive (OE): The cached data is different from memory, and no other cache has it.
This cache is responsible for supplying this data instead of memory when other caches
request copies of this data.

 Clean shared (CS): The data has not been modified by the corresponding CPU since cached.
Multiple CS copies and at most one OS copy of the same data could exist.

 Owned shared (OS): The data is different from memory. Other CS copies of the same data
could exist. This cache is responsible for supplying this data instead of memory when other
caches request copies of this data. (Note, this state can only be entered from the OE state.)

 Clean owned shared (COS): The cached data is consistent with memory. Other CS
copies of the same data could exist. This cache is responsible for supplying this data
instead of memory when other caches request copies of this data. (Note, this state can
only be entered from the CE state.)

Last updated:
11/28/2011

Problem M4.8.A

Fill out the state transition table for the new COS state:

initial state other
cached

ops actions by this
cache

final
state

COS yes none none COS
 CPU read
 CPU write
 replace
 CR
 CRI
 CI
 WR
 CWI

Problem M4.8.B

The COS protocol is not ideal. Complete the following table to show an example sequence of
events in which multiple shared copies of a clean data block (block B) exist, but CCI is not used
when another cache (cache 4) tries to retrieve the data block from memory.

cache transaction
source
for data

state for data block B
cache 1 cache 2 cache 3 cache 4

0. initial state — I I I I
1. cache 1 reads data block B memory CE I I I
2. cache 2 reads data block B CCI COS CS I I
3. cache 3 reads data block B CCI COS CS CS I
4.
5.

Problem M4.8.C

As an alternative protocol, we could eliminate the CE state entirely, and transition directly from I
to COS when the CPU does a read and the data block is not in any other cache. This modified
protocol would provide the same CCI benefits as the original COS protocol, but its performance
would be worse. Explain the advantage of having the CE state. You should not need more
than one sentence.

Last updated:
11/28/2011

Problem M4.9: Snoopy Caches [? Hours]

This part explores multi-level caches in the context of the bus-based snoopy protocol discussed
in Lecture 22 (2011). Real systems usually have at least two levels of cache, smaller, faster L1
cache near the CPU, and the larger but slower L2. The two caches are usually inclusive, that is,
any address in L1 is required to be present in L2. L2 is able to answer every snooper inquiry
immediately but usually operates at 1/2 to 1/4th the speed of CPU-L1 interface. For performance
reasons it is important that snooper steals as little bandwidth as possible from L1, and does not
increase the latency of L2 responses.

Problem M4.9.A

Consider a situation when the L2 cache has a cache line marked Sh, and an ExReq comes on the
bus for this cache line. The snooper asks both L1 and L2 caches to invalidate their copies but
responds OK to the request, even before the invalidations are complete. Suppose the CPU ends
up reading this value in L1 before it is truly discarded. What must the cache and snooper system
do to ensure that sequential consistency is not violated here?

Hint: Consider how much processing can be performed safely on the following sequences after
an invalidation request for x has been received

Ld x; Ld y; Ld x

Ld x; St y; Ld x

Problem M4.9.B

Consider a situation when L2 has a cache line marked Ex and a ShReq comes on the bus for this
cache line. What should the snooper do in this case, and why?

Problem M4.9.C

When an ExReq message is seen by the snooper and there is a Wb message in the C2M queue
waiting to be sent, the snooper replies retry. If the cache line is about to be modified by another
processor, why is it important to first write back the already modified cache line? Does your
answer change if cache lines are restricted to be one word? Explain.

Last updated:
11/28/2011

Problem M4.10: Relaxed Memory Models [? Hours]

Consider a system which uses Weak Ordering, meaning that a read or a write may complete
before a read or a write that is earlier in program order if they are to different addresses and there
are no data dependencies.

Our processor has four fine-grained memory barrier instructions:

 MEMBARRR guarantees that all read operations initiated before the MEMBARRR will be seen
before any read operation initiated after it.

 MEMBARRW guarantees that all read operations initiated before the MEMBARRW will be seen
before any write operation initiated after it.

 MEMBARWR guarantees that all write operations initiated before the MEMBARWR will be
seen before any read operation initiated after it.

 MEMBARWW guarantees that all write operations initiated before the MEMBARWW will be
seen before any write operation initiated after it.

We will study the interaction between two processes on different processors on such a system:

P1 P2
P1.1: LW R2, 0(R8) P2.1: LW R4, 0(R9)
P1.2: SW R2, 0(R9) P2.2: SW R5, 0(R8)
P1.3: LW R3, 0(R8) P2.3: SW R4, 0(R8)

We begin with following values in registers and memory (same for both processes):

register/memory Contents
R2 0
R3 0
R4 0
R5 8
R8 0x01234567
R9 0x89abcdef

M[R8] 6
M[R9] 7

After both processes have executed, is it possible to have the following machine state? Please
circle the correct answer. If you circle Yes, please provide sequence of instructions that lead to
the desired result (one sequence is sufficient if several exist). If you circle No, please explain
which ordering constraint prevents the result.

Last updated:
11/28/2011

Problem M4.10.A

Memory contents
M[R8] 7
M[R9] 6

Yes No

Problem M4.10.B

memory Contents
M[R8] 6
M[R9] 7

Yes No

Problem M4.10.C

Is it possible for M[R8] to hold 0?

Yes No

Last updated:
11/28/2011

Now consider the same program, but with two MEMBAR instructions.

P1 P2
P1.1: LW R2, 0(R8) P2.1: LW R4, 0(R9)
P1.2: SW R2, 0(R9) MEMBARRW

 MEMBARWR P2.2: SW R5, 0(R8)
P1.3: LW R3, 0(R8) P2.3: SW R4, 0(R8)

We want to compare execution of the two programs on our system.

Problem M4.10.D

If both M[R8] and M[R9] contain 6, is it possible for R3 to hold 8?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

Problem M4.10.E

If both M[R8] and M[R9] contain 7, is it possible for R3 to hold 6?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

Last updated:
11/28/2011

Page 21 of 25

Problem M4.10.F

Is it possible for both M[R8] and M[R9] to hold 8?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

Last updated:
11/28/2011

Page 22 of 25

Problem 4.11: Memory Models

Consider a system which uses Sequential Consistency (SC). There are three processes, P1, P2
and P3, on different processors on such a system (the values of RA, RB, RC were all zeros
before the execution):

P1 P2 P3

P1.1: ST (A), 1 P2.1: ST (B), 1 P3.1: ST (C), 1

P1.2: LD RC, (C) P2.2: LD RA, (A) P3.2: LD RB, (B)

Problem 4.11.A

After all processes have executed, it is possible for the system to have multiple machine states. For
example, {RA, RB, RC}= {1,1,1} is possible if the execution sequence of instructions is
P1.1→P2.1→P3.1→P1.2→P2.2→P3.2. Also, {RA, RB, RC}= {1,1,0} is
possible if the sequence is P1.1 → P1.2 → P2.1 → P3.1 → P2.2 → P3.2.

For each state of {RA, RB, RC} below, specify the execution sequence of instructions that
results in the corresponding state. If the state is NOT possible with SC, just put X.

{0,0,0} : X

{0,1,0} : P2.1 P2.2 P1.1P1.2P3.1 P3.2

{1,0,0} : P1.1 P1.2 P3.1 P3.2 P2.1 P2.2

{0,0,1} : P3.1 P3.2 P2.1 P2.2 P1.1 P1.2

Last updated:
11/28/2011

Page 23 of 25

Problem 4.11.B

Now consider a system which uses Weak Ordering(WO), meaning that a read or a write may
complete before a read or a write that is earlier in program order if they are to different addresses
and there are no data dependencies.

Does WO allow the machine state(s) that is not possible with SC? If yes, provide an execution
sequence that will generate the machine states(s).

Yes. {0,0,0} by P1.2→P2.2→P3.2→P1.1→P2.1→P3.1

Problem 4.11.C

The WO system in Problem 4.11.B provides four fine-grained memory barrier instructions.
Below is the description of these instructions.

- MEMBARRR guarantees that all read operations initiated before the MEMBARRR will be seen
before any read operation initiated after it.
- MEMBARRW guarantees that all read operations initiated before the MEMBARRW will be seen
before any write operation initiated after it.
- MEMBARWR guarantees that all write operations initiated before the MEMBARWR will be seen
before any read operation initiated after it.
- MEMBARWW guarantees that all write operations initiated before the MEMBARWW will be seen
before any write operation initiated after it.

Using the minimum number of memory barrier instructions, rewrite P1, P2 and P3 so the
machine state(s) that is not possible with SC by the original programs is also not possible with
WO by your programs.

P1 P2 P3

P1.1: ST (A), 1

P2.1: ST (B), 1

P3.1: ST (C), 1

MEMBARWR MEMBARWR MEMBARWR

P1.2: LD RC, (C)

P2.2: LD RA, (A)

P3.2: LD RB, (B)

Last updated:
11/28/2011

Page 24 of 25

Problem M4.12: Directory-based Protocol

Problem 4.12.A

The following questions deal with the directory-based protocol discussed in class. Assume XY
routing, and message passing is FIFO. (XY routing algorithm first routes packets horizontally,
towards their X coordinates, and then vertically towards their Y coordinates.) Protocol messages
with the same source and destination sites are always received in the same order as that in which
they were sent. For this question, assume that the cache coherence protocol is free from
deadlock, livelock and starvation.

Assume the node 6 serves as the home directory, where the states for memory blocks are stored.
Assume all caches are initially empty and no responses are sent voluntarily (i.e. every response is
caused by a request)

 Processor 1 Processor 4 Processor 5
I1.1: ST X, 10 I4.1: LD R1, X I5.1: ST X, 20

Suppose the global execution order is as follows:

I4.1 => I5.1 => I1.1

Assume that the next instruction will start its execution only when the previous instruction has
completed. For each instruction, list all protocol messages that are sent over the link 5 -> 6 (the
purple link in the above figure).

I4.1: ShReq (I4.1),

I5.1: ExReq/InvRep (I5.1),

I1.1: FlushRep (I1.1)

Last updated:
11/28/2011

Page 25 of 25

Problem 4.12.B

For the directory protocol, we assume the message passing to be FIFO, meaning protocol
messages with the same source and destination are always received in the same order as that in
which they were sent. Now suppose messages can be delivered out-of-order for the same source
and destination pairs. Describe one scenario that the cache coherence protocol will break due to
this out-of-order delivery.

1. Core A: ShReq => home -> A: ShRep (not yet reached)
2. Core B: ExReq => home -> A: InvReq

If InvReq arrives earlier than ShRep, the InvReq will be ignored, and the core A will not send
any InvRep to home. Deadlock.

Problem 4.12.C

Under the 6823 directory-based protocol, a cache will receive a writeback request from the
directory <M2C_Req, a, S> for address “a” when it is in state M and another cache wants a
shared copy. Is it possible for a cache in the S state to receive <M2C_Req, a, S> ? Describe how
this scenario can occur using the messages passed between the cache and the memory, and the
state transitions.

Cache A in C-exclusive, does voluntary WbRep and goes to C-shared. Now Cache B in C-
nothing does a ShReq, Mem which hasn’t received WbRep yet, sends WbReq when Cache A is
in C-shared

	pset4_noc
	pset4
	pset4
	pset4
	pset4
	pset4_noc
	pset4_2009

	pset4_extra

	pset4_updated_cc-protocol
	pset4_extra

	pset4_2010_updated-cc-protocol
	pset4_extra

	pset4_2010_updated-cc-protocol
	pset4_extra

	pset4_rest

