
 1

 6.823 Computer System Architecture
. Module #2 Solutions

(Problems M2.1 – M2.15)

Last Updated:

 10/10/2011

http://csg.lcs.mit.edu/6.823/

Problem M2.1: Cache Access-Time & Performance

Here is the completed Table M2.1-1 for M2.1.A and M2.1.B.

Component Delay equation (ps) DM (ps) SA (ps)

Decoder 200(# of index bits) + 1000 Tag 3400 3000

Data 3400 3000

Memory array 200log2 (# of rows) +

200log2 (# of bits in a row) + 1000

Tag 4217 4250

Data 5000 5000

Comparator 200(# of tag bits) + 1000 4000 4400

N-to-1 MUX 500log2 N + 1000 2500 2500

Buffer driver 2000 2000

Data output driver 500(associativity) + 1000 1500 3000

Valid output driver 1000 1000 1000

Table M2.1-1: Delay of each Cache Component

Problem M2.1.A Access time: DM

To use the delay equations, we need to know how many bits are in the tag and how many are in

the index. We are given that the cache is addressed by word, and that input addresses are 32-bit

byte addresses; the two low bits of the address are not used.

Since there are 8 (2
3
) words in the cache line, 3 bits are needed to select the correct word from

the cache line.

In a 128 KB direct-mapped cache with 8 word (32 byte) cache lines, there are 42
10

 = 2
12

cache

lines (128KB/32B). 12 bits are needed to address 2
12

 cache lines, so the number of index bits is

12. The remaining 15 bits (32 – 2 – 3 – 12) are the tag bits.

We also need the number of rows and the number of bits in a row in the tag and data memories.

The number of rows is simply the number of cache lines (2
12

), which is the same for both the tag

and the data memory. The number of bits in a row for the tag memory is the sum of the number

of tag bits (15) and the number of status bits (2), 17 bits total. The number of bits in a row for the

data memory is the number of bits in a cache line, which is 256 (32 bytes  8 bits/byte).

With 8 words in the cache line, we need an 8-to-1 MUX. Since there is only one data output

driver, its associativity is 1.

 2

Decoder (Tag) = 200  (# of index bits) + 1000 = 200  12 + 1000 = 3400 ps

Decoder (Data) = 200  (# of index bits) + 1000 = 200  12 + 1000 = 3400 ps

Memory array (Tag) = 200  log2(# of rows) + 200  log2(# bits in a row) + 1000

 = 200  log2(2
12

) + 200  log2(17) + 1000  4217 ps

Memory array (Data) = 200  log2(# of rows) + 200  log2(# bits in a row) + 1000

 = 200  log2(2
12

) + 200  log2(256) + 1000 = 5000 ps

Comparator = 200  (# of tag bits) + 1000 = 200  15 + 1000= 4000 ps

N-to-1 MUX = 500  log2(N) + 1000 = 500  log2(8) + 1000 = 2500 ps

Data output driver = 500  (associativity) + 1000 = 500  l + 1000 = 1500 ps

To determine the critical path for a cache read, we need to compute the time it takes to go

through each path in hardware, and find the maximum.

Time to tag output driver

= (tag decode time) + (tag memory access time) + (comparator time) + (AND gate time)

+ (valid output driver time)

 3400 + 4217 + 4000 + 500 + 1000 = 13117 ps

Time to data output driver

= (data decode time) + (data memory access time) + (mux time) + (data output driver time)

= 3400 + 5000 + 2500 + 1500 = 12400 ps

The critical path is therefore the tag read going through the comparator. The access time is 13117

ps. At 150 MHz, it takes 0.013117  150, or 2 cycles, to do a cache access.

Problem M2.1.B Access time: SA

As in M2.1.A, the low two bits of the address are not used, and 3 bits are needed to select the

appropriate word from a cache line. However, now we have a 128 KB 4-way set associative

cache. Since each way is 32 KB and cache lines are 32 bytes, there are 2
10

 lines in a way

(32KB/32B) that are addressed by 10 index bits. The number of tag bits is then (32 – 2 – 3 – 10),

or 17.

The number of rows in the tag and data memory is 2
10

, or the number of sets. The number of bits

in a row for the tag memory is now quadruple the sum of the number of tag bits (17) and the

number of status bits (2), 76 bits total. The number of bits in a row for the data memory is four

times the number of bits in a cache line, which is 1024 (4  32 bytes  8 bits/byte).

As in 1.A, we need an 8-to-1 MUX. However, since there are now four data output drivers, the

associativity is 4.

 3

Decoder (Tag) = 200  (# of index bits) + 1000 = 200  10 + 1000 = 3000 ps

Decoder (Data) = 200  (# of index bits) + 1000 = 200  10 + 1000 = 3000 ps

Memory array (Tag) = 200  log2(# of rows) + 200  log2(# bits in a row) + 1000

 = 200  log2(2
10

) + 200  log2(76) + 1000  4250 ps

Memory array (Data) = 200  log2(# of rows) + 200  log2(# bits in a row) + 1000

 = 200  log2(2
10

) + 200  log2(1024) + 1000 = 5000 ps

Comparator = 200  (# of tag bits) + 1000 = 200  17 + 1000= 4400 ps

N-to-1 MUX = 500  log2(N) + 1000 = 500  log2(8) + 1000 = 2500 ps

Data output driver = 500  (associativity) + 1000 = 500  4 + 1000= 3000 ps

Time to valid output driver

= (tag decode time) + (tag memory access time) + (comparator time) + (AND gate time)

+ (OR gate time) + (valid output driver time)

= 3000 + 4250 + 4400 + 500 + 1000 + 1000 = 14150 ps

There are two paths to the data output drivers, one from the tag side, and one from the data side.

Either may determine the critical path to the data output drivers.

Time to get through data output driver through tag side

= (tag decode time) + (tag memory access time) + (comparator time) + (AND gate time)

 + (buffer driver time) + (data output driver)

= 3000 + 4250 + 4400 + 500 + 2000 + 3000 = 17150 ps

Time to get through data output driver through data side

= (data decode time) + (data memory access time) + (mux time) + (data output driver)

= 3000 + 5000 + 2500 + 3000 = 13500 ps

From the above calculations, it’s clear that the critical path leading to the data output driver goes

through the tag side.

The critical path for a read therefore goes through the tag side comparators, then through the

buffer and data output drivers. The access time is 17150 ps. The main reason that the 4-way set

associative cache is slower than the direct-mapped cache is that the data output drivers need the

results of the tag comparison to determine which, if either, of the data output drivers should be

putting a value on the bus. At 150 MHz, it takes 0.0175  150, or 3 cycles, to do a cache access.

It is important to note that the structure of cache we’ve presented here does not describe all the

details necessary to operate the cache correctly. There are additional bits necessary in the cache

which keep track of the order in which lines in a set have been accessed. We’ve omitted this

detail for sake of clarity.

 4

Problem M2.1.C Miss-rate analysis

D-map

Address

line in cache hit?

L0 L1 L2 L3 L4 L5 L6 L7
110 inv 11 inv inv inv inv inv inv no
136 13 no
202 20 no
1A3 1A no
102 10 no
361 36 no
204 20 no
114 yes
1A4 yes
177 17 no
301 30 no
206 20 no
135 yes

 D-map

Total Misses 10

Total Accesses 13

4-way

Address

LRU

line in cache Hit?

Set 0 Set 1
way0 way1 way2 way3 way0 way1 way2 way3

110 inv inv inv inv 11 inv inv inv No
136 13 No
202 20 No
1A3 1A No
102 10 No
361 36 No
204 Yes
114 Yes
1A4 Yes
177 17 No
301 30 No
206 Yes
135 Yes

 5

 4-way LRU

Total Misses 8

Total Accesses 13

4-way

Address

FIFO

line in cache Hit?

Set 0 Set 1
way0 way1 way2 way3 way0 way1 way2 way3

110 inv Inv inv inv 11 inv inv Inv No
136 13 No
202 20 No
1A3 1A No
102 10 No
361 36 No
204 Yes
114 Yes
1A4 Yes
177 17 No
301 30 No
206 20 No
135 Yes

 4-way FIFO

Total Misses 9

Total Accesses 13

Problem M2.1.D Average latency

The miss rate for the direct-mapped cache is 10/13. The miss rate for the 4-way LRU set

associative cache is 8/13.

The average memory access latency is (hit time) + (miss rate)  (miss time).

For the direct-mapped cache, the average memory access latency would be (2 cycles) + (10/13) 

(20 cycles) = 17.38  18 cycles.

For the LRU set associative cache, the average memory access latency would be (3 cycles) +

(8/13)  (20 cycles) = 15.31  16 cycles.

The set associative cache is better in terms of average memory access latency.

 6

For the above example, LRU has a slightly smaller miss rate than FIFO. This is because the

FIFO policy replaced the {20} block instead of the {10} block during the 12
th

 access, because

the {20} block has been in the cache longer even though the {10} was least recently used,

whereas the LRU policy took advantage of temporal/spatial locality.

LRU doesn’t always have lower miss rate than FIFO. Consider the following counter example: A

sequence accesses 3 separate memory locations A,B and C in the order of A, B, A, C, B, B, B,

…. When this sequence is executed on a processor employing a fully-associative cache with 2

cache lines and LRU replacement policy, the execution ends up with 4 misses. On the other

hand, the same sequence will only produces 3 misses if the cache uses FIFO replacement policy.

(We assume the cache is empty at the beginning of the execution).

 7

Problem M2.2: Pipelined Cache Access

Problem M2.2.A

Ben’s initial datapath design is shown below:

I-Cache

Address

Decode

I-Cache

Array

Access

I-Cache

Tag

Check

Instruction

Decode &

Register

Fetch

Execute D-

Cache

Address

Decode

D-

Cache

Array

Access

D-

Cache

Tag

Check

Write-

back

Alyssa suggests combining the third and fourth stages, which would result in the following

design (used in the MIPS R4000 processor discussed in Appendix A of the textbook):

I-Cache

Address

Decode

I-Cache

Array

Access

I-Cache

Tag

Check,

Instruction

Decode &

Register

Fetch

Execute D-Cache

Address

Decode

D-Cache

Array

Access

D-Cache

Tag

Check

Write-

Back

This scheme allows an instruction to be read from the register file before it is known whether the

instruction is valid. However, reading values from the register file does not affect processor state

and thus does not affect the correctness of the program execution. If the tag check fails—

meaning that the fetched instruction is invalid—the incorrect instruction can be replaced with a

NOP in the Execute stage, and the processor can wait for the correct instruction to be brought

into the I-cache.

That raises the question of whether Ben can similarly combine the data cache tag check stage

with the write-back stage. Theoretically, the answer is yes, although the issues involved with

combining these two stages make it highly impractical. Thus, both answers are acceptable—the

important thing to consider is the reasoning used. Combining the last two stages would result in

the following pipeline:

I-Cache

Address

Decode

I-Cache

Array

Access

I-Cache

Tag Check,

Instruction

Decode &

Register

Fetch

Execute D-Cache

Address

Decode

D-Cache

Array

Access

D-Cache

Tag Check

& Write-

Back

The obvious problem with this scheme is that a load instruction that misses in the data cache will

write an incorrect value into the register file—therefore merging the stages does not work. This

 8

is correct. However, one can also argue that the scheme can be made to work by modifying the

pipeline. This argument is based on the fact that even if a load instruction places incorrect data

into a register, the load can re-execute and place the correct data into the register, overwriting the

wrong value. As a side note, it should be pointed out that allowing processor state to be

incorrectly updated in a machine which implements precise interrupts would not work without

substantial hardware modifications. However, ignoring the issue of interrupts (which had not

been covered in lecture at the time of the problem set), there is a more fundamental issue with

this approach. Ben’s pipeline currently has no means of correctly re-executing the load

instruction. Simply flushing the pipeline on a data cache miss and restarting execution with the

load instruction does not work because of the following type of instruction:

LW R1, 0(R1)

If the load results in a D-cache miss, it will have overwritten the value in R1 before it re-

executes, meaning that the incorrect address will be calculated the second time around. Another

alternative is to store the address once it has been calculated in the Execute stage. This requires

special address registers in each pipeline stage starting with D-Cache Address Decode. But

another problem is the fact that cache access is pipelined, so a load in the write-back stage that

has caused a D-cache miss has to be sent backwards in the pipeline (along with the correct

address) in order to access the cache once the correct data has been fetched. This requires

additional bypass paths in the processor. In general, speculatively updating processor state

requires rollback mechanisms to be implemented. Backing up the pipeline is the approach used

in the MIPS R4000 in the event of a data cache miss, but the tag check and write-back stages are

separate.

Problem M2.2.B

Ben’s current design does not work for data writes because the tag needs to be checked before

the cache is updated. One solution is to add a fourth stage which handles the actual write in the

event of a cache hit. However, unless the cache can handle two simultaneous accesses, this

scheme does not allow a store to be in this fourth stage at the same time that another memory

operation is in the D-Cache Array Access stage. A better solution is to use a delayed write

buffer as shown in lecture. The store data is written into the write buffer, and if a hit occurs in

the D-Cache Tag Check stage, the data will be written into the cache at a later time (for example,

when the next store instruction is processed)—the processor can continue execution as normal.

This requires load instructions to check the write buffer as well as the cache to ensure that the

correct value is read. With this scheme, a three-stage pipeline can be maintained for the data

cache.

Problem M2.2.C

Ben’s final 8-stage pipeline is shown below:

 9

I-Cache

Address

Decode

I-Cache

Array

Access

I-Cache

Tag

Check,

Instruction

Decode &

Register

Fetch

Execute D-Cache

Address

Decode

D-Cache

Array

Access

D-Cache

Tag

Check

Write-

Back

This pipeline uses direct-mapped instruction and data caches. Replacing these direct-mapped

caches with set-associative caches could potentially reduce the miss rate, at a possible cost in hit

time. However, a close examination of the pipeline and the diagram for a set-associative cache

(seen in Problem M2.1.B) shows that the I-cache must be direct-mapped. For a set-associative

cache, when a word is being read, the result of the tag check is used as an enable signal for the

value being read. However, in the above pipeline, the instruction is needed at the beginning of

the I-Cache Tag Check stage so that it can be decoded in parallel with the tag check. Thus, the I-

cache must be direct-mapped.

For the data cache, the tag check occurs in its own stage. This makes it possible to use a set-

associative cache, since the data for a load instruction isn’t needed until the beginning of the

Write-Back stage. However, in practice this would probably be a bad idea, since the extra delay

required to wait for the tag check before driving out the data might lengthen the clock period.

Problem M2.2.D

Pipelining the caches has a harmful effect on branches. If conditional branch instructions resolve

in the Execute stage, then the processor’s branch delay is 3 cycles, as shown by the following

example in which there are no delay-slot instructions and the datapath is fully-bypassed:

 ADDI R1, R0, #1

 BEQ R1, R0, L1

 SUB R2, R3, R4

L1: AND R5, R6, R7

 t1 t2 t3 t4 t5

IAD
BEQ SUB

IAA ADDI BEQ

ITC/ID ADDI BEQ

EX ADDI BEQ

DAD ADDI BEQ

DAA ADDI

DTC

WB

 10

Problem M2.2.E

Since a data cache access takes 3 cycles, it will take more cycles (as compared to the five-stage

pipeline) to obtain the result of a load instruction. If an instruction depends on the load, a simple

scheme is to wait until after the D-Cache Tag Check stage before bypassing the load value. This

will ensure that the dependent instruction does not execute with incorrect data. An interlock can

be used to implement this solution. If an instruction in the Instruction Decode stage needs to

read the result of a load instruction that is either in the Execute, D-Cache Address Decode, D-

Cache Array Access, or D-Cache Tag Check stages, then that dependent instruction will be

stalled until the load reaches the Write-Back stage (at which point the load value will be

bypassed to the Execute stage). This is illustrated by the below example.

LW R1, 0(R2)

ADD R3, R1, R2

 t1 t2 t3 t4 t5 t6 t7

IAD
ADD

IAA LW ADD

ITC/ID LW ADD ADD ADD ADD

EX LW ADD

DAD LW

DAA LW

DTC LW

WB LW

As shown by the above resource usage diagram, the load delay for this scheme is 3 cycles.

Problem M2.2.F

Another alternative to waiting until after the D-Cache Tag Check stage before bypassing the load

value is to bypass the value at the end of the D-Cache Array Access stage. If there is a tag

mismatch, the processor will wait for the correct data to be brought into the cache; then it will re-

execute the load and all of the instructions behind it in the pipeline. In order to implement this

scheme, only the program counter of the load instruction needs to be saved in the event of a tag

mismatch. The load instruction will be nullified (as well as instructions behind it in the

pipeline). When the DataReady signal is asserted (indicating that the load data is now available

in the cache), the processor can restart the load instruction and continue as normal. The benefit

of this scheme is that the load delay is now reduced to 2 cycles.

 11

Problem M2.2.G

Even with the scheme in Problem M2.2.F, the load delay is 2 cycles, while it was only 1 cycle in

the original 5-stage pipeline (although to be fair, the cycle time should be shorter in the 8-stage

pipeline). One solution to this problem is the addition of a fast-path cache that can be accessed

in one cycle. The resulting pipeline is shown below.

I-Cache

Address

Decode

I-Cache

Array

Access

I-Cache

Tag Check,

Instruction

Decode &

Register

Fetch

Execute Fast-Path

D-Cache

Access and

Tag Check

& Slow

Path

D-Cache

Address

Decode

Slow-

Path

D-Cache

Array

Access

Slow-Path

D-Cache

Tag Check

Write-

Back

The benefit of this approach is that a load instruction that hits in the fast-path cache will now

have its value available at the end of the Slow-Path D-Cache Address Decode stage, whereas

before it wasn’t available until the end of the Slow-Path D-Cache Array Access stage. We can

re-examine the instruction sequence from the solution to Problem M2.2.E:

LW R1, 0(R2)

ADD R3, R1, R2

If the fast-path cache always hits, the load delay will only be 1 cycle, which saves 1 cycle over

the scheme from Problem M2.2.F and 2 cycles over the scheme from Problem M2.2.E. This

scheme differs from having a single D-cache in the original 5-stage pipeline because the fast-

path cache will be very small in order to avoid lengthening the cycle time. The idea is to keep

the low miss rate of a large primary cache, the shorter cycle time available with a pipelined

cache, and the single-cycle load delay associated with an unpipelined cache.

 12

Problem M2.3: Victim Cache Evaluation

Problem M2.3.A Baseline Cache Design

Component Delay equation (ps) FA (ps)

Comparator 200(# of tag bits) + 1000 6800

N-to-1 MUX 500log2 N + 1000 1500

Buffer driver 2000 2000

AND gate 1000 1000

OR gate 500 500

Data output driver 500(associativity) + 1000 3000

Valid output

driver

1000 1000

Table M2.3-1

The Input Address has 32 bits. The bottom two bits are discarded (cache is word-addressable)

and bit 2 is used to select a word in the cache line. Thus the Tag has 29 bits. The Tag+Status

line in the cache is 31 bits.

The MUXes are 2-to-1, thus N is 2. The associativity of the Data Output Driver is 4 – there are

four drivers driving each line on the common Data Bus.

Delay to the Valid Bit is equal to the delay through the Comparator, AND gate, OR gate, and

Valid Output Driver. Thus it is 6800 + 1000 + 500 + 1000 = 9300 ps.

Delay to the Data Bus is delay through MAX ((Comparator, AND gate, Buffer Driver),

(MUX)), Data Output Drivers. Thus it is MAX (6800 + 1000 + 2000, 1500) + 3000 = MAX

(9800, 1500) + 3000 = 9800 + 3000 = 12800 ps.

Critical Path Cache Delay: 12800 ps

 13

Problem M2.3.B Victim Cache Behavior

Input

Address

Main Cache Victim Cache

L0 L1 L2 L3 L4 L5 L6 L7 Hit? Way0 Way1 Hit?

inv inv inv inv inv inv inv inv - inv inv -

00 0 N N

80 8 N 0 N

04 0 N 8 Y

A0 A N N

10 1 N N

C0 C N N

18 Y N

20 2 N A N

8C 8 N 0 Y

28 Y N

AC A N 2 Y

38 3 N N

C4 Y N

3C Y N

48 4 N C N

0C 0 N 8 N

24 2 N A N

Table M2.3-2

 14

Problem M2.3.C Average Memory Access Time

15% of accesses will take 50 cycles less to complete, so the average memory access

improvement is 0.15 * 50 = 7.5 cycles.

 15

Problem M2.4: Loop Ordering

Problem M2.4.A

Each element of the matrix can only be mapped to a particular cache location because the cache

here is a Direct-mapped data cache. Matrix A has 64 columns and 128 rows. Since each row of

matrix has 64 32-bit integers and each cache line can hold 8 words, each row of the matrix fits

exactly into eight (648) cache lines as the following:

0 A[0][0] A[0][1] A[0][2] A[0][3] A[0][4] A[0][5] A[0][6] A[0][7]

1 A[0][8] A[0][9] A[0][10] A[0][11] A[0][12] A[0][13] A[0][14] A[0][15]

2 A[0][16] A[0][17] A[0][18] A[0][19] A[0][20] A[0][21] A[0][22] A[0][23]

3 A[0][24] A[0][25] A[0][26] A[0][27] A[0][28] A[0][29] A[0][30] A[0][31]

4 A[0][32] A[0][33] A[0][34] A[0][35] A[0][36] A[0][37] A[0][38] A[0][39]

5 A[0][40] A[0][41] A[0][42] A[0][43] A[0][44] A[0][45] A[0][46] A[0][47]

6 A[0][48] A[0][49] A[0][50] A[0][51] A[0][52] A[0][53] A[0][54] A[0][55]

7 A[0][56] A[0][57] A[0][58] A[0][59] A[0][60] A[0][61] A[0][62] A[0][63]

8 A[1][0] A[1][1] A[1][2] A[1][3] A[1][4] A[1][5] A[1][6] A[1][7]























































Loop A accesses memory sequentially (each iteration of Loop A sums a row in matrix A), an

access to a word that maps to the first word in a cache line will miss but the next seven accesses

will hit. Therefore, Loop A will only have compulsory misses (128648 or 1024 misses).

The consecutive accesses in Loop B will use every eighth cache line (each iteration of Loop B

sums a column in matrix A). Fitting one column of matrix A, we would need 1288 or 1024

cache lines. However, our 4KB data cache with 32B cache line only has 128 cache lines. When

Loop B accesses a column, all the data that the previous iteration might have brought in would

have already been evicted. Thus, every access will cause a cache miss (64128 or 8192 misses).

The number of cache misses for Loop A:_ _1024 _

The number of cache misses for Loop B: 8192________________

 16

Problem M2.4.B

Since Loop A accesses memory sequentially, we can overwrite the cache lines that were previous

brought in. Loop A will only require 1 cache line to run without any cache misses other than

compulsory misses.

For Loop B to run without any cache misses other than compulsory misses, the data cache needs

to have the capacity to hold one column of matrix A. Since the consecutive accesses in Loop B

will use every eighth cache line and we have 128 elements in a matrix A column, Loop B

requires 1288 or 1024 cache lines.

Data-cache size required for Loop A: ______________1_ __________ cache

line(s)

Data-cache size required for Loop B: ____________1024____________ cache

line(s)

Problem M2.4.C

Loop A still only has compulsory misses (128648 or 1024 misses).

Because of the fully-associative data cache, Loop B now can fully utilize the cache and the

consecutive accesses in Loop B will no longer use every eighth cache line. Fitting one column of

matrix A, we now would only need 128 cache lines. Since 4KB data cache with 8-word cache

lines has 128 cache lines, Loop B only has compulsory misses (128(648) or 1024 misses).

The number of cache misses for Loop A:____________1024_____________

The number of cache misses for Loop B:____________ 1024_____________

 17

Problem M2.5: Cache Parameters

Problem M2.5.A

TRUE. Since cache size is unchanged, the line size doubles, the number of tag entries is halved.

Problem M2.5.B

FALSE. The total number of lines across all sets is still the same, therefore the number of tags in

the cache remain the same.

Problem M2.5.C

TRUE. Doubling the capacity increases the number of lines from N to 2N. Address i and address

i+N now map to different entries in the cache and hence, conflicts are reduced.

Problem M2.5.D

FALSE. The number of lines doubles but the line size remains the same. So the compulsory

“cold-start” misses stays the same.

Problem M2.5.E

TRUE. Doubling the line size causes more data to be pulled into the cache on a miss. This

exploits spatial locality as subsequent loads to different words in the same cache line will hit in

the cache reducing compulsory misses.

 18

Problem M2.6: Microtags

Problem M2.6.A

A direct-mapped cache can forward data to the CPU before checking the tags for a hit or a miss.

A set-associative cache has to first compare cache tags to select the correct way from which to

forward data to the CPU.

Problem M2.6.B

tag Index offset

of bits in the tag: ____21________

of bits in the index: _____6________

of bits in the offset: _____5________

32-byte line requires 5 bits to select the correct byte.

An 8KB, 4-way cache has 2KB in each way, and each way holds 2KB/32B=64 lines, so we need

6 index bits.

The remaining 32-6-5=21 bits are the tag.

Problem M2.6.C

If the loTags are not unique, then multiple ways can attempt to drive data on the tristate bus out

to the CPU causing bus contention.

(It is possible to have a scheme that speculatively picks one of the ways when there is as match

in loTags, but this would require additional cross-way logic that would slow the design down,

and would also incur extra misses when the speculation was wrong.)

Problem M2.6.D

The loTag has to be unique across ways, and so in a 4-way cache with 2-bit tags the tags would

never be able to hold addresses that were different from a direct-mapped cache of the same

capacity. The conflict misses would therefore be identical.

 19

Problem M2.6.E

When a new line is brought into the cache, any existing line in the set with the same loTag must

be chosen as the victim. If there is no line with the same loTag, any conventional replacement

policy can be used.

Problem M2.6.F

No. The full tag check is required to determine whether the write is a hit to the cached line.

Problem M2.6.G

A 16KB page implies 14 untranslated address bits. An 8KB, 4-way cache requires 11

index+offset bits, leaving 3 untranslated bits for loTag.

Problem M2.6.H

If the loTags include translated virtual address bits, then each cache line must store the physical

page number (PPN) as the hiTag. An access will hit if loTag matches, and the PPN in hiTag

matches. The replacement policy has to maintain two invariants: 1) no two lines in a set have the

same loTag bits and 2) no two lines have the same PPN. If two lines had the same PPN, there

might be a virtual address alias. Because a new line might have the same loTag as an existing

line, and also the same PPN as a different line, two lines might have to be evicted to bring in one

new line.

A slight improvement is to only evict a line with the same PPN if the untranslated part of loTag

is identical. If the untranslated bits are different, the two lines cannot be aliases.

 20

Problem M2.7: Write Buffer for Data Cache

Problem M2.7.A

Little’s law: T = 1 / (20*2) = 1 / 40

 L = 100

 Therefore, N = T*L = 2.5 (entries on average)

Problem M2.7.B

Stall = (Popcount(Wbuf) >= (N – 2)) . (IR == Store)

If you assume that you can figure out the number of store instructions in flight by decoding the

IR in each stage, you will be able to eliminate (-2) in the answer above.

Problem M2.7.C

Stall = (Popcount(WBuf) + Popcount(Pipeline) >N)

If you assume in the previous question that you can figure out the number of store instructions in

flight by decoding the IR in each stage, you may conclude the optimization does not make any

change.

 21

Problem M2.8: Virtual Memory Bits

Problem M2.8.A

The answer depends on certain assumptions in the OS. Here we assume that the OS does

everything that is reasonable to keep the TLB and page table coherent. Thus, any change that

OS software makes is made to both the TLB and the page table.

However, the hardware can change the U bit (whenever a hit occurs this bit will be set) and the

M bit (whenever a page is modified this bit will be set). Thus, these are the only bits that need to

be written back. Note that the system will function correctly even if the U bit is not written back.

In this case the performance would just decrease.

It is also important to note, that if the entry is laid out properly in memory, all the hardware-

modified bits in the TLB can be written back to memory with a single memory write instruction.

Thus it makes no difference whether one or two bits have been modified in the TLB, because

writing back one bit or two bits still requires writing back a whole word.

Problem M2.8.B

An advantage of this scheme is that we do not need the TLB Entry Valid bit in the TLB

anymore. One bit savings is not very much.

A disadvantage of this scheme is that the kernel needs to ensure that all TLB entries always are

valid. During a context switch, all TLB entries would need to be restored (this is time-

consuming). And, in general, whenever a TLB entry is invalidated, it will have to be replaced

with another entry.

Problem M2.8.C

Changes to exceptions: ―Page Table Entry Invalid‖ and ―TLB Miss‖ exceptions are replaced

with exceptions ―TLB Entry Invalid‖ and ―TLB No Match‖

The TLB Entry Invalid exception will be raised if the VPN matches the TLB tag but the

(combined) valid bit is false. When this exception is raised the kernel will need to consult the

page table entry to see if this is a TLB miss (valid bit in page table entry is true), or an access of

an invalid page table entry (valid bit in page table entry is false). Depending on what the cause

of the exception was, it will then have to perform the necessary operations to recover.

The TLB No Match exception will be raised if the VPN does not match any of the TLB tags. If

this exception is raised the kernel will do the same thing it did when a TLB Miss occurred in the

previous design.

 22

Problem M2.8.D

When loading a page table entry into the TLB, the kernel will first check to see if the page table

entry is valid or not. If it is valid, then the entry can safely be loaded into the TLB. If the page

table entry is not valid, then the Page Table Entry Invalid exception handler needs to be called to

create a valid entry before loading it into the TLB. Thus we only keep valid page table entries in

the TLB. If a page table entry is to be invalidated, the TLB entry needs to be invalidated.

Changes to exceptions: Page Table Entry Invalid exception is not raised by the TLB anymore.

Problem M2.8.E

The solution for Problem M2.8.C ends up taking two exceptions, if the PTE has the combined

valid bit set to invalid. The first exception will be the TLB No Match exception, which will call a

handler. The handler will load the corresponding PTE into the TLB and restart the instruction.

The instruction will cause another exception right away, because the valid bit will be set to

invalid. The exception will be the TLB Entry Invalid exception.

The solution for Problem M2.8.D will only take one exception, because the handler for Page

Table Entry Invalid exception will get called by the TLB Miss handler. When the instruction that

caused the exception is restarted, it will execute correctly, because the handler will have created

a valid PTE and put it in the TLB.

Thus Bud Jet’s solution in M2.8.D will be faster.

Problem M2.8.F

Yes, the R bit can be removed in the same way we removed the V bit in 8.D. When loading a

page table entry into the TLB we check if the data page is resident or not. If it is resident, we can

write the entry into the TLB. If it is not resident, we go to the nonresident page handler, loading

the page into memory before loading the entry into the TLB. Thus, we only keep page table

entries of resident pages in the TLB. In order to preserve this invariant, the kernel will have to

invalidate the TLB entry corresponding to any page that gets swapped out. There’s no

performance penalty since the page was going to be loaded in from disk anyway to service the

access that triggered the fault.

Problem M2.8.G

The OS needs to check the permissions before loading the entry into the TLB. If permissions

were violated, then the Protection Fault handler is called. Thus, we only keep page table entries

of pages that the process has permissions to access.

 23

Problem M2.8.H

Whenever a page table entry is loaded into the TLB the U bit in the page table PTE can be set.

Thus, we do not need the U bit in the TLB entry anymore.

Whenever a Write Fault happens (store and W bit is 0) the kernel will check the page table PTE

to see if the W bit is set there. If it is not set the old Write Fault handler will be called. If the W

bit is set, then the kernel will set the M bit in the PTE, set the W bit in the TLB entry to 1, and

restart the store instruction. Thus, the M bit is not needed in the TLB either, and hence, TLB

entries do not need to be written back to the page table anymore.

