
Problem M2.1: Cache Access-Time & Performance [? Hours]

This problem requires the knowledge of Handout 6 (Cache Implementations) and Lecture

6 (Caches). Please, read these materials before answering the following questions.

Ben is trying to determine the best cache configuration for a new processor. He knows

how to build two kinds of caches: direct-mapped caches and 4-way set-associative

caches. The goal is to find the better cache configuration with the given building blocks.

He wants to know how these two different configurations affect the clock speed and the

cache miss-rate, and choose the one that provides better performance in terms of average

latency for a load.

Problem M2.1.A Access Time: Direct-Mapped

Now we want to compute the access time of a direct-mapped cache. We use the

implementation shown in Figure H6-A in Handout #6. Assume a 128-KB cache with 8-

word (32-byte) cache lines. The address is 32 bits, and the two least significant bits of the

address are ignored since a cache access is word-aligned. The data output is also 32 bits,

and the MUX selects one word out of the eight words in a cache line. Using the delay

equations given in Table M2.1-1, fill in the column for the direct-mapped (DM) cache in

the table. In the equation for the data output driver, ‘associativity’ refers to the

associativity of the cache (1 for direct-mapped caches, A for A-way set-associative

caches).

Component Delay equation (ps) DM (ps) SA (ps)

Decoder 200(# of index bits) + 1000 Tag

Data

Memory array 200log2 (# of rows) +

200log2 (# of bits in a row) + 1000

Tag

Data

Comparator 200(# of tag bits) + 1000

N-to-1 MUX 500log2 N + 1000

Buffer driver 2000

Data output driver 500(associativity) + 1000

Valid output

driver

1000

Table M2.1-1: Delay of each Cache Component

What is the critical path of this direct-mapped cache for a cache read? What is the access

time of the cache (the delay of the critical path)? To compute the access time, assume that

a 2-input gate (AND, OR) delay is 500 ps. If the CPU clock is 150 MHz, how many CPU

cycles does a cache access take?

Page 2 of 45

Problem M2.1.B Access Time: Set-Associative

We also want to investigate the access time of a set-associative cache using the 4-way

set-associative cache in Figure H6-B in Handout #6. Assume the total cache size is still

128-KB (each way is 32-KB), a 4-input gate delay is 1000 ps, and all other parameters

(such as the input address, cache line, etc.) are the same as part M2.1.A. Compute the

delay of each component, and fill in the column for a 4-way set-associative cache in

Table M2.1-1.

What is the critical path of the 4-way set-associative cache? What is the access time of

the cache (the delay of the critical path)? What is the main reason that the 4-way set-

associative cache is slower than the direct-mapped cache? If the CPU clock is 150 MHz,

how many CPU cycles does a cache access take?

IndexTag

Input Address

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

42b-2 data words

•

•

•

S

•

•

•

T

•

•

•

S

•

•

•

T

•

•

•

S

•

•

•

T

•

•

•

S

•

•

•

T

MUX

Tag

Decoder

Data

Decoder

Valid Bit

Valid

Output Driver

=

Buffer Driver

Comparator

MUX MUX MUX= = =

Page 3 of 45

Problem M2.1.C Miss-rate analysis

Now Ben is studying the effect of set-associativity on the cache performance. Since he

now knows the access time of each configuration, he wants to know the miss-rate of each

one. For the miss-rate analysis, Ben is considering two small caches: a direct-mapped

cache with 8 lines with 16 bytes/line, and a 4-way set-associative cache of the same size.

For the set-associative cache, Ben tries out two replacement policies – least recently used

(LRU) and round robin (FIFO).

Ben tests the cache by accessing the following sequence of hexadecimal byte addresses,

starting with empty caches. For simplicity, assume that the addresses are only 12 bits.

Complete the following tables for the direct-mapped cache and both types of 4-way set-

associative caches showing the progression of cache contents as accesses occur (in the

tables, ‗inv‘ = invalid, and the column of a particular cache line contains the {tag,index}

contents of that line). You only need to fill in elements in the table when a value changes.

D-map

Address

line in cache hit?

L0 L1 L2 L3 L4 L5 L6 L7
110 inv 11 inv inv inv inv inv inv no
136 13 no
202 20 no
1A3
102
361
204
114
1A4
177
301
206
135

 D-map

Total Misses

Total Accesses

Page 4 of 45

4-way

Address

LRU

line in cache hit?

Set 0 Set 1
way0 way1 Way2 way3 way0 way1 way2 way3

110 inv Inv Inv inv 11 inv inv inv no
136 11 13 no
202 20 no
1A3
102
361
204
114
1A4
177
301
206
135

 4-way LRU

Total Misses

Total Accesses

4-way

Address

FIFO

line in cache hit?

Set 0 Set 1
way0 way1 way2 way3 way0 way1 way2 way3

110 inv Inv Inv inv 11 inv inv inv no
136 13 no
202 20 no
1A3
102
361
204
114
1A4
177
301
206
135

 4-way FIFO

Total Misses

Total Accesses

Page 5 of 45

Problem M2.1.D Average Latency

Assume that the results of the above analysis can represent the average miss-rates of the

direct-mapped and the 4-way LRU 128-KB caches studied in M2.1.A and M2.1.B. What

would be the average memory access latency in CPU cycles for each cache (assume that

a cache miss takes 20 cycles)? Which one is better? For the different replacement

policies for the set-associative cache, which one has a smaller cache miss rate for the

address stream in M2.1.C? Explain why. Is that replacement policy always going to

yield better miss rates? If not, give a counter example using an address stream.

Page 6 of 45

Problem M2.2: Pipelined Cache Access [? Hours]

This problem requires the knowledge of Lecture 6. Please, review it before answering

the following questions. You may also want to take a look at pipeline lectures (Lecture 4

and 5) if you do not feel comfortable with the topic.

Problem M2.2.A

Ben Bitdiddle is designing a five-stage pipelined MIPS processor with separate 32 KB

direct-mapped primary instruction and data caches. He runs simulations on his

preliminary design, and he discovers that a cache access is on the critical path in his

machine. After remembering that pipelining his processor helped to improve the

machine‘s performance, he decides to try applying the same idea to caches. Ben breaks

each cache access into three stages in order to reduce his cycle time. In the first stage the

address is decoded. In the second stage the tag and data memory arrays are accessed; for

cache reads, the data is available by the end of this stage. However, the tag still has to be

checked—this is done in the third stage.

After pipelining the instruction and data caches, Ben‘s datapath design looks as follows:

I-Cache

Address

Decode

I-Cache

Array

Access

I-Cache

Tag

Check

Instruction

Decode &

Register

Fetch

Execute

D-Cache

Address

Decode

D-Cache

Array

Access

D-Cache

Tag

Check

Write-

back

Alyssa P. Hacker examines Ben‘s design and points out that the third and fourth stages

can be combined, so that the instruction cache tag check occurs in parallel with

instruction decoding and register file read access. If Ben implements her suggestion,

what must the processor do in the event of an instruction cache tag mismatch? Can Ben

do the same thing with load instructions by combining the data cache tag check stage

with the write-back stage? Why or why not?

Problem M2.2.B

Alyssa also notes that Ben‘s current design is flawed, as using three stages for a data

cache access won‘t allow writes to memory to be handled correctly. She argues that Ben

either needs to add a fourth stage or figure out another way to handle writes. What

problem would be encountered on a data write? What can Ben do to keep a three-stage

pipeline for the data cache?

Page 7 of 45

Problem M2.2.C

With help from Alyssa, Ben streamlines his design to consist of eight stages (the handling

of data writes is not shown):

I-Cache

Address

Decode

I-Cache

Array

Access

I-Cache Tag

Check,

Instruction

Decode &

Register

Fetch

Execute

D-Cache

Address

Decode

D-Cache

Array

Access

D-Cache

Tag Check

Write-

Back

Both the instruction and data caches are still direct-mapped. Would this scheme still

work with a set-associative instruction cache? Why or why not? Would it work with a

set-associative data cache? Why or why not?

Problem M2.2.D

After running additional simulations, Ben realizes that pipelining the caches was not

entirely beneficial, as now the cache access latency has increased. If conditional branch

instructions resolve in the Execute stage, how many cycles is the processor‘s branch

delay?

Problem M2.2.E

Assume that Ben‘s datapath is fully-bypassed. When a load is executed, the data

becomes available at the end of the D-cache Array Access stage. However, the tag has

not yet been checked, so it is unknown whether the data is correct. If the load data is

bypassed immediately, before the tag check occurs, then the instruction that depends on

the load may execute with incorrect data. How can an interlock in the Instruction Decode

stage solve this problem? How many cycles is the load delay using this scheme

(assuming a cache hit)?

Problem M2.2.F

Alyssa proposes an alternative to using an interlock. She tells Ben to allow the load data

to be bypassed from the end of the D-Cache Array Access stage, so that the dependent

instruction can execute while the tag check is being performed. If there is a tag

mismatch, the processor will wait for the correct data to be brought into the cache; then it

will re-execute the load and all of the instructions behind it in the pipeline before

continuing with the rest of the program. What processor state needs to be saved in order

to implement this scheme? What additional steps need to be taken in the pipeline?

Assume that a DataReady signal is asserted when the load data is available in the cache,

and is set to 0 when the processor restarts its execution (you don‘t have to worry about

Page 8 of 45

the control logic details of this signal). How many cycles is the load delay using this

scheme (assuming a cache hit)?

Problem M2.2.G

Ben is worried about the increased latency of the caches, particularly the data cache, so

Alyssa suggests that he add a small, unpipelined cache in parallel with the D-cache. This

―fast-path‖ cache can be considered as another level in the memory hierarchy, with the

exception that it will be accessed simultaneously with the ―slow-path‖ three-stage

pipelined cache. Thus, the slow-path cache will contain a superset of the data found in

the fast-path cache. A read hit in the fast-path cache will result in the requested data

being available after one cycle. In this situation, the simultaneous read request to the

slow-path cache will be ignored. A write hit in the fast-path cache will result in the data

being written in one cycle. The simultaneous write to the slow-path cache will proceed

as normal, so that the data will be written to both caches. If a read miss occurs in the

fast-path cache, then the simultaneous read request to the slow-path cache will continue

to be processed—if a read miss occurs in the slow-path cache, then the next level of the

memory hierarchy will be accessed. The requested data will be placed in both the fast-

path and slow-path caches. If a write miss occurs in the fast-path cache, then the

simultaneous write to the slow-path cache will continue to be processed as normal. The

fast-path cache uses a no-write allocate policy, meaning that on a write miss, the cache

will remain unchanged—only the slow-path cache will be modified.

Ben‘s new pipeline design looks as follows after implementing Alyssa‘s suggestion:

I-Cache

Address

Decode

I-Cache

Array

Access

I-Cache Tag

Check,

Instruction

Decode &

Register

Fetch

Execute

Fast-Path D-

Cache

Access and

Tag Check

& Slow Path

D-Cache

Address

Decode

Slow-Path

D-Cache

Array

Access

Slow-Path

D-Cache

Tag Check

Write-

Back

The number of processor pipeline stages is still eight, even with the addition of the fast-

path cache. Since the processor pipeline is still eight stages, what is the benefit of using a

fast-path cache? Give an example of an instruction sequence and state how many cycles

are saved if the fast-path cache always hits.

Page 9 of 45

Problem M2.3: Victim Cache Evaluation [? Hours]

This problem requires the knowledge of Handout #7 (Victim Cache) and Lecture 6.

Please, read these materials before answering the following questions.

Problem M2.3.A Baseline Cache Design

The diagram below shows a 32-Byte fully associative cache with four 8-Byte cache lines.

Each line consists of two 4-Byte words and has an associated tag and two status bits

(valid and dirty). The Input Address is 32-bits and the two least significant bits are

assumed to be zero. The output of the cache is a 32-bit word.

Tag

Input Address

• •• • • •• •STSTSTST

Valid Bit

=
Comparator

= = =

Valid Output

Driver

Buffer Driver

MUX MUX MUX MUX

Data

Output

Drivers

Data Bus

Page 10 of 45

Please complete Table M2.3-1 below with delays across each element of the cache. Using

the data you compute in Table M2.3-1, calculate the critical path delay through this cache

(from when the Input Address is set to when both Valid Output Driver and the

appropriate Data Output Driver are outputting valid data).

Component Delay equation (ps) FA (ps)

Comparator 200(# of tag bits) + 1000

N-to-1 MUX 500log2 N + 1000

Buffer driver 2000

AND gate 1000

OR gate 500

Data output driver 500(associativity) + 1000

Valid output

driver

1000

Table M2.3-1

Critical Path Cache Delay: _______________________

Page 11 of 45

Problem M2.3.B Victim Cache Behavior

Now we will study the impact of a victim cache on a cache hit rate. Our main L1 cache is

a 128 byte, direct mapped cache with 16 bytes per cache line. The cache is word (4-bytes)

addressable. The victim cache in Figure H7-A (in Handout #7) is a 32 byte fully

associative cache with 16 bytes per cache line, and is also word-addressable. The victim

cache uses the first in first out (FIFO) replacement policy.

Please complete Table M2.3-2 on the next page showing a trace of memory accesses. In

the table, each entry contains the {tag,index} contents of that line, or ―inv‖, if no data is

present. You should only fill in elements in the table when a value changes. For

simplicity, the addresses are only 8 bits.

The first 3 lines of the table have been filled in for you.

For your convenience, the address breakdown for access to the main cache is depicted

below.

7 6 4 3 2 1 0

TAG INDEX WORD SELECT BYTE SELECT

Problem M2.3.C Average Memory Access Time

Assume 15% of memory accesses are resolved in the victim cache. If retrieving data

from the victim cache takes 5 cycles and retrieving data from main memory takes 55

cycles, by how many cycles does the victim cache improve the average memory access

time?

Page 12 of 45

Input

Address

Main Cache Victim Cache

L0 L1 L2 L3 L4 L5 L6 L7 Hit? Way0 Way1 Hit?

inv inv inv inv inv inv inv inv - inv inv -

00 0 N N

80 8 N 0 N

04 0 N 8 Y

A0

10

C0

18

20

8C

28

AC

38

C4

3C

48

0C

24

Table M2.3-2

Page 13 of 45

Problem M2.4: Loop Ordering [? Hours]

This problem requires the knowledge of Lecture 6. Please, read it before answering the

following questions.

This problem evaluates the cache performances for different loop orderings. You are

asked to consider the following two loops, written in C, which calculate the sum of the

entries in a 128 by 64 matrix of 32-bit integers:

Loop A Loop B

sum = 0;

for (i = 0; i < 128; i++)

 for (j = 0; j < 64; j++)

 sum += A[i][j];

sum = 0;

for (j = 0; j < 64; j++)

 for (i = 0; i < 128; i++)

 sum += A[i][j];

The matrix A is stored contiguously in memory in row-major order. Row major order

means that elements in the same row of the matrix are adjacent in memory as shown in

the following memory layout:

A[i][j] resides in memory location [4*(64*i + j)]

Memory Location:

0 4 252 256 4*(64*127+63)

A[0][0] A[0][1] ... A[0][63] A[1][0] ... A[127][63]

For Problem M2.4.A to Problem M2.4.C, assume that the caches are initially empty.

Also, assume that only accesses to matrix A cause memory references and all other

necessary variables are stored in registers. Instructions are in a separate instruction

cache.

Page 14 of 45

Problem M2.4.A

Consider a 4KB direct-mapped data cache with 8-word (32-byte) cache lines.

Calculate the number of cache misses that will occur when running Loop A.

Calculate the number of cache misses that will occur when running Loop B.

The number of cache misses for Loop A:_____________________________

The number of cache misses for Loop B:_____________________________

Problem M2.4.B

Consider a direct-mapped data cache with 8-word (32-byte) cache lines. Calculate the

minimum number of cache lines required for the data cache if Loop A is to run without

any cache misses other than compulsory misses. Calculate the minimum number of

cache lines required for the data cache if Loop B is to run without any cache misses other

than compulsory misses.

Data-cache size required for Loop A: ____________________________ cache line(s)

Data-cache size required for Loop B: ____________________________ cache line(s)

Problem M2.4.C

Consider a 4KB fully-associative data cache with 8-word (32-byte) cache lines. This data

cache uses a first-in/first-out (FIFO) replacement policy.

Calculate the number of cache misses that will occur when running Loop A.

Calculate the number of cache misses that will occur when running Loop B.

The number of cache misses for Loop A:_____________________________

The number of cache misses for Loop B:_____________________________

Page 15 of 45

Problem M2.5: Cache Parameters [<30 Mins]

For each of the following statements about making a change to a cache design, circle

True or False and provide a one sentence explanation of your choice. Assume all cache

parameters (capacity, associativity, line size) remain fixed except for the single change

described in each question. Please provide a one sentence explanation of your answer.

Problem M2.5.A

Doubling the line size halves the number of tags in the cache

True / False

Problem M2.5.B

Doubling the associativity doubles the number of tags in the cache.

True / False

Problem M2.5.C

Doubling cache capacity of a direct-mapped cache usually reduces conflict misses.

True / False

Problem M2.5.D

Doubling cache capacity of a direct-mapped cache usually reduces compulsory misses.

True / False

Problem M2.5.E

Doubling the line size usually reduces compulsory misses.

True / False

Page 16 of 45

Problem M2.6: Microtags [? Hours]

Problem M2.6.A

Explain in one or two sentences why direct-mapped caches have much lower hit latency

(as measured in picoseconds) than set-associative caches of the same capacity.

Problem M2.6.B

A 32-bit byte-addressed machine has an 8KB, 4-way set-associative data cache with 32-

byte lines. The following figure shows how the address is divided into tag, index and

offset fields. Give the number of bits in each field.

tag Index offset

of bits in the tag: ______________

of bits in the index: ______________

of bits in the offset: ______________

Page 17 of 45

Microtags (for questions M2.6.C – M2.6.H)

Several commercial processors (including the UltraSPARC-III and the Pentium-4) reduce

the hit latency of a set-associative cache by using only a subset of the tag bits (a

―microtag‖) to select the matching way before speculatively forwarding data to the CPU.

The remaining tag bits are checked in a subsequent clock cycle to determine if the access

was actually a hit. The figure below illustrates the structure of a cache using this scheme.

HiTag LoTag data

HiTag LoTag

=

Index offset

HiTag LoTag data

=

...

To CPU

==

Hit?Hit?

Problem M2.6.C

The tag field is sub-divided into a loTag field used to select a way and a hiTag field used

for subsequent hit/miss checks, as shown below.

tag

hiTag loTag index offset

The cache design requires that all lines within a set have unique loTag fields.

In one or two sentences, explain why this is necessary.

Page 18 of 45

Problem M2.6.D

If the loTag field is exactly two bits long, will the cache have greater, fewer, or an equal

number of conflict misses as a direct-mapped cache of the same capacity? State any

assumptions made about replacement policy.

Problem M2.6.E

If the loTag field is greater than two bits long, are there any additional constraints on

replacement policy beyond those in a conventional 4-way set-associative cache?

Problem M2.6.F

Does this scheme reduce the time required to complete a write to the cache? Explain in

one or two sentences.

Problem M2.6.G

In practice, microtags hold virtual address bits to remove address translation from the

critical path, while the full tag check is performed on translated physical addresses. If the

loTag bits can only hold untranslated bits of the virtual address, what is the largest

number of loTag bits possible if the machine has a 16KB virtual memory page size?

(Assume 8KB 4-way set-associative cache as in Question M2.6.B)

Problem M2.6.H

Describe how microtags can be made much larger, to also include virtual address bits

subject to address translation. Your design should not require address translation before

speculatively forwarding data to the CPU. Your explanation should describe the

replacement policy and any additional state the machine must maintain.

Page 19 of 45

Problem M2.7: Write Buffer for Data Cache [20 Mins] (2005 Fall Part C)

In order to boost the performance of memory writes, Ben Bitdiddle has proposed to add a

write buffer to our 5-stage fully-bypassed MIPS pipeline as shown below. Assuming a

write-through/write no-allocate cache, every memory write request will be queued in the

write buffer in the MEM stage, and the pipeline will continue execution without waiting

for writes to be completed. A queued entry in the write buffer gets cleared only after the

write operation completes, so the maximum number of outstanding memory writes is

limited by the size of the write buffer.

Please answer the following questions.

ASrc
IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Cache

0x4

Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Cache

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

WBuf To main memory

Popcount(WBuf)

Problem M2.7.A

Ben wants to determine the size of the write buffer, so he runs benchmark X to get the

observation below. What will be the average number of writes in flight (=the number of

valid entries in the write buffer on average)?

1) The CPI of the benchmark is 2.

2) On average, one of every 20 instructions is a memory write.

3) Memory has a latency of 100 cycles, and is fully pipelined.

Page 20 of 45

Problem M2.7.B

Based on the experiment in the previous question, Ben has added the write buffer with N

entries to the pipeline. (Do not use your answer in Question 7 to replace N.) Now he

wants to design a stall logic to prevent a write buffer overflow. The structure of the write

buffer is shown in the figure below. Popcount(WBuf) gives the number of valid

entries in the write buffer at any given moment.

ADDR0 DATA0

WAddr WData

0

0

1

Valid

Size

= N

Popcount(WBuf)

valid entries

Please write down the stall condition to prevent write buffer overflows. You should

derive the condition without assuming any modification of the given pipeline. You can

use Boolean and arithmetic operations in your stall condition.

Stall =

Page 21 of 45

Problem M2.7.C

In order to optimize the stall logic, Ben has decided to add a predecode bit to detect store

instructions in the instruction cache (I-Cache). That is, now every entry in the I-Cache

has a store bit associated with it, and it propagates through the pipeline with an Sstage bit

added to each pipeline register (except the one between MEM and WB stages) as shown

below. Popcount(Pipeline) gives the number of store instructions that are in flight

(= number of Sstage bits set to 1).

ASrc
IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Cache

0x4

Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Cache

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

WBuf

SD

SE SM

Popcount
(pipeline)

To main memory

Popcount(WBuf)

How will this optimization change the stall condition, if at all?

Stall =

Page 22 of 45

Problem M2.8: Virtual Memory Bits [? Hours]

This problem requires the knowledge of Handout #8 (Virtual Memory Implementation)

and Lecture 8. Please, read these materials before answering the following questions.

In this problem we consider simple virtual memory enhancements.

Problem M2.8.A

Whenever a TLB entry is replaced we write the entire entry back to the page table. Ben

thinks this is a waste of memory bandwidth. He thinks only a few of the bits need to be

written back. For each of the bits explain why or why not they need to be written back to

the page table.

With this in mind, we will see how we can minimize the number of bits we actually need

in each TLB entry throughout the rest of the problem.

Problem M2.8.B

Ben does not like the TLB design. He thinks the TLB Entry Valid bit should be dropped

and the kernel software should be changed to ensure that all TLB entries are always valid.

Is this a good idea? Explain the advantages and disadvantages of such a design.

Problem M2.8.C

Alyssa got wind of Ben‘s idea and suggests a different scheme to eliminate one of the

valid bits. She thinks the page table entry valid and TLB Entry Valid bits can be

combined into a single bit.

On a refill this combined valid bit will take the value that the page table entry valid bit

had. A TLB entry is invalidated by writing it back to the page table and setting the

combined valid bit in the TLB entry to invalid.

How does the kernel software need to change to make such a scheme work? How do the

exceptions that the TLB produces change?

