
Last updated:
9/12/2009

4

Problem M1.2: CISC and RISC: Comparing ISAs [1 Hours]

This problem requires the knowledge of Handout #2 (CISC ISA—x86jr), Handout #3 (RISC
ISA—MIPS32), and Lectures 2 and 3. Please read these materials before answering the
following questions.

Problem M1.2.A CISC

Let us begin by considering the following C code.

int b; //a global variable

void multiplyByB(int a){
 int i, result;
 for(i = 0; i<b; i++){
 result=result+a;
 }
}

Using gcc and objdump on a Pentium III, we see that the above loop compiles to the following
x86 instruction sequence. (On entry to this code, register %ecx contains i, register %edx contains
result and register %eax contains a. b is stored in memory at location 0x08047580.) A
brief explanation of each instruction in the code is given in Handout #2.

xor %edx,%edx
xor %ecx,%ecx

 loop: cmp 0x08047580,%ecx
 jl L1
 jmp done
 L1: add %eax,%edx
 inc %ecx
 jmp loop
 done: ...

How many bytes is the program? For the above x86 assembly code, how many bytes of
instructions need to be fetched if b = 10? Assuming 32-bit data values, how many bytes of data
memory need to be fetched? Stored?

Problem M1.2.B RISC

Translate each of the x86 instructions in the following table into one or more MIPS32
instructions in Handout #3. Place the L1 and loop labels where appropriate. You should use the
minimum number of instructions needed. Assume that upon entry R2 contains a and R3 contains
i. R1 should be loaded with the value of b from memory location 0x08047580, while R4 should

Last updated:
9/12/2009

5

receive result. If needed, use R5 to hold the condition value and R6, R7, etc., for temporaries.
You should not need to use any floating point registers or instructions in your code.

x86 instruction label MIPS32 instruction sequence
xor %edx,%edx

xor %ecx,%ecx

cmp 0x08049580,%ecx

jl L1

jmp done

add %eax,%edx

inc %ecx

jmp loop

... done: ...

How many bytes is the MIPS32 program using your direct translation? How many bytes of
MIPS32 instructions need to be fetched for b = 10 using your direct translation? How many
bytes of data memory need to be fetched? Stored?

Problem M1.2.C Optimization

To get more practice with MIPS32, optimize the code from part B so that it can be expressed in
fewer instructions. Your solution should contain commented assembly code, a paragraph which
explains your optimizations and a short analysis of the savings you obtained.

Last updated:
9/12/2009

6

Problem M1.3: Addressing Modes on MIPS ISA [1.5 Hours]

Ben Bitdiddle is suspicious of the benefits of complex addressing modes. So he has decided to
investigate it by incrementally removing the addressing modes from our MIPS ISA. Then he
will write programs on the “crippled” MIPS ISAs to see what the programming on these ISAs is
like.

Problem M1.3.A Displacement addressing mode

As a first step, Ben has discontinued supporting the displacement (base+offset) addressing mode,
that is, our MIPS ISA only supports register indirect addressing (without the offset).

Can you still write the same program as before? If so, please translate the following load
instruction into an instruction sequence in the new ISA. If not, explain why.

LW R1, 16(R2)

Problem M1.3.B Register indirect addressing

Now he wants to take a bolder step by completely eliminating the register indirect addressing.
The new load and store instructions will have the following format.

LW R1, imm16 ; R1 <- M[imm16]
SW R1, imm16 ; M[imm16] <- R1

6 5 5 16

Opcode Rs Offset

Can you still write the same program as before? If so, please translate the following load
instruction into an instruction sequence in the new ISA. If not, explain why. (Don’t worry about
branches and jumps for this question.)

LW R1, 16(R2)

Last updated:
9/12/2009

7

Problem M1.3.C Subroutine

Ben is wondering whether we can implement a subroutine using only absolute addressing. He
changes the original ISA such that all the branches and jumps take a 16-bit absolute address (the
2 lower orders bits are 0 for word accesses), and that jr and jalr are not supported any longer.

With the new ISA he decides to rewrite a piece of subroutine code from his old project. Here is
the original C code he has written.

int b; //a global variable

void multiplyByB(int a){
 int i, result;
 for(i=0; i<b; i++){
 result=result+a;
 }
}

The C code above is translated into the following instruction sequence on our original MIPS ISA.
Assume that upon entry, R1 and R2 contain b and a, respectively. R3 is used for i and R4 for
result. By a calling convention, the 16-bit word-aligned return address is passed in R31.

Subroutine: xor R4, R4, R4 ; result = 0

xor R3, R3, R3 ; i = 0
loop: slt R5, R3, R1

bnez R5, L1 ; if (i < b) goto L1
return: jr R31 ; return to the caller
L1: add R4, R4, R2 ; result += a

addi R3, R3, #1 ; i++
j loop

If you can, please rewrite the assembly code so that the subroutine returns without using a jr
instruction (which is a register indirect jump). If you cannot, explain why.

