

10

Problem M1.4: Microprogramming and Bus-Based Architectures

Problem M1.4.A Memory-to-Memory Add

Worksheet M1-1 shows one way to implement ADDm in microcode.

Note that to maintain “clean” behavior of your microcode, no registers in the register file should change their value
during execution (unless they are written to). This does not refer to the registers in the datapath (IR, A, B, MA).
Thus, using asterisks for the load signals (ldIR, ldA, ldB, and ldMA) is acceptable as long as the correctness of your
microcode is not affected.

Problem M1.4.B Implementing DBNEZ Instruction

The question asked to jump to PC+4+offset. This ignores that the immediate value needs to be shifted left by 2
before it can be added to PC+4, to make sure we don’t run into alignment problems. We did this because the data
path given doesn’t really have facilities for shifting.

Worksheet M1-2 shows one way to implement DBNEZ in microcode.

Problem M1.4.C Implementing RETZ Instruction

Worksheet M1-3 shows one way to implement RETZ in microcode.

Problem M1.4.D Implementing CALL Instruction

Worksheet M1-3 shows one way to implement CALL in microcode.

Problem M1.4.E Instruction Execution Times

Instruction Cycles
SUB R3,R2,R1 3 + 3 = 6
SUBI R2,R1,#4 3 + 3 = 6
SW R1,0(R2) 3 + 5 = 8
BNEZ R1,label # (R1 == 0) 3 + 2 = 5
BNEZ R1,label # (R1 != 0) 3 + 5 = 8
BEQZ R1,label # (R1 == 0) 3 + 5 = 8
BEQZ R1,label # (R1 != 0) 3 + 2 = 5
J label 3 + 3 = 6
JR R1 3 + 2 = 5
JAL label 3 + 4 = 7
JALR R1 3 + 4 = 7

As discussed in Lecture 6, instruction execution includes the number of cycles needed to fetch the instruction. The
lecture notes used 4 cycles for the fetch phase, while Worksheet 1 shows that this phase can actually be
implemented in 3 cycles —either answer is fine. The above table uses 3 cycles for the fetch phase. Overall, SW,
BNEZ (for a taken branch), and BEQZ (for a taken branch) take the most cycles to execute (8), while BNEZ (for a
not-taken branch), BEQZ (for a not-taken branch) and JR take the fewest cycles (5).

11

State PseudoCode Ld

IR
Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

ld
MA

Mem
W

en
Mem

Ex
Sel

en
Imm

μBr Next State

FETCH0: MA <- PC; A <- PC 0 PC 0 1 1 * * 0 1 * 0 * 0 N *
 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *
 PC <- A+4;

dispatch
0 PC 1 1 * * INC_A_4 1 * * 0 * 0 D *

. . .
NOP0: microbranch

Back to FETCH0
0 * * 0 * * * 0 * * 0 * 0 J FETCH0

ADDm0: MA <- R[rs] 0 rs 0 1 * * * 0 1 * 0 * 0 N *

 A <- Mem 0 * * 0 1 * * 0 * 0 1 * 0 N *
 MA <- R[rt] 0 rt 0 1 0 * * 0 1 * 0 * 0 N *
 B <- Mem 0 * * 0 0 1 * 0 * 0 1 * 0 N *
 MA <- R[rd] * rd 0 1 0 0 * 0 1 * 0 * 0 N *
 Mem <- A+B; fetch * * * 0 * * ADD 1 * 1 1 * 0 J FETCH0

Worksheet M1-1: Implementation of the ADDm instruction

12

State PseudoCode ld

IR
Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

Ld
MA

Mem
W

en
Mem

Ex
Sel

en
Imm

μBr Next State

FETCH0: MA <- PC;
A <- PC

* PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *

 PC <- A+4;
B <- A+4

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

* * * 0 * * * 0 * * 0 * 0 J FETCH0

DBNEZ: A <- rs 0 rs 0 1 1 0 * 0 * * 0 * 0 N *

 rs <- A – 1
μB to FETCH0 if
zero

0 rs 1 1 * 0 DEC_A_1 1 * * 0 * 0 Z FETCH0

 A <- sExt16(IR) * * * 0 1 0 * 0 * * 0 sExt16 1 N *

 PC <- A+B
jump to
FETCH0

* PC 1 1 * * ADD 1 * * 0 * 0 J FETCH0

Worksheet M1-2: Implementation of the DBNEZ Instruction

13

State PseudoCode Ld
IR

Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

Ld
MA

Mem
W

en
Mem

Ex
Sel

en
Im
m

μBr Next State

FETCH0: MA <- PC;
A <- PC

* PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *

 PC <- A+4;
B <- A+4

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

* * * 0 * * * 0 * * 0 * 0 J FETCH0

retz0 A <- Reg[Rs] 0 Rs 0 1 1 * * 0 * * 0 * 0 N *
retz1 A <- Reg[Rt]

MA <- Reg[Rt]
uBr to retz3 if
zero

0 Rt 0 1 1 * COPY_A 0 1 * 0 * 0 Z retz3

retz2 * * * 0 * * * 0 * * 0 * 0 J FETCH0
retz3 PC <- MEM 0 PC 1 1 0 * * 0 * 0 1 * 0 N *
retz4 Reg[Rt] < A+4 * Rt 1 1 * * INC_A_4 1 * * 0 * 0 J FETCH0

Worksheet M1-3: Implementation of the RETZ Instruction

14

State PseudoCode ld
IR

Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

Ld
MA

Mem
W

en
Me
m

Ex
Sel

en
Imm

μBr Next State

FETCH0: MA <- PC;
A <- PC

* PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *

 PC <- A+4;
B <- A+4

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

* * * 0 * * * 0 * * 0 * 0 J FETCH0

CALL: MA <- R[ra];
A <- R[ra]

0 ra 0 1 1 0 * 0 1 * 0 * 0 N *

 Mem <- B 0 * * 0 0 0 COPY_B 1 * 1 1 * 0 N *

 R[ra] <- A - 4 0 ra 1 1 * 0 DEC_A_4 1 * * 0 * 0 N *

 A <- sExt16(IR) * * * 0 1 0 * 0 * * 0 sExt16 1 N *

 PC <- A+B;
jump to FETCH0

* PC 1 1 * * ADD 1 * * 0 * 0 J FETCH0

Worksheet M1-4: Implementation of the CALL Instruction

15

Problem M1.4.F Exponentiation

In the given code, ‘m’ and ‘n’ are always nonnegative integers. Therefore, we don’t have to worry about the cases
where ‘i’ is larger than ‘n’ or ‘j’ is larger than ‘m’. Also, for this problem, 0 raised to any power is just 0, while any
nonzero value raised to the 0th power is 1. Note that the pseudo code that is given returns a value of 0 when 0 is
raised to the 0th power. However, the actual pow() function in the standard C library returns a value of 1 for this
case. We present the solution that implements the pseudo code given in the problem rather than C’s pow()
function.

R5: temp, R6: j

ADD R3, R0, R0 ; put 0 in result
BEQZ R1, _END_I ; if m is 0, end
ADDI R3, R0, #1 ; put 1 in result

 BEQZ R2, _END_I ; if n is 0, the loop is over; we set
; i equal to n and count down to 0—since
; R2 does not have to be preserved, we
; use it for i

 SUBI R5, R1, #1 ; temp = m – 1
 BEQZ R5, _END_I ; if m is 1, the result will be 1,

; so end the program
_START_I:

ADD R5, R0, R3 ; temp = result
SUBI R6, R1, #1 ; j = m – 1 (the number of times to

; execute the second loop)
_START_J:

 ADD R3, R3, R5 ; result += temp
SUBI R6, R6, #1 ; j--
BNEZ R6, _START_J ; Re-execute loop until j reaches 0

_END_J:
SUBI R2, R2, #1 ; i--
BNEZ R2, _START_I ; Re-execute loop until i reaches 0

_END_I:

To compute the number of instructions and cycles to execute this code, let us consider subsets of the code.

Code # of instructions # of cycles
ADD R3, R0, R0
BEQZ R1, _END_I

2 6×1 + 8×1 = 14 (m = 0)
6×1 + 5×1 = 11 (m > 0)

ADDI R3, R0, #1
 BEQZ R2, _END_I

2 (if m > 0) 6×1 + 8×1 = 14 (n = 0)
6×1 + 5×1 = 11 (n > 0)

 SUBI R5, R1, #1
BEQZ R5, _END_I

2 (if m > 0 and n > 0) 6×1 + 8×1 = 14 (m =1)
6×1 + 5×1 = 11 (m > 1)

_START_I:
 ADD R5, R0, R3
 SUBI R6, R1, #1

2n (if m > 1 and n > 0)

(6×2)×n = 12n

_START_J:
 ADD R3, R3, R5

SUBI R6, R6, #1
 BNEZ R6, _START_J

3n(m-1)

(if m > 1 and n > 0)

(6×2 + 5×1)×n + (6×2 + 8×1) ×(m-
2)×n = 17n + 20n(m-2)

_END_J:
SUBI R2, R2, #1

 BNEZ R2, _START_I

2n (if m > 1 and n > 0)

(6 + 8)×n – 3 = 14n-3

16

From the above table, we can complete the table given in the problem.

m,n Instructions Cycles
0, 1 2 14
1, 0 4 25
2, 2 20 116
3, 4 46 282
M, N (M = 0) 2 14
M, N (M > 0, N = 0) 4 25
M, N (M = 1, N > 0) 6 36
M, N (M > 1, N > 0) 3N(M-1)+4N+6 20N(M-2)+43N+30

Problem M1.4.G Microcontroller Jump Logic

One way to start designing the microcontroller jump logic is to write out a table of the input signals and the output
bits. For clarity, the bits that encode the μJumpTypes are labeled A, B and C, from left to right. The output bits are
labeled H and L, also from left to right. So the table we need to implement is the following (where asterisks are for
the input bits that we don’t care about).

Input bits Output bits
A B C Zero Busy H L
0 0 0 * * 0 0
0 0 1 * 0 0 0
0 0 1 * 1 0 1
0 1 0 * * 1 0
1 0 0 * * 1 1
1 1 0 0 * 0 0
1 1 0 1 * 1 0
1 1 1 0 * 1 0
1 1 1 1 * 0 0

Writing out boolean equations for the H and L output bits (by directly recognizing only the lines which have logical
ones as output) we find

CBAbusyCBAL

zeroABCzeroCABCBACBAH

+⋅=

⋅+⋅++=

Also, we do not care about the output when the μJump type is 011 or 101, since those are invalid encodings. Thus
we can simplify the equations to

BAbusyCBL

zeroACzeroCABABAH

+⋅=

⋅+⋅++=

17

Drawing this out as gates we get

A

 C

B

busy

H

zero

L

