
Last updated: 
9/12/2009 

 
 
8

 Problem M1.4:  Microprogramming and Bus-Based Architectures [2 Hours] 
 
In this problem, we explore microprogramming by writing microcode for the bus-based 
implementation of the MIPS machine described in Handout #4 (Bus-Based MIPS 
Implementation). Read the instruction fetch microcode in Table H4-3 which has been reproduced 
at the end of this problem (Worksheet M1-1) for the readers’ convenience.  Make sure that you 
understand how different types of data and control transfers are achieved by setting the 
appropriate control signals before attempting this problem. 

In order to further simplify this problem, ignore the busy signal and assume that the memory is 
as fast as the register file. 
 

The final solution should be elegant and efficient (e.g. number of new states needed, amount of 
new hardware added). 

 

Problem M1.4.A Implementing Memory-to-Memory Add
 

For this problem, you are to implement a new memory-memory add operation.  The new 
instruction has the following format. 

ADDm rd, rs, rt 
ADDm performs the following operation. 

M[rd] ← M[rs] + M[rt]   
Fill in Worksheet M1-1 with the microcode for ADDm.  Use don’t cares (*) for fields where it is 
safe to use don’t cares.  Study the hardware description well, and make sure all your 
microinstructions are legal. 

Please comment your code clearly. If the pseudo-code for a line does not fit in the space 
provided, or if you have additional comments, you may write in the margins as long as you do it 
neatly.  Your code should exhibit “clean” behavior and not modify any registers (except rd) in the 
course of executing the instruction. 

Finally, make sure that the instruction fetches the next instruction (by doing a microbranch to 
FETCH0 as discussed above). 



Last updated: 
9/12/2009 

 
 
9

 
Problem M1.4.B Implementing DBNEZ Instruction

 
DBNEZ stands for Decrease Branch Not Equal Zero. This instruction uses the same encoding as 
conditional branch instructions on MIPS. 
 

6 5 5 16 
opcode rs  Offset 

 
DBNEZ decrements register rs by 1, writes the result back to rs and branches to (PC+4)+offset, 
if result in rs is not equal to 0. Offset is sign extended to allow for backward branches. This 
instruction can be used for efficiently implementing loops. 
 
Your task is to fill out Worksheet M1-2 for DBNEZ instruction. You should try to optimize your 
implementation for minimum number of cycles necessary and for maximum number of don’t-
care signals. You do not have to worry about the busy signal. 
 

(Note that the microcode for the fetch stage has changed slightly from the one in Problem 
M1.4.A, to allow for a more efficient implementation of some instructions.)  
 
 

Problem M1.4.C Implementing RETZ Instruction
 
In this question we ask you to implement a special return instruction, return on zero (retz), 
which uses the same encoding as a conditional branch instruction on MIPS. 
 

retz Rs, Rt 
6 5 5 16 

Retz Rs Rt Unused 
 
retz instruction provides fast return from a subroutine call using Rt as the stack pointer. The 
instruction first tests the value of register Rs.  If it is not zero, simply proceed to the next 
instruction at PC+4.  If it is zero, the instruction does the following:  (1) it reads the return 
address from memory at the address in register Rt, (2) increments Rt by 4 and (3) jumps to the 
return address. 
 
Fill out Worksheet M1-3 for the retz instruction. You should try to optimize your 
implementation for minimum number of cycles necessary and for maximum number of don’t-
care signals. You do not have to worry about the busy signal.  You may not need all the lines in 
the table for your solution. 
 
You are allowed to introduce at most one new μBr target (Next State) for J (Jump) or Z (branch-
if-Zero) other than FETCH0. 

 



Last updated: 
9/12/2009 

 
 

10

Problem M1.4.D Implementing CALL Instruction
 

In this question you will implement a new complex CALL instruction, which uses the same 
encoding as a conditional branch instruction on MIPS. 
 

6 5 5 16 
opcode ra  Offset 

 
CALL stores the return address, PC+4, to memory at the address in register ra (i.e., in M[ra]), 
decrements ra by 4, saves the new value back to ra and branches to (PC+4)+offset. This 
instruction provides fast subroutine calls, using register ra as the stack pointer. 
 
Your task is to fill out Worksheet M1-4 for the CALL instruction. You should optimize your 
implementation to execute in the minimum number of cycles and to have the most signals set to 
don’t care. You do not have to worry about the busy signal from memory. You may not need all 
the lines in the table for your solution. 
 

 

 

 

Problem M1.4.E Instruction Execution Times
 
How many cycles does it take to execute the following instructions in the microcoded MIPS 
machine?  Use the states and control points from MIPS-Controller-2 in Lecture 6 and assume 
Memory will not assert its busy signal. 
 

Instruction Cycles 
SUB  R3,R2,R1  
SUBI R2,R1,#4  
SW   R1,0(R2)  
BEQZ R1,label  # (R1 == 0)  
BNEZ R1,label  # (R1 != 0)  
J    label  
JR   R1  
JAL  label  
JALR R1  

 
Which instruction takes the most cycles to execute?  Which instruction takes the fewest cycles to 
execute? 
 

 

Problem M1.4.F Exponentiation



Last updated: 
9/12/2009 

 
 

11

Ben Bitdiddle needs to compute the power function for small numbers.  Realizing there is no 
multiply instruction in the microcoded MIPS machine, he uses the following code to calculate 
the result when an unsigned number m is raised to the nth power, where n is another unsigned 
number. 
 
    if (m == 0) { 
        result = 0; 
    } 
    else { 
        result = 1; 
        i = 0; 
 
        while (i < n) { 
            temp = result; 
            j = 1; 
            while (j < m) { 
                result += temp; 
                j++; 
            } 
            i++; 
        } 
    } 
 
The variables i, j, m, n, temp and result are unsigned 32-bit values. 
 
Write the MIPS assembly that implements Ben’s code.  Use only the MIPS instructions that can 
be executed on the microcoded MIPS machine (ALU, ALUi, LW, SW, J, JAL, JR, JALR, BEQZ 
and BNEZ).  The microcoded MIPS machine does not have branch delay slots.  Use R1 for m, 
R2 for n and R3 for result.  At the end of your code only R3 must have the correct value. The 
values of all other registers do not have to be preserved. 
 
How many MIPS instructions are executed to calculate the power function?  How many cycles 
does it take to calculate the power function?  Again, use the states and control points from MIPS-
Controller-2 and assume Memory will not assert its busy signal. 
  

m, n Instructions Cycles 
0, 1   
1, 0   
2, 2   
3, 4   
M, N   

 
 
 
 
 



Last updated: 
9/12/2009 

 
 

12

 
Problem M1.4.G Microcontroller Jump Logic

Now we will fill in a gap in the microcontroller implementation. In the lecture on 
microprogramming, we did not explain the implementation of the jump logic of the 
microcontroller. Your task in this problem is to implement that logic. Use AND gates, OR gates 
and inverters to implement the combinational logic that realizes the control equations for the 
jump logic of the MIPS microcontroller below. The control equations for the jump logic are 
 
   μPCSrc = Case μJumpTypes 
 
   next   => μPC+1 
   spin   => μPC.busy + (μPC+1).~busy 
   fetch   =>  absolute 
   dispatch  =>  op-group 
   feqz  =>  absolute.zero + (μPC+1).~zero 
   fnez   =>  absolute.~zero + (μPC+1).zero 
 
The selection bits for each input of the μPCSrc mux, as well as the μJumpTypes encoding are 
given in the tables below. Your task is to create combinational logic that translates between 
them, according to the control equations. Assume that the busy and zero signals follow positive 
logic (so they are true if the wire is carrying a 1 and false if the wire is carrying a 0). Your design 
will be judged for its correctness, clarity and organization. These factors are more important than 
the efficiency of your design.  

 

 
 
 
 

 
 
 

 

μPCSrc Selection bits 
μPC+1 00 
μPC 01 
absolute 10 
op-group 11 

Table M1.4-2: μPCSrc Selection bits 

 

 
μJumpTypes Encoding 
next 000 
spin 001 
feqz 110 
fnez 111 
fetch 010 
dispatch 100 

Table M1.4-1: μJumpTypes Encoding 



Last updated: 
9/12/2009 

 
 

13

 
State PseudoCode ld 

IR 
Reg 
Sel 

Reg 
W 

en 
Reg 

ld 
A 

ld 
B 

ALUOp en 
ALU 

ld 
MA 

Mem 
W 

en 
Mem 

Ex 
Sel 

en 
Imm 

μB
r 

Next State 

FETCH0: MA <- PC; 
A <- PC 

0 PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 N * 

 PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

0 * * 0 * * * 0 * * 0 * 0 J FETCH0 

ADDM0:                 

                 

                 

                 

                 

                 

                 

                 

                 

 
Worksheet M1-1 

 
 



Last updated: 
9/12/2009 

 
 

14

 
State PseudoCode ld 

IR 
Reg 
Sel 

Reg 
W 

en 
Reg 

ld 
A 

ld 
B 

ALUOp en 
ALU 

Ld 
MA 

Mem 
W 

en 
Mem 

Ex 
Sel 

en 
Imm 

μB
r 

Next State 

FETCH0: MA <- PC; 
A <- PC 

* PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N * 

 PC <- A+4; 
B <- A+4 

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

* * * 0 * * * 0 * * 0 * 0 J FETCH0 

DBNEZ:                 

                 

                 

                 

                 

                 

 
Worksheet M1-2 



Last updated: 
9/12/2009 

 
 

15

 
State PseudoCode Ld 

IR 
Reg 
Sel 

Reg 
W 

en 
Reg 

ld 
A 

ld 
B 

ALUOp en 
ALU 

Ld 
MA 

Mem 
W 

en 
Mem 

Ex 
Sel 

en 
Im
m 

μBr Next State 

FETCH0: MA <- PC; 
A <- PC 

* PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N * 

 PC <- A+4; 
B <- A+4 

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

* * * 0 * * * 0 * * 0 * 0 J FETCH0 

retz0                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

 
Worksheet M1-3 

 



Last updated: 
9/12/2009 

 
 

16

 
State PseudoCode ld 

IR 
Reg 
Sel 

Reg 
W 

en 
Reg 

ld 
A 

ld 
B 

ALUOp en 
ALU 

Ld 
MA 

Mem 
W 

en 
Mem 

Ex 
Sel 

en 
Imm 

μB
r 

Next State 

FETCH0: MA <- PC; 
A <- PC 

* PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N * 

 PC <- A+4; 
B <- A+4 

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

* * * 0 * * * 0 * * 0 * 0 J FETCH0 

CALL:                 

                 

                 

                 

                 

                 

                 

                 

 
 

Worksheet M1-4 
 


