
Problem M2.16: Complex Pipelining Dependencies

Consider the following instruction sequence. An equivalent sequence of C-like pseudocode is
also provided.

I1: L.D F1, 0 (R1) ; F1 = *r1;
I2: MUL.D F2, F0, F2 ; F2 = F0*F2;
I3: ADD.D F1, F2, F2 ; F1 = F2 + F2;
I4: L.D F2, 0 (R2) ; F2 = *r2;
I5: ADD.D F3, F1, F2 ; F3 = F1 + F2;
I6: S.D F3, 0 (R3) ; *r3 = F3;
……

Fill out the table below to identify all Read-After-Write (RAW), Write-After-Read (WAR), and
Write-After-Write (WAW) dependencies in the above sequence. Do not worry about memory
dependencies for this question. The dependency between I2 and I3 is already filled in for you.

 Earlier (Older) Instruction
I1 I2 I3 I4 I5 I6

I1 -

I2 -
I3 RAW -
I4 -
I5 -
I6 -

Current
Instruction

Problem M2.17: Scoreboard

Ben Bitdiddle is adding a floating-point unit to the basic MIPS pipeline. He has patterned the
design after the IBM 360/91’s floating-point unit. His FPU has one adder, one multiplier, and
one load/store unit. The adder has a four-cycle latency and is fully pipelined. The multiplier has
a fifteen-cycle latency and is fully pipelined. Assume that loads and stores take 1 cycle (plus one
cycle for the write-back stage for loads) and that we have perfect branch prediction.

There are 4 floating-point registers, F0-F3. These are separate from the integer registers. There
is a single write-back port to each register file. In the case of a write-back conflict, the older
instruction writes back first. Floating-point instructions (and loads writing floating point
registers) must spend one cycle in the write-back stage before their result can be used. Integer
results are available for bypass the next cycle after issue.

Ben’s favorite benchmark is this DAXPY loop central to Gaussian elimination (Hennessy and
Patterson, 291). The following code implements the operation Y=aX+Y for a vector of length
100. Initially R1 contains the base address for X, R2 contains the base address for Y, and F0
contains a.

loop:
I1 L.D F2, 0(R1) ;load X(i)
I2 MUL.D F1, F2, F0 ;multiply a*X(i)
I3 L.D F3, 0(R2) ;load Y(i)
I4 ADD.D F3, F1, F3 ;add a*X(i)+Y(i)
I5 S.D F3, 0(R2) ;store Y(i)
I6 DADDUI R1, R1, 8 ;increment X index
I7 DADDUI R2, R2, 8 ;increment Y index
I8 DSGTUI R3, R1, 800 ;test if done
I9 BEQZ R3, loop ;loop if not done

Problem M2.17.A
Fill in the scoreboard in table M2.17-1 to simulate the execution of one iteration of the loop for
inorder issue using a scoreboard (refer to the lecture slide). Keep in mind that, in this scheme, no
instruction is issued that has a WAW hazard with any previous instruction that has not written
back (as mentioned in the lecture slides). Recall the WB stage is only relevant for FP instructions
(integer instructions can forward results). You may use ellipses in the table to represent the
passage of time (to compress repetitive lines).

In steady state, how many cycles does each iteration of the loop take? What is the bottleneck?

Page 40 of 51

Functional Unit Status Instr.
Issued

Time
(cycles)

Int Load (1) Adder
(4)

Multiplier
(15) WB

Floating Point
Registers Reserved

for Writes

I1 0 F2 F2
 1 F2 F2

I2 2 F1 F1

Table M2.14-1

Page 40 of 51

Table M2.14-1

Page 40 of 51

 Page 43 of 51

Problem M2.15: Out-of-Order Scheduling [? Hours]

This problem deals with an out-of-order single-issue processor that is based on the basic MIPS
pipeline and has floating-point units. The FPU has one adder, one multiplier, and one load/store
unit. The adder has a two-cycle latency and is fully pipelined. The multiplier has a ten-cycle
latency and is fully pipelined. Assume that loads and stores take 1 cycle (plus one cycle for
write-back for loads).

There are 4 floating-point registers, F0-F3. These are separate from the integer registers. There
is a single write-back port to each register file. In the case of a write-back conflict, the older
instruction writes back first. Floating-point instructions (including loads writing floating point
registers) must spend one cycle in the write-back stage before their result can be used. Integer
results are available for bypass the next cycle after issue.

To maximize number of instructions that can be in the pipeline, register renaming is used. The
decode stage can add up to one instruction per cycle to the re-order buffer (ROB).

The instructions are committed in order and only one instruction may be committed per cycle.
The earliest time an instruction can be committed is one cycle after write back.

For the following questions, we will evaluate the performance of the code segment in Figure
M2.15-A.

I1 L.D F1, 5(R2)
I2 MUL.D F2, F1, F0
I3 ADD.D F3, F2, F0
I4 ADDI R2, R2, 8
I5 L.D F1, 5(R2)
I6 MUL.D F2, F1, F1
I7 ADD.D F2, F2, F3

Figure M2.15-A

= Page 44 of 51

Problem M2.15.A

For this question, we will consider an ideal case where we have unlimited hardware resources for
renaming registers. Assume that you have an infinitely large ROB.

Your job is to complete Table M2.15-1. Fill in the cycle numbers when each instruction enters
the ROB, issues, writes back, and commits. Also fill in the new register names for each
instruction, where applicable. Since we have an infinite supply of register names, you should use
a new register name each time a register is written (T0, T1, T2, … etc). Keep in mind that after a
register has been renamed, subsequent instructions that refer to that register need to refer instead
to the new register name.

Time
Decode

ROB
Issued WB Committed OP Dest Src1 Src2

I1 -1 0 1 2 L.D T0 R2 -
I2 0 2 12 13 MUL.D T1 T0 F0
I3 1 ADD.D
I4 ADDI -
I5 L.D -
I6 MUL.D
I7 ADD.D

Table M2.15-1

Problem M2.15.B

For this question, assume that you have a two-entry ROB. An ROB entry can be reused one
cycle after the instruction using it commits.

Your job is to complete Table M2.15-2. Fill in the cycle numbers when each instruction enters
the ROB, issues, writes back, and commits. Also fill in the new register names for each
instruction, where applicable.

Time
Decode

ROB
Issued WB Committed OP Dest Src1 Src2

I1 -1 0 1 2 L.D T0 R2 -
I2 0 2 12 13 MUL.D T1 T0 F0
I3 3 ADD.D
I4 ADDI -
I5 L.D -
I6 MUL.D
I7 ADD.D

Table M2.15-2

 Page 45 of 51

Problem M2.16: Superscalar Processor [? Hours]

Consider the out-of-order, superscalar CPU shown in the diagram. It has the following features.

o Four fully-pipelined functional units: ALU, MEM, FADD, FMUL
o Instruction Fetch and Decode Unit that renames and sends 2 instructions per cycle to the

ROB (assume perfect branch prediction and no cache misses)
o An unbounded length Reorder Buffer that can perform the following operations on every

cycle.
o Accept two instructions from the Instruction Fetch and Decode Unit
o Dispatch an instruction to each functional unit including Data Memory
o Let Write-back update an unlimited number of entries
o Commit up to 2 instructions in-order

o There is no bypassing or short circuiting. For example, data entering the ROB cannot be
passed on to the functional units or committed in the same cycle.

.

Instruction
Queue

ROB

(infinite)

2 Instr per
cycle

ALU

FADD

+ Data
Mem

FMUL

Regfile

Issue as
many as
possible

Writeback as many
as possible

Commit at
most 2 instr

per cycle

 Page 46 of 51

Now consider the execution of the following program on this machine using:

I1 loop: LD F2, 0(R2)
I2 LD F3, 0(R3)
I3 FMUL F4, F2, F3
I4 LD F2, 4(R2)
I5 LD F3, 4(R3)
I6 FMUL F5, F2, F3
I7 FMUL F6, F4, F5
I8 FADD F4, F4, F5
I9 FMUL F6, F4, F5
I10 FADD F1, F1, F6
I11 ADD R2, R2, 8
I12 ADD R3, R3, 8
I13 ADD R4, R4, -1
I14 BNEZ R4, loop

Problem M2.16.A

Fill in the renaming tags in the following two tables for the execution of instructions I1 to I10.
Tags should not be reused.

Instr # Instruction Dest Src1 Src2
I1 LD F2, 0(R2) T1 R2 0
I2 LD F3, 0(R3) T2 R3 0
I3 FMUL F4, F2, F3
I4 LD F2, 4(R2) R2 4
I5 LD F3, 4(R3) R3 4
I6 FMUL F5, F2, F3
I7 FMUL F6, F4, F5
I8 FADD F4, F4, F5
I9 FMUL F6, F4, F5
I10 FADD F1, F1, F6 F1

Renaming table

 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10
R2
R3
F1
F2 T1
F3 T2
F4
F5
F6

 Page 47 of 51

Problem M2.16.B

Consider the execution of one iteration of the loop (I1 to I14). In the following diagram draw the
data dependencies between the instructions after register renaming

Problem M2.16.C

The attached table is a data structure to record the times when some activity takes place in the
ROB. For example, one column records the time when an instruction enters ROB, while the last
two columns record, respectively, the time when an instruction is dispatched to the FU’s and the
time when results are written back to the ROB. This data structure has been designed to test your
understanding of how a Superscalar machine functions.

Fill in the blanks in the last two columns up to slot T13 (you may use the source columns for
book keeping).

A

rg
um

en
t 1

A

rg
um

en
t 2

ds

t

Sl
ot

In
st

ru
ct

io
n

C
yc

le

in
st

ru
ct

io
n

en
te

re
d

R
O

B

sr
c1

cy

cl
e

av
ai

la
bl

e
Sr

c2

cy
cl

e
av

ai
la

bl
e

ds
t r

eg
C

yc
le

di

sp
at

ch
ed

C
yc

le

w
ri

tte
n

ba
ck

 to

R
O

B

T1

L
D

F
2
,

0
(
R
2
)

1
C

1

R
2

1
F2

2

6
T2

L
D

F
3
,

0
(
R
3
)

1
C

1

R
3

1
F3

3

7
T3

F
M
U
L

F
4
,

F
2
,

F
3

2

F3

7

F4

T4

L
D

F
2
,

4
(
R
2
)

2
C

2

R
2

F2

T5

L
D

F
3
,

4
(
R
3
)

3
C

3

R
3

F3

T6

F
M
U
L

F
5
,

F
2
,

F
3

3

F5

T7

F
M
U
L

F
6
,

F
4
,

F
5

4

F6

T8

F
A
D
D

F
4
,

F
4
,

F
5

4

F4

T9

F
M
U
L

F
6
,

F
4
,

F
5

5

F6

T1

0
F
A
D
D

F
1
,

F
1
,

F
6

5

F1

T1

1
A
D
D

R
2
,

R
2
,

8

6
R

2
6

C

6
R

2

T1

2
A
D
D

R
3
,

R
3
,

8

6
R

3
6

C

6
R

3

T1

3
A
D
D

R
4
,

R
4
,

-
1

7
R

4
7

C

7
R

4

T1

4
B
N
E
Z

R
4
,

l
o
o
p

7

C

Lo

op

T1

5
L
D

F
2
,

0
(
R
2
)

8
C

8

F2

10

14

T1
6

L
D

F
3
,

0
(
R
3
)

8
C

8

F3

11

15

T1
7

F
M
U
L

F
4
,

F
2
,

F
3

9

F4

T1

8
L
D

F
2
,

4
(
R
2
)

9
C

9

F2

T1
9

L
D

F
3
,

4
(
R
3
)

10

C

10

F3

T2
0

F
M
U
L

F
5
,

F
2
,

F
3

10

F5

T2
1

F
M
U
L

F
6
,

F
4
,

F
5

11

F6

T2
2

F
A
D
D

F
4
,

F
4
,

F
5

11

F4

T2
3

F
M
U
L

F
6
,

F
4
,

F
5

12

F6

T2
4

F
A
D
D

F
1
,

F
1
,

F
6

12

F1

T2
5

A
D
D

R
2
,

R
2
,

8

13

C

13

R
2

T2
6

A
D
D

R
3
,

R
3
,

8

13

C

13

R
3

T2
7

A
D
D

R
4
,

R
4
,

-
1

14

C

14

R
4

T2
8

B
N
E
Z

R
4
,

l
o
o
p

14

C

Lo
op

Page 49 of 51

Problem M2.16.D

Identify the instructions along the longest latency path in completing this iteration of the loop (up
to instruction 13). Suppose we consider an instruction to have executed when its result is
available in the ROB. How many cycles does this iteration take to execute?

Problem M2.16.E

Do you expect the same behavior, i.e., the same dependencies and the same number of cycles,
for the next iteration? (You may use the slots from T15 onwards in the attached diagram for
bookkeeping to answer this question). Please give a simple reason why the behavior may repeat,
or identify a resource bottleneck or dependency that may preclude the repetition of the behavior.

Problem M2.16.F

Can you improve the performance by adding at most one additional memory port and an FP
Multiplier? Explain briefly.

Yes / No

Problem M2.16.G

What is the minimum number of cycles needed to execute a typical iteration of this loop if we
keep the same latencies for all the units but are allowed to use as many FUs and memory ports
and are allowed to fetch and commit as many instructions as we want.

Page 50 of 51

 Problem M2.17: Register Renaming and Static vs. Dynamic Scheduling [? Hours]

The following MIPS code calculates the floating-point expression E = A * B + C * D, where the
addresses of A, B, C, D, and E are stored in R1, R2, R3, R4, and R5, respectively:

L.S F0, 0(R1)
L.S F1, 0(R2)
MUL.S F0, F0, F1
L.S F2, 0(R3)
L.S F3, 0(R4)
MUL.S F2, F2, F3
ADD.S F0, F0, F2
S.S F0, 0(R5)

Problem M2.17.A Simple Pipeline

Calculate the number of cycles this code sequence would take to execute (i.e., the number of
cycles between the issue of the first load instruction and the issue of the final store, inclusive) on
a simple in-order pipelined machine that has no bypassing. The datapath includes a load/store
unit, a floating-point adder, and a floating-point multiplier. Assume that loads have a two-cycle
latency, floating-point multiplication has a four-cycle latency and floating-point addition has a
two-cycle latency. Write-back for floating-point registers takes one cycle. Also assume that all
functional units are fully pipelined and ignore any write-back conflicts. Give the number of
cycles between the issue of the first load instruction and the issue of the final store, inclusive.

Problem M2.17.B Static Scheduling

Reorder the instructions in the code sequence to minimize the execution time. Show the new
instruction sequence and give the number of cycles this sequence takes to execute on the simple
in-order pipeline.

Problem M2.17.C Fewer Registers

Rewrite the code sequence, but now using only two floating-point registers. Optimize for
minimum run-time. You may need to use temporary memory locations to hold intermediate
values (this process is called register-spilling when done by a compiler). List the code sequence
and give the number of cycles it takes to execute.

Page 51 of 53

Problem M2.17.D Register renaming and dynamic scheduling

Simulate the effect of running the original code on a single-issue machine with register renaming
and out-of-order issue. Ignore structural hazards apart from the single instruction decode per
cycle. Show how the code is executed and give the number of cycles required. Compare it with
results from the optimized execution in M2.17.B.

Problem M2.17.E Effect of Register Spills

Now simulate the effect of running the code you wrote in M2.17.C on the single-issue machine
with register renaming and out-of-order issue from M2.17.D. Compare the number of cycles
required to execute the program. What are the differences in the program and/or architecture that
change the number of cycles required to execute the program? You should assume that all load
instructions before a store must issue before the store is issued, and load instructions after a store
must wait for the store to issue.

Problem M3.1: Register Renaming Schemes [? Hours]

This problem requires the knowledge of Handout #10 (Out-of-Order Execution with ROB) and
Lectures 11 and 12. Please, read these materials before answering the following questions.

Future File Scheme
In order to eliminate the step of reading operands from the reorder buffer in the decode stage, we
can insert a second register file into the processor shown in Figure M3.1-B, called the future file.
The future file contains the most up-to-date speculatively-executed value for a register, while the
primary register file contains committed values. Each entry in the future file has a valid bit. A
summary of the operations is given below.

Figure M3.1-B

Only the decode and write-back stages have to change from the baseline implementation in
Handout # 10 to implement the future file, as described below.
Decode: The Rename table, the register file, and the future file are read simultaneously. If the
rename table has the valid bit set for an operand, then the value has not yet been produced and
the tag will be used. Otherwise, if the future file has a valid bit set for its entry, then use the
future file value. Otherwise, use the register file value. The instruction is assigned a slot in the
ROB (the ROB index is this instruction’s tag). If the instruction writes a register, its tag is
written to the destination register entry in the rename table.
Write-Back: When an instruction completes execution, the result, if any, will be written back to
the data field in the reorder buffer and the pd bit will be set. Additionally, any dependent
instructions in the reorder buffer will receive the value. If the tag in the rename table for this
register matches the tag of the result, the future file is written with the value and the valid bit on
the rename table entry is cleared.

Register
File

Reorder
buffer

Load
Unit

FU FU FU Store
Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table

R1 ti v
R2

tag
valid bit

t1
t2
.
.
tn

R1
R2
R3

:

Next to
commit

Next
available

: :

R3
R4

Future
File

valid bit

R1
R2
R3

:

Register
File

Reorder
buffer

Load
Unit

FU FU FU Store
Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 pd dest dataIns# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table

R1 ti v
R2

tag
valid bit

t1
t2
.
.
tn

R1
R2
R3

:

Next to
commit

Next
available

: :

R3
R4

Future
File

valid bit

R1
R2
R3

:

Problem M3.1.A Finding Operands: Original ROB scheme

Consider the original ROB scheme in Handout # 10, and suppose the processor state is as given
in Figure H10-A. Assume that the following three instructions enter the ROB simultaneously in
a single cycle, and that no instruction commits or completes execution in this cycle. In the table
below, write the contents of each instruction’s source operand entries (either a register value or a
tag t1, t2, etc., for both Src1 and Src2) and whether that entry came from the register file, the
reorder buffer, the rename table or the instruction itself.

Instruction Src1 value

Regfile, ROB,
rename table,
or instruction? Src2 value

Regfile, ROB,
rename table, or
instruction?

sub r5,r1,r3
addi r6,r2,4
andi r7,r4,3

Problem M3.1.B Finding Operands: Future File Scheme

In the future file scheme, explain why an instruction entering the ROB will never need to fetch
either of its operands from the ROB.

Problem M3.1.C Future File Operation

Describe a situation in which an instruction result is written to the ROB but might not be written
to the future file. Provide a simple code sequence to illustrate your answer.

Problem M3.1.D Handling Branch Mispredictions

In the original ROB scheme, a branch misprediction caused all instructions after the branch to be
flushed from the ROB. Consider the following instruction sequence.

ADD R1, R2, R3
SUB R4, R5, R6
BEQ R7, R8, L1 # Taken branch.
XOR R9, R10, R11
ADD R1, R5, R9

Assume that there are no delay slots in the ISA and that the branch is incorrectly predicted not-
taken. In the future file scheme, if all of the above instructions complete execution before the
branch misprediction is detected, explain why simply flushing the mispredicted instructions is
not sufficient for correct execution. What should be done instead?

Problem M3.5: Fetch Pipelines [? Hours]

Ben is designing a deeply-pipelined, single-issue, in-order MIPS processor. The first half of his
pipeline is as follows:

PC PC Generation
F1
F2 ICache Access

D1
D2 Instruction Decode

RN Rename/Reorder
RF Register File Read
EX Integer Execute

There are no branch delay slots and currently there is no branch prediction hardware
(instructions are fetched sequentially unless the PC is redirected by a later pipeline stage).
Subroutine calls use JAL/JALR (jump and link). These instructions write the return address
(PC+4) into the link register (r31). Subroutine returns use JR r31. Assume that PC
Generation takes a whole cycle and that you cannot bypass anything into the end of the PC
Generation phase.

Problem M3.5.A Pipelining Subroutine Returns

Immediately after what pipeline stage does the processor know that it is executing a subroutine
return instruction? Immediately after what pipeline stage does the processor know the
subroutine return address? How many pipeline bubbles are required when executing a
subroutine return?

Problem M3.5.B Adding a BTB

Louis Reasoner suggests adding a BTB to speed up subroutine returns. Why doesn’t a standard
BTB work well for predicting subroutine returns?

Problem M3.5.C Adding a Return Stack

Instead of a BTB, Ben decides to add a return stack to his processor pipeline. This return stack
records the return addresses of the N most recent subroutine calls. This return stack takes no
time to access (it is always presenting a return address).
Explain how this return stack can speed up subroutine returns. Describe when and in which
pipeline stages return addresses are pushed on and popped off the stack.

Problem M3.5.D Return Stack Operation

Fill in the pipeline diagram below corresponding to the execution of the following code on the
return stack machine:

A: JAL B
A+1:
A+2:
…

B: JR r31
B+1:
B+2:
…

Make sure to indicate the instruction that is being executed. The first two instructions are
illustrated below. The crossed out stages indicate that the instruction was killed during those
cycles.

instruction time→
A PC F1 F2 D1 D2 RN RF EX

A+1 PC F1 F2 D1 D2 RN RF EX

Problem M3.5.E Handling Return Address Mispredicts

If the return address prediction is wrong, how is this detected? How does the processor recover,
and how many cycles are lost (relative to a correct prediction)?

Problem M3.5.F Further Improving Performance

Describe a hardware structure that Ben could add, in addition to the return stack, to improve the
performance of return instructions so that there is usually only a one-cycle pipeline bubble when
executing subroutine returns (assume that the structure takes a full cycle to access).

 Problem M3.6: Managing Out-of-order Execution [? Hours]

This problem investigates the operation of a superscalar processor with branch prediction,
register renaming, and out-of-order execution. The processor holds all data values in a physical
register file, and uses a rename table to map from architectural to physical register names. A
free list is used to track which physical registers are available for use. A reorder buffer (ROB)
contains the bookkeeping information for managing the out-of-order execution (but, it does not
contain any register data values). These components operate as described in Lecture 11.

When a branch instruction is encountered, the processor predicts the outcome and takes a
snapshot of the rename table. If a misprediction is detected when the branch instruction later
executes, the processor recovers by flushing the incorrect instructions from the ROB, rolling
back the “next available” pointer, updating the free list, and restoring the earlier rename table
snapshot.

We will investigate the execution of the following code sequence (assume that there is no
branch-delay slot):

 loop: lw r1, 0(r2) # load r1 from address in r2
 addi r2, r2, 4 # increment r2 pointer
 beqz r1, skip # branch to “skip” if r1 is 0
 addi r3, r3, 1 # increment r3
 skip: bne r2, r4, loop # loop until r2 equals r4

The diagram for Question M3.6.A on the next page shows the state of the processor during the
execution of the given code sequence. An instance of each instruction in the loop has been
issued into the ROB (the beqz instruction has been predicted not-taken), but none of the
instructions have begun execution. In the diagram, old values which are no longer valid are
shown in the following format: . The rename table snapshots and other bookkeeping
information for branch misprediction recovery are not shown.

Problem M3.6.A

Assume that the following events occur in order (though not necessarily in a single cycle):

Step 1. The first three instructions from the next loop iteration (lw, addi, beqz) are written
into the ROB (note that the bne instruction has been predicted taken).

Step 2. All instructions which are ready after Step 1 execute, write their result to the physical
register file, and update the ROB. Note that this step only occurs once.

Step 3. As many instructions as possible commit.
Update the diagram below to reflect the processor state after these events have occurred.
Cross out any entries which are no longer valid. Note that the “ex” field should be marked
when an instruction executes, and the “use” field should be cleared when it commits. Be sure to
update the “next to commit” and “next available” pointers. If the load executes, assume that
the data value it retrieves is 0.

Rename Table
R1 P4
R2 P5
R3 P6
R4 P0

Physical Regs
P0 8016 p
P1 6823 p
P2 8000 p
P3 7 p
P4
P5
P6
P7
P8
P9

Free List

 P7
 P8
 P9

 …

Reorder Buffer (ROB)
 use ex op p1 PR1 p2 PR2 Rd LPRd PRd

x lw p P2 r1 P1 P4 next to
commit

→
x addi p P2 r2 P2 P5

 x beqz P4
 x addi p P3 r3 P3 P6

x bne P5 p P0 next
available

→

Problem M3.6.B

Assume that after the events from Question M3.6.A have occurred, the following events occur
in order:

Step 1. The processor detects that the beqz instruction has mispredicted the branch outcome,
and recovery action is taken to repair the processor state.

Step 2. The beqz instruction commits.
Step 3. The correct next instruction is fetched and is written into the ROB.

Fill in the diagram below to reflect the processor state after these events have occurred.
Although you are not given the rename table snapshot, you should be able to deduce the
necessary information from the diagram from Question M3.6.A. You do not need to show
invalid entries in the diagram, but be sure to fill in all the fields which have valid data, and
update the “next to commit” and “next available” pointers. Also make sure that the free list
contains all available registers.

Rename Table
R1
R2
R3
R4

Physical Regs
P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

Free List

 …

Reorder Buffer (ROB)
 use ex op p1 PR1 p2 PR2 Rd LPRd PRd

 next to
commit

 next
available

Problem M3.6.C

Consider (1) a single-issue, in-order processor with no branch prediction and (2) a multiple-issue,
out-of-order processor with branch prediction. Assume that both processors have the same clock
frequency. Consider how fast the given loop executes on each processor, assuming that it
executes for many iterations.

Under what conditions, if any, might the loop execute at a faster rate on the in-order processor
compared to the out-of-order processor?

Under what conditions, if any, might the loop execute at a faster rate on the out-of-order
processor compared to the in-order processor?

Problem M3.7: Exceptions and Register Renaming [? Hours]

Ben Bitdiddle has decided to start Bentel Corporation, a company specializing in high-end x86
processors to compete with Intel. His latest project is the Bentium 4, a superscalar, out-of-order
processor with register renaming and speculative execution.

The Bentium 4 has 8 architectural registers (EAX, EBX, ECX, EDX, ESP, EBP, EDI, and ESI).
In addition, the processor provides 8 internal registers T0-T7 not visible to the ISA that can be
used to hold intermediary values used by micro-operations (µops) generated by the microcode
engine. The microcode engine is the decode unit and is used to generate µops for all the x86
instructions. For example, the following register-memory x86 instruction might be translated
into the following RISC-like µops:

ADD Rd, Ra, offset(Rb) → LW T0, offset(Rb)
 ADD Rd, Ra, T0

All 16 µop-visible registers are renamed by the register allocation table (RAT) into a set of
physical registers (P0-Pn) as described in Lecture 11. There is a separate shadow map structure
that takes a snapshot of the RAT on a speculative branch in case of a misprediction. The block
diagram for the front-end of the Bentium 4 is shown below:

uops

x86 instructions

 ROM
 Engine

Uop Buffer

 Register
 Renaming

 Instruction
 Fetch

 dispatch window and
 execution cores

Decode

Note: The decode block is
actually replicated in the
Bentium 4 in order to decode
multiple instructions per cycle
(not shown in the diagram).

M

Problem M3.7.A Recovering from Exceptions

For the Bentium 4, if an x86 instruction takes an exception before it is committed, the machine
state is reset back to the precise state that existed right before the excepting instruction started
executing. This instruction is then re-executed after the exception is handled. Ben proposes that
the shadow map structure used for speculative branches can also be used to recover a precise
state in the event of an exception. Specify a strategy that can be implemented for taking the least
number of snapshots of the RAT that would still allow the Bentium 4 to implement precise
exception handling.

Problem M3.7.B Minimizing Snapshots

Ben further states that the shadow map structure does not need to take a snapshot of all the
registers in the Bentium 4 to be able to recover from an exception. Is Ben correct or not? If so,
state which registers do not need to be recorded and explain why they are not necessary, or
explain why all the registers are necessary in the snapshot.

Problem M3.7.C Renaming Registers

Assume that the Bentium 4 has the same register renaming scheme as the Pentium 4, as
described in Lecture 11. What is the minimum number of physical registers (P) that the Bentium
4 must have to allow register renaming to work? Explain your answer.

