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Problem M1.4:  Microprogramming and Bus-Based Architectures 
 
 
Problem M1.4.A Memory-to-Memory Add

 
Worksheet M1-1 shows one way to implement ADDm in microcode.   

Note that to maintain “clean” behavior of your microcode, no registers in the register file should change their value 
during execution (unless they are written to).  This does not refer to the registers in the datapath (IR, A, B, MA).  
Thus, using asterisks for the load signals (ldIR, ldA, ldB, and ldMA) is acceptable as long as the correctness of your 
microcode is not affected.  

 

Problem M1.4.B Implementing DBNEZ Instruction
 
The question asked to jump to PC+4+offset. This ignores that the immediate value needs to be shifted left by 2 
before it can be added to PC+4, to make sure we don’t run into alignment problems. We did this because the data 
path given doesn’t really have facilities for shifting. 
 
Worksheet M1-2 shows one way to implement DBNEZ in microcode. 
 
Problem M1.4.C Implementing RETZ Instruction

 
Worksheet M1-3 shows one way to implement RETZ in microcode. 
 

Problem M1.4.D Implementing CALL Instruction
 

Worksheet M1-3 shows one way to implement CALL in microcode. 

 

Problem M1.4.E Instruction Execution Times
 

Instruction Cycles 
SUB  R3,R2,R1 3 + 3 = 6  
SUBI R2,R1,#4 3 + 3 = 6 
SW   R1,0(R2) 3 + 5 = 8 
BNEZ R1,label  # (R1 == 0) 3 + 2 = 5 
BNEZ R1,label  # (R1 != 0) 3 + 5 = 8 
BEQZ R1,label  # (R1 == 0) 3 + 5 = 8 
BEQZ R1,label  # (R1 != 0) 3 + 2 = 5 
J    label 3 + 3 = 6 
JR   R1 3 + 2 = 5 
JAL  label 3 + 4 = 7 
JALR R1 3 + 4 = 7 

 
As discussed in Lecture 6, instruction execution includes the number of cycles needed to fetch the instruction.  The 
lecture notes used 4 cycles for the fetch phase, while Worksheet 1 shows that this phase can actually be 
implemented in 3 cycles —either answer is fine.  The above table uses 3 cycles for the fetch phase.  Overall, SW, 
BNEZ (for a taken branch), and BEQZ (for a taken branch) take the most cycles to execute (8), while BNEZ (for a 
not-taken branch), BEQZ (for a not-taken branch) and JR take the fewest cycles (5).    
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State PseudoCode Ld 

IR 
Reg 
Sel 

Reg 
W 

en 
Reg 

ld 
A 

ld 
B 

ALUOp en 
ALU 

ld 
MA 

Mem 
W 

en 
Mem 

Ex 
Sel 

en 
Imm 

μBr Next State 

FETCH0: MA <- PC; A <- PC 0 PC 0 1 1 * * 0 1 * 0 * 0 N * 
 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N * 
 PC <- A+4; 

dispatch 
0 PC 1 1 * * INC_A_4 1 * * 0 * 0 D * 

. . .                 
NOP0: microbranch 

Back to FETCH0 
0 * * 0 * * * 0 * * 0 * 0 J FETCH0 

                 
ADDm0: MA <- R[rs] 0 rs 0 1 * * * 0 1 * 0 * 0 N * 

 A <- Mem 0 * * 0 1 * * 0 * 0 1 * 0 N * 
 MA <- R[rt] 0 rt 0 1 0 * * 0 1 * 0 * 0 N * 
 B <- Mem  0 * * 0 0 1 * 0 * 0 1 * 0 N * 
 MA <- R[rd] * rd 0 1 0 0 * 0 1 * 0 * 0 N * 
 Mem <- A+B; fetch * * * 0 * * ADD 1 * 1 1 * 0 J FETCH0 
                 
                 
                 

Worksheet M1-1: Implementation of the ADDm instruction 
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State PseudoCode ld 

IR 
Reg 
Sel 

Reg 
W 

en 
Reg 

ld 
A 

ld 
B 

ALUOp en 
ALU 

Ld 
MA 

Mem 
W 

en 
Mem 

Ex 
Sel 

en 
Imm 

μBr Next State 

FETCH0: MA <- PC; 
A <- PC 

* PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N * 

 PC <- A+4; 
B <- A+4 

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

* * * 0 * * * 0 * * 0 * 0 J FETCH0 

DBNEZ: A <- rs 0 rs 0 1 1 0 * 0 * * 0 * 0 N * 

 rs <- A – 1 
μB to FETCH0 if 
zero 

0 rs 1 1 * 0 DEC_A_1 1 * * 0 * 0 Z FETCH0 

 A <- sExt16(IR) * * * 0 1 0 * 0 * * 0 sExt16 1 N * 

 PC <- A+B 
jump to 
FETCH0 

* PC 1 1 * * ADD 1 * * 0 * 0 J FETCH0 

                 

                 

Worksheet M1-2:  Implementation of the DBNEZ Instruction 
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State PseudoCode Ld 
IR 

Reg 
Sel 

Reg 
W 

en 
Reg 

ld 
A 

ld 
B 

ALUOp en 
ALU 

Ld 
MA 

Mem 
W 

en 
Mem 

Ex 
Sel 

en 
Im
m 

μBr Next State 

FETCH0: MA <- PC; 
A <- PC 

* PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N * 

 PC <- A+4; 
B <- A+4 

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

* * * 0 * * * 0 * * 0 * 0 J FETCH0 

retz0 A <- Reg[Rs] 0 Rs 0 1 1 * * 0 * * 0 * 0 N * 
retz1 A <- Reg[Rt] 

MA <- Reg[Rt] 
uBr to retz3 if 
zero 

0 Rt 0 1 1 * COPY_A 0 1 * 0 * 0 Z retz3 

retz2  * * * 0 * * * 0 * * 0 * 0 J FETCH0 
retz3 PC <- MEM 0 PC 1 1 0 * * 0 * 0 1 * 0 N * 
retz4 Reg[Rt] < A+4 * Rt 1 1 * * INC_A_4 1 * * 0 * 0 J FETCH0 

                 

                 

                 

                 

                 

                 

Worksheet M1-3:  Implementation of the RETZ Instruction 
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State PseudoCode ld 
IR 

Reg 
Sel 

Reg 
W 

en 
Reg 

ld 
A 

ld 
B 

ALUOp en 
ALU 

Ld 
MA 

Mem 
W 

en 
Me
m 

Ex 
Sel 

en 
Imm 

μBr Next State 

FETCH0: MA <- PC; 
A <- PC 

* PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N * 

 PC <- A+4; 
B <- A+4 

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

* * * 0 * * * 0 * * 0 * 0 J FETCH0 

CALL: MA <- R[ra]; 
A <- R[ra] 

0 ra 0 1 1 0 * 0 1 * 0 * 0 N * 

 Mem <- B 0 * * 0 0 0 COPY_B 1 * 1 1 * 0 N * 

 R[ra] <- A - 4 0 ra 1 1 * 0 DEC_A_4 1 * * 0 * 0 N * 

 A <- sExt16(IR) * * * 0 1 0 * 0 * * 0 sExt16 1 N * 

 PC <- A+B; 
jump to FETCH0 

* PC 1 1 * * ADD 1 * * 0 * 0 J FETCH0 

                 

                 

                 

Worksheet M1-4:  Implementation of the CALL Instruction 
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Problem M1.4.F Exponentiation
 
In the given code, ‘m’ and ‘n’ are always nonnegative integers. Therefore, we don’t have to worry about the cases 
where ‘i’ is larger than ‘n’ or ‘j’ is larger than ‘m’.  Also, for this problem, 0 raised to any power is just 0, while any 
nonzero value raised to the 0th power is 1.  Note that the pseudo code that is given returns a value of 0 when 0 is 
raised to the 0th power.  However, the actual pow() function in the standard C library returns a value of 1 for this 
case.  We present the solution that implements the pseudo code given in the problem rather than C’s pow() 
function. 
 
# 
# R5: temp, R6: j 
# 
 

ADD  R3, R0, R0  ; put 0 in result 
BEQZ  R1, _END_I  ; if m is 0, end 
ADDI R3, R0, #1  ; put 1 in result 

  BEQZ R2, _END_I  ; if n is 0, the loop is over; we set  
; i equal to n and count down to 0—since 
; R2 does not have to be preserved, we 
; use it for i 

  SUBI R5, R1, #1  ; temp = m – 1 
  BEQZ  R5, _END_I  ; if m is 1, the result will be 1, 

; so end the program 
_START_I: 

ADD R5, R0, R3  ; temp = result 
SUBI R6, R1, #1  ; j = m – 1 (the number of times to  

; execute the second loop) 
_START_J: 

 ADD R3, R3, R5  ; result += temp 
SUBI R6, R6, #1  ; j--  
BNEZ R6, _START_J ; Re-execute loop until j reaches 0 

_END_J: 
SUBI R2, R2, #1  ; i--  
BNEZ R2, _START_I ; Re-execute loop until i reaches 0 

_END_I: 
 
To compute the number of instructions and cycles to execute this code, let us consider subsets of the code. 
 

Code # of instructions # of cycles 
ADD   R3, R0, R0 
BEQZ  R1, _END_I 

2 6×1 + 8×1 = 14 (m = 0) 
6×1 + 5×1 = 11 (m > 0) 

ADDI R3, R0, #1   
 BEQZ R2, _END_I 

2 (if m > 0) 6×1 + 8×1 = 14 (n = 0) 
6×1 + 5×1 = 11 (n > 0) 

 SUBI  R5, R1, #1 
BEQZ  R5, _END_I 

2 (if m > 0 and n > 0) 6×1 + 8×1 = 14 (m =1) 
6×1 + 5×1 = 11 (m > 1) 

_START_I: 
      ADD R5, R0, R3 
      SUBI R6, R1, #1 

 
2n (if m > 1 and n > 0) 

 
(6×2)×n = 12n 

_START_J: 
 ADD R3, R3, R5 

SUBI R6, R6, #1 
      BNEZ R6, _START_J 

 
3n(m-1)  

(if m > 1 and n > 0) 

 
(6×2 + 5×1)×n + (6×2 + 8×1) ×(m-
2)×n = 17n + 20n(m-2) 

_END_J: 
SUBI R2, R2, #1 

      BNEZ R2, _START_I 

 
2n (if m > 1 and n > 0) 

 
(6 + 8)×n – 3 = 14n-3 
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From the above table, we can complete the table given in the problem. 
 

m,n Instructions Cycles 
0, 1 2 14 
1, 0 4 25 
2, 2 20 116 
3, 4 46 282 
M, N (M = 0) 2 14 
M, N (M > 0, N = 0) 4 25 
M, N (M = 1, N > 0) 6 36 
M, N (M > 1, N > 0) 3N(M-1)+4N+6 20N(M-2)+43N+30 

 
 
Problem M1.4.G Microcontroller Jump Logic

 
One way to start designing the microcontroller jump logic is to write out a table of the input signals and the output 
bits. For clarity, the bits that encode the μJumpTypes are labeled A, B and C, from left to right. The output bits are 
labeled H and L, also from left to right. So the table we need to implement is the following (where asterisks are for 
the input bits that we don’t care about).  
 

Input bits Output bits 
A B C Zero Busy H L 
0 0 0 * * 0 0 
0  0 1 * 0 0 0 
0 0 1 * 1 0 1 
0 1 0 * * 1 0 
1 0 0 * * 1 1 
1 1 0 0 * 0 0 
1 1 0 1 * 1 0 
1 1 1 0 * 1 0 
1 1 1 1 * 0 0 

 
Writing out boolean equations for the H and L output bits (by directly recognizing only the lines which have logical 
ones as output) we find 
 

CBAbusyCBAL

zeroABCzeroCABCBACBAH

+⋅=

⋅+⋅++=
 

 
Also, we do not care about the output when the μJump type is 011 or 101, since those are invalid encodings.  Thus 
we can simplify the equations to 
 

BAbusyCBL

zeroACzeroCABABAH

+⋅=

⋅+⋅++=
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Drawing this out as gates we get 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 

 C     

B 

busy 

H

zero 

L


