
Problem M2.16: Complex Pipelining Dependencies

I1: L.D F1, 0 (R1) ; F1 = *r1;
I2: MUL.D F2, F0, F2 ; F2 = F0*F2;
I3: ADD.D F1, F2, F2 ; F1 = F2 + F2;
I4: L.D F2, 0 (R2) ; F2 = *r2;
I5: ADD.D F3, F1, F2 ; F3 = F1 + F2;
I6: S.D F3, 0 (R3) ; *r3 = F3;
……

 Earlier (Older) Instruction
I1 I2 I3 I4 I5 I6

I1 -
I2 - -
I3 WAW RAW -
I4 - WAW/WAR WAR -
I5 - - RAW RAW -
I6 - - - - RAW -

Current
Instruction

Problem M2.14: Out-of-order Scheduling [? Hours]

loop:
I1 L.D F2, 0(R1) ;load X(i)
I2 MUL.D F1, F2, F0 ;multiply a*X(i)
I3 L.D F3, 0(R2) ;load Y(i)
I4 ADD.D F3, F1, F3 ;add a*X(i)+Y(i)
I5 S.D F3, 0(R2) ;store Y(i)
I6 DADDUI R1, R1, 8 ;increment X index
I7 DADDUI R2, R2, 8 ;increment Y index
I8 DSGTUI R3, R1, 800 ;test if done
I9 BEQZ R3, loop ;loop if not done

Problem M2.14.A In-order using a scoreboard

Each loop takes 28 cycles. The bottleneck is the long latency of the FP functional units.

Functional Unit Status Instr.
Issued

Time
(cycles) Int Load (1) Adder

(4)
Multiplier

(15) WB
Registers Reserved

for Writes

I1 0 F2 F2
 1 F2 F2

I2 2 F1 F1
I3 3 F3 F1 F1,F3
 4 F1 F3 F1,F3
 ...
 16 F1 F1
 17 F1 F1

I4 18 F3 F3
 ...
 21 F3 F3
 22 F3 F3

I5 23
I6 24 R1
I7 25 R2
I8 26 R3
I9 27

Table M2.14-1 Table M2.14-11

Problem M2.15: Out-of-Order Scheduling [? Hours]

Problem M2.15.A

This question is similar to Problem M2.14.C with shorter latency for the FPU.

Time
Decode �

ROB
Issued WB Committed OP Dest Src1 Src2

I1 -1 0 1 2 L.D T0 R2 -
I2 0 2 12 13 MUL.D T1 T0 F0
I3 1 13 15 16 ADD.D T2 T1 F0
I4 2 3 4 17 ADDI T3 R2 -
I5 3 4 5 18 L.D T4 T3 -
I6 4 6 16 19 MUL.D T5 T4 T4
I7 5 17 19 20 ADD.D T6 T5 T2

Table M2.15-1

Problem M2.15.B

(This is NOT a unified register file design. The register names (T0, T1, …etc) in the renaming
table refer to the ROB tags. Since we have a two-entry ROB, we should only use T0 and T1 for
the renaming.)

Time

Decode �
ROB

Issued WB Committed OP Dest Src1 Src2

I1 -1 0 1 2 L.D T0 R2 -
I2 0 2 12 13 MUL.D T1 T0 F0
I3 3 13 15 16 ADD.D T0 T1 F0
I4 14 15 16 17 ADDI T1 R2 -
I5 17 18 19 20 L.D T0 T1 -
I6 18 20 30 31 MUL.D T1 T0 T0
I7 21 31 33 34 ADD.D T0 T1 F3

Table M2.15-2

Problem M2.16: Superscalar Processor [? Hours]

Problem M2.16.A

Fill in the renaming tags in the following two tables for the execution of instructions I1 to I10

Instr # Instruction Dest Src1 Src2
I1 LD F2, 0(R2) T1 R2 0
I2 LD F3, 0(R3) T2 R3 0
I3 FMUL F4, F2, F3 T3 T1 T2
I4 LD F2, 4(R2) T4 R2 4
I5 LD F3, 4(R3) T5 R3 4
I6 FMUL F5, F2, F3 T6 T4 T5
I7 FMUL F6, F4, F5 T7 T3 T6
I8 FADD F4, F4, F5 T8 T3 T6
I9 FMUL F6, F4, F5 T9 T8 T6
I10 FADD F1, F1, F6 T10 F1 T9

Renaming table

 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10
R2
R3
F1 T10
F2 T1 T4
F3 T2 T5
F4 T3 T8
F5 T6
F6 T7 T9

Problem M2.16.B

I1 I2 I3 I4 I5

I6I7I8I9I10

I11 I12 I13 I14

Problem M2.16.C

See the following table.

A

rg
um

en
t 1

A

rg
um

en
t 2

ds

t

Sl
ot

In
st

ru
ct

io
n

C
yc

le

in
st

ru
ct

io
n

en
te

re
d

R
O

B

sr
c1

cy

cl
e

av
ai

la
bl

e
Sr

c2

cy
cl

e
av

ai
la

bl
e

ds
t r

eg
Cy

cl
e

di
sp

at
ch

ed
Cy

cl
e

wr
itt

en
ba

ck
 to

RO

B
T1

L
D

F
2
,

0
(
R
2
)

1
C

1

R
2

1
F2

2

6

T2

L
D

F
3
,

0
(
R
3
)

1
C

1

R
3

1
F3

3

7
T3

F
M
U
L

F
4
,

F
2
,

F
3

2
F2

6
F3

7
F4

8
12

T4

L
D

F
2
,

4
(
R
2
)

2
C

2

R
2

2
F2

4

8
T5

L
D

F
3
,

4
(
R
3
)

3
C

3

R
3

3
F3

5

9
T6

F
M
U
L

F
5
,

F
2
,

F
3

3
F2

8

F3

9
F5

10

14

T7

F
M
U
L

F
6
,

F
4
,

F
5

4
F4

12

F5

14

F6

15

19

T8

F
A
D
D

F
4
,

F
4
,

F
5

4
F4

12

F5

14

F4

15

18

T9

F
M
U
L

F
6
,

F
4
,

F
5

5
F4

18

F5

14

F6

19

23

T1

0
F
A
D
D

F
1
,

F
1
,

F
6

5
F1

5

F6

23

F1

24

27

T1
1

A
D
D

R
2
,

R
2
,

8

6
R

2
6

C

6
R

2
7

9
T1

2
A
D
D

R
3
,

R
3
,

8

6
R

3
6

C

6
R

3
8

10

T1
3

A
D
D

R
4
,

R
4
,

-
1

7
R

4
7

C

7
R

4
9

11

T1
4

B
N
E
Z

R
4
,

l
o
o
p

7
R

4
11

C

Lo

op

T1

5
L
D

F
2
,

0
(
R
2
)

8
C

8

R
2

9
F2

10

14

T1

6
L
D

F
3
,

0
(
R
3
)

8
C

8

R
3

10

F3

11

15

T1
7

F
M
U
L

F
4
,

F
2
,

F
3

9
F2

14

F3

15

F4

16

20

T1

8
L
D

F
2
,

4
(
R
2
)

9
C

9

R
2

9
F2

12

16

T1

9
L
D

F
3
,

4
(
R
3
)

10

C

10

R
3

10

F3

13

17

T2
0

F
M
U
L

F
5
,

F
2
,

F
3

10

F2

16

F3

17

F5

18

22

T2
1

F
M
U
L

F
6
,

F
4
,

F
5

11

F4

20

F5

22

F6

23

27

T2
2

F
A
D
D

F
4
,

F
4
,

F
5

11

F4

20

F5

22

F4

23

26

T2
3

F
M
U
L

F
6
,

F
4
,

F
5

12

F4

26

F5

22

F6

27

31

T2
4

F
A
D
D

F
1
,

F
1
,

F
6

12

F1

27

F6

31

F1

32

35

T2
5

A
D
D

R
2
,

R
2
,

8

13

R
2

13

C

13

R
2

14

16

T2
6

A
D
D

R
3
,

R
3
,

8

13

R
3

13

C

13

R
3

15

17

T2
7

A
D
D

R
4
,

R
4
,

-
1

14

R
4

14

C

14

R
4

16

18

T2
8

B
N
E
Z

R
4
,

l
o
o
p

14

C

Lo
op

T2
9

Problem M2.16.D

I5, I6, I7, I8, I9, I10 (see registers in blue in previous table)

27 cycles.

Problem M2.16.E

The behavior should repeat - should be obvious from the dependency graph (DAG) in Problem
M2.16.D.

Problem M2.16.F

Yes

An extra FP multiplier does not really help, because All FMUL instructions execute as soon as
operands are ready. But an extra memory port helps, because dispatch of I4, I5 was delayed
waiting for memory port.

Problem M2.16.G

The answer is 4 cycles.

Since the integer index/counter additions are relatively short, they can proceed to generate values
for different loop iterations and load all values from memory saving them to renamed registers.
After a large number of iterations, many iterations of the loop will be running in parallel. Hence,
the number of cycles is the latency of FMUL (3 + 1 cycle for write-back). In steady state, one
iteration can complete every 4 cycles.

Problem M2.17: Register Renaming and Static vs. Dynamic Scheduling [? Hours]

Problem M2.17.A Simple Pipeline

The following table shows the cycles in which instructions are decoded, issued, and written back.
It starts with cycle 0 in which the first load has been decoded (and thus has just entered the issue
stage). It is assumed that all instructions prior to the first load have already been completed.
Although not shown below, there is a buffer that holds instructions that are waiting in the issue
stage. Since there is no bypassing, an instruction must complete the write-back stage before a
dependent instruction can issue. For example, as shown in the table, the second load is issued in
cycle 2, executes for 2 cycles, and is written back in cycle 4. Thus, any instruction that depends
on the load can issue no earlier than cycle 5.

Decoded Instruction
(Enters Issue)

Issued Instruction
(Enters Execute)

WB Cycle For
Issued Instruction

0 L.S F0, 0(R1) Stall
1 L.S F1, 0(R2) L.S F0, 0(R1) 3
2 MUL.S F0, F0, F1 L.S F1, 0(R2) 4
3 L.S F2, 0(R3) Stall
4 L.S F3, 0(R4) Stall
5 MUL.S F2, F2, F3 MUL.S F0, F0, F1 9
6 ADD.S F0, F0, F2 L.S F2, 0(R3) 8
7 S.S F0, 0(R5) L.S F3, 0(R4) 9
8 Stall
9 Stall
10 MUL.S F2, F2, F3 14
11 Stall
12 Stall
13 Stall
14 Stall
15 ADD.S F0, F0, F2 17
16 Stall
17 Stall
18 S.S F0, 0(R5)

The number of cycles from the issue of the first load instruction until the issue of the final store
instruction is 18 cycles, inclusive.

Problem M2.17.B Static Scheduling

The new code sequence is given below. Originally there were two stall cycles after the second
load instruction. Now these cycles will be filled by the third and fourth load instructions. The
remaining instructions cannot be reordered due to data dependencies (except for the two multiply
instructions, although doing that would hurt performance).

 L.S F0, 0(R1)
 L.S F1, 0(R2)
 L.S F2, 0(R3)
 L.S F3, 0(R4)
 MUL.S F0, F0, F1
 MUL.S F2, F2, F3
 ADD.S F0, F0, F2
 S.S F0, 0(R5)

The following table shows the cycles in which the instructions in the above sequence are
decoded, issued, and written back.

Decoded Instruction
(Enters Issue)

Issued Instruction
(Enters Execute)

WB Cycle For
Issued Instruction

0 L.S F0, 0(R1) Stall
1 L.S F1, 0(R2) L.S F0, 0(R1) 3
2 L.S F2, 0(R3 L.S F1, 0(R2) 4
3 L.S F3, 0(R4) L.S F2, 0(R3) 5
4 MUL.S F0, F0, F1 L.S F3, 0(R4) 6
5 MUL.S F2, F2, F3 MUL.S F0, F0, F1 9
6 ADD.S F0, F0, F2 Stall
7 S.S F0, 0(R5) MUL.S F2, F2, F3 11
8 Stall
9 Stall
10 Stall
11 Stall
12 ADD.S F0, F0, F2 14
13 Stall
14 Stall
15 S.S F0, 0(R5)

The number of cycles from the issue of the first load instruction to the issue of the final store
instruction is 15 cycles, inclusive. Static scheduling has enabled us to reduce the execution time
of the sequence by 17%.

Problem M2.17.C Fewer Registers

The new code sequence using only two floating-point registers is shown below. It is assumed
that R6 holds the address of a memory location that can be used to store temporary values.

 L.S F0, 0(R1)
 L.S F1, 0(R2)
 MUL.S F0, F0, F1
 L.S F1, 0(R3)
 S.S F0, 0(R6)
 L.S F0, 0(R4)
 MUL.S F0, F0, F1
 L.S F1, 0(R6)
 ADD.S F0, F0, F1
 S.S F0, 0(R5)

The following table shows the cycles in which the instructions in the above sequence are
decoded, issued, and written back. For this problem, a store instruction is needed in the middle
of the instruction sequence in order to spill a register. Although not explicitly stated in the
problem, stores have the same latency as loads (two cycles), since they use the same functional
unit. Because the result of the store is not needed for several cycles after it completes (when the
load restores the spilled value), it would take a very long latency for store instructions in order to
delay the last load. We don’t have to worry about WAR hazards in the above sequence because
instructions are issued in-order. Note that we can no longer execute the four original loads in
sequence as in M2.17.B because of the lack of available registers. We can, however, execute the
third load before saving the intermediate value from the first MUL instruction.

Decoded Instruction

(Enters Issue)
Issued Instruction
(Enters Execute)

WB Cycle For
Issued Instruction

0 L.S F0, 0(R1) Stall
1 L.S F1, 0(R2) L.S F0, 0(R1) 3
2 MUL.S F0, F0, F1 L.S F1, 0(R2) 4
3 L.S F1, 0(R3) Stall
4 S.S F0, 0(R6) Stall
5 L.S F0, 0(R4) MUL.S F0, F0, F1 9
6 MUL.S F0, F0, F1 L.S F1, 0(R3) 8
7 L.S F1, 0(R6) Stall
8 ADD.S F0, F0, F1 Stall
9 S.S F0, 0(R5) Stall
10 S.S F0, 0(R6)
11 L.S F0, 0(R4) 13
12 Stall
13 Stall
14 MUL.S F0, F0, F1 18
15 L.S F1, 0(R6) 17
16 Stall
17 Stall
18 Stall
19 ADD.S F0, F0, F1 21
20 Stall
21 Stall
22 S.S F0, 0(R5)

The number of cycles from the issue of the first load instruction to the issue of the final store
instruction is 22 cycles, inclusive. The use of only two floating-point registers results in a severe
performance hit.

Problem M2.17.D Register renaming and dynamic scheduling

The table below shows the cycles in which the instructions in the original code sequence are
decoded, issued, and written back on the single-issue machine with register renaming and out-of-
order issue. The table also contains the rename table for the architectural registers.

RenameDecoded/Renamed
Instruction (Enters

Issue) F0 F1 F2 F3

Issued Instruction
(Enters Execute)

WB Cycle
For Issued
Instruction

0 L.S T0, 0(R1) T0 Stall
1 L.S T1, 0(R2) T0 T1 L.S T0, 0(R1) 3
2 MUL.S T2, T0, T1 T2 T1 L.S T1, 0(R2) 4
3 L.S T3, 0(R3) T2 T1 T3 Stall
4 L.S T4, 0(R4) T2 T1 T3 T4 L.S T3, 0(R3) 6
5 MUL.S T5, T3, T4 T2 T1 T5 T4 MUL.S T2, T0, T1 9
6 ADD.S T6, T2, T5 T6 T1 T5 T4 L.S T4, 0(R4) 8
7 S.S T6, 0(R5) T6 T1 T5 T4 Stall
8 Stall
9 MUL.S T5, T3, T4 13

10 Stall
11 Stall
12 Stall
13 Stall
14 ADD.S T6, T2, T5 16
15 Stall
16 Stall
17 S.S T6, 0(R5)

The number of cycles from the issue of the first load instruction to the issue of the final store
instruction is 17 cycles, inclusive. This is one cycle better than executing this code on an in-
order machine but not quite as good as the performance of the optimized code in M2.17.B, which
only required 15 cycles. The difference in performance between the statically scheduled code
and the dynamically scheduled code can be attributed to the fact that only a single instruction can
be decoded at a time, which limits the hardware’s ability to find independent instructions to issue.
The optimized version of the code from M2.17.B executing on this machine would not improve in
performance over executing on an in-order machine – it would still take 15 cycles.

Note, that in cycle 5, we would get better performance if we issued the final load instruction
rather than the MUL instruction. The machine doesn’t know that, so it issues the instruction that
entered the ROB first.

Problem M2.17.E Effect of Register Spills

The table below shows the cycles in which the instructions in the original code sequence are
decoded, issued, and written back on the single-issue machine with register renaming and out-of-
order issue.

RenameDecoded/Renamed

Instruction (Enters
Issue) F0 F1

Issued Instruction
(Enters Execute)

WB Cycle
For Issued
Instruction

0 L.S T0, 0(R1) T0 Stall
1 L.S T1, 0(R2) T0 T1 L.S T0, 0(R1) 3
2 MUL.S T2, T0, T1 T2 T1 L.S T1, 0(R2) 4
3 L.S T3, 0(R3) T2 T3 Stall
4 S.S T2, 0(R6) T2 T3 L.S T3, 0(R3) 6
5 L.S T4, 0(R4) T4 T3 MUL.S T2, T0, T1 9
6 MUL.S T5, T4, T3 T5 T3 Stall
7 L.S T6, 0(R6) T5 T6 Stall
8 ADD.S T7, T5, T6 T7 T6 Stall
9 S.S T7, 0(R5) T7 T6 Stall

10 S.S T2, 0(R6) 12
11 L.S T4, 0(R4) 13
12 L.S T6, 0(R6) 14
13 Stall
14 MUL.S T5, T4, T3 18
15 Stall
16 Stall
17 Stall
18 Stall
19 ADD.S T7, T5, T6 21
20 Stall
21 Stall
22 S.S T7, 0(R5) 24

It now takes 22 cycles between issue of the first load instruction and issue of the last store
instruction. That is the same performance as M2.17.C, and much worse than M2.17.D.

We managed to execute two instructions out of order, but we still couldn’t beat the in-order
performance. The problem lies with the fact that we had to wait for the first store to issue before
we could continue with the program. This is directly linked to having only two registers, thus
having to store intermediate values.

Problem M3.1: Register Renaming Schemes [? Hours]

Problem M3.1.A Finding Operands: Original ROB scheme

Instruction Src1 value

Regfile, ROB,
rename table,
or instruction? Src2 value

Regfile, ROB,
rename table, or
instruction?

sub r5,r1,r3 1 Regfile t2 Rename table
addi r6,r2,4 2 Regfile 4 Instruction
andi r7,r4,3 4 ROB 3 Instruction

Problem M3.1.B Finding Operands: Future File Scheme

A source register operand for an instruction I can be in one of the following three possible states.

1. It can be produced by a previous instruction that has not yet completed, in which case I
will get the tag from the rename table.

2. It can be produced by a previous instruction that has completed execution but has not yet
written back to the register file. However, the previous instruction will have written the
value to the future file in this case, so I can obtain the value from that structure.

3. It can be produced by a previous instruction that has committed its value to the register
file, in which case I can simply read the value from the regfile.

None of the above scenarios requires I to fetch an operand from the ROB.

Problem M3.1.C Future File Operation

An example code sequence is:

LD R2, 0(R1)
ADDI R3, R2, 1
SUB R4, R3, R5
ADD R3, R4, R6

An instruction result will be written to the ROB but not the future file if a subsequent instruction
has been decoded and writes to the same destination register. To illustrate with the given
example, since instruction decode occurs in order, the ADD instruction will be decoded after the
ADDI instruction. Thus, the entry for R3 in the rename table will contain a tag for the ADD
instruction after all of the above instructions have been decoded. Now suppose that the ADDI
instruction completes execution after the ADD instruction is decoded. Because the tag for R3
will not match the tag for the ADDI instruction, the result of that instruction will not be written
back to the future file, but it will be written back to the ROB.

Problem M3.1.D Handling Branch Mispredictions

ADD R1, R2, R3
SUB R4, R5, R6
BEQ R7, R8, L1 # Taken branch.
XOR R9, R10, R11
ADD R1, R5, R9

If all of the above instructions complete execution before the branch misprediction is detected,
then the values of R9 and R1 in the future file will be the values produced by the XOR instruction
and the second ADD instruction, respectively. However, because the branch was mispredicted,
the XOR instruction and the second ADD instruction should never have been executed, the future
file contains incorrect values for R9 and R1. Either the correct values must be placed in the
future file by some means, or the appropriate future file entries must be invalidated.

Problem M3.5: Fetch Pipelines [? Hours]

PC PC Generation
F1
F2 ICache Access

D1
D2 Instruction Decode

RN Rename/Reorder
RF Register File Read
EX Integer Execute

Problem M3.5.A Pipelining Subroutine Returns

Immediately after what pipeline stage does the processor know that it is executing a subroutine
return instruction?
D2

Immediately after what pipeline stage does the processor know the subroutine return address?
RF

How many pipeline bubbles are required when executing a subroutine return?
6

Problem M3.5.B Adding a BTB

A subroutine can be called from many different locations and thus a single subroutine return can
return to different locations. A BTB holds only the address of the last caller.

Problem M3.5.C Adding a Return Stack

Normally, instruction fetch needs to wait until the return instruction finishes the RF stage before
the return address is known. With the return stack, as soon as the return instruction is decoded in
D2, instruction fetch can begin fetching from the return address. This saves 2 cycles.

A return address is pushed after a JAL/JALR instruction is decoded in D2. A return address is
popped after a JR r31 instruction is decoded in D2.

Problem M3.5.D Return Stack Operation

A: JAL B
A+1:
A+2:
…

B: JR r31
B+1:
B+2:
…

instruction time�
A PC F1 F2 D1 D2 RN RF EX

A+1 PC F1 F2 D1 D2 RN RF EX
A+2 PC F1 F2 D1 D2 RN RF EX
A+3 PC F1 F2 D1 D2 RN RF EX
A+4 PC F1 F2 D1 D2 RN RF EX

B PC F1 F2 D1 D2 RN RF EX
B+1 PC F1 F2 D1 D2 RN RF EX
B+2 PC F1 F2 D1 D2 RN RF EX
B+3 PC F1 F2 D1 D2 RN RF EX
B+4 PC F1 F2 D1 D2 RN RF EX
A+1 PC F1 F2 D1 D2 RN RF EX

Problem M3.5.E Handling Return Address Mispredicts

When a value is popped off the return stack after D2, it is saved for two cycles as part of the
pipeline state. After the RF stage of the return instruction, the actual r31 is compared against the
predicted return address. If the addresses match, then we are done. Otherwise we mux in the
correct program counter at the PC stage and kill the instructions in F1 and F2. Depending on
how fast the address comparison is assumed to be, you might also kill the instruction in D1. So
there is an additional 2 or 3 cycles lost on a return mispredict.

Problem M3.5.F Further Improving Performance

Ben should add a cache of the most recently encountered return instruction addresses. During F1,
the contents of the cache are looked up to see if any entries match the current program counter.
If so, then by the end of F1 (instead of D2) we know that we have a return instruction. We can
then use the return stack to supply the return address.

Problem M3.6: Managing Out-of-order Execution [? Hours]

Problem M3.6.A

Rename Table
R1 P4 P7
R2 P5 P8
R3 P6
R4 P0

Physical Regs
P0 8016 p
P1 6823 p
P2 8000 p
P3 7 p
P4 0 p
P5 8004 p
P6 8 p
P7
P8
P9

Free List

P7
P8
P9
P1
P2

…

Reorder Buffer (ROB)
 use ex op p1 PR1 p2 PR2 Rd LPRd PRd

x x lw p P2 r1 P1 P4 next to
commit

�
x x addi p P2 r2 P2 P5

 x beqz p P4
 x x addi p P3 r3 P3 P6

x bne p P5 p P0 next
available x lw p P5 r1 P4 P7 �

x addi p P5 r2 P5 P8
 x beqz P7

Problem M3.6.B

Rename Table
R1 P4
R2 P5
R3 P3
R4 P0

Physical Regs
P0 8016 p
P1
P2
P3 7 p
P4 0 p
P5 8004 p
P6
P7
P8
P9

Free List
P9
P1
P2
P6
P7
P8

…

Reorder Buffer (ROB)
 use ex op p1 PR1 p2 PR2 Rd LPRd PRd

 next to
commit

x bne p P5 p P0
 next

available

Problem M3.6.C

Under what conditions, if any, might the loop execute at a faster rate on the in-order processor
compared to the out-of-order processor?

If the out-of-order processor frequently mispredicts either of the branches, it is likely to execute
the loop slower than the in-order processor. For this to be true, we must also assume that the
branch misprediction penalty of the out-of-order processor is sufficiently longer than the branch
resolution delay of the in-order processor, as is likely to be the case. The mispredictions may be
due to deficiencies in the out-of-order processor’s branch predictor, or the data-dependent branch
may be fundamentally unpredictable in nature.

Under what conditions, if any, might the loop execute at a faster rate on the out-of-order
processor compared to the in-order processor?

If the out-of-order processor predicts the branches with high enough accuracy, it can execute
more than one instruction per cycle, and thereby execute the loop at a faster rate than the in-order
processor.

Problem M3.7: Exceptions and Register Renaming [? Hours]

Problem M3.7.A Recovering from Exceptions

By the definition of a precise exception, an exception that occurs in the middle of an x86
instruction should cause the machine state to revert to the state that previously existed right
before the excepting instruction started executing. Thus a strategy to determine a precise state
would be to take snapshots of the RAT only on x86 instruction boundaries (either when the last
μop of an x86 instruction commits or right before the first μop of an x86 instruction is renamed).

Problem M3.7.B Minimizing Snapshots

Ben is correct. Since an exception causes the machine to revert to the state found on an x86
instruction boundary, all the temporary state used by the μops does not need to be kept. Thus,
the RAT only has to hold the rename mappings for the architectural registers, and not for T0-T7.

Problem M3.7.C Renaming Registers

There must be at least 17 physical registers for the Bentium 4 to work properly. 16 registers are
needed to hold the state of the machine at any given point in time (architectural and temporary
register values), and an extra one is needed to rename an additional register using the given
renaming algorithm to allow forward progress.

Problem M3.8: Multithreading [?? Hours]

Problem M3.8.A

Since there is no penalty for conditional branches, instructions take one cycle to execute unless
there is a dependency problem. The following table summarizes the execution time for each
instruction. From the table, the loop takes 104 cycles to execute.

Instruction Start Cycle End Cycle
LW R3, 0(R1) 1 100
LW R4, 4(R1) 2 101
SEQ R3, R3, R2 101 101
BNEZ R3, End 102 102
ADD R1, R0, R4 103 103
BNEZ R1, Loop 104 104

Problem M3.8.B

If we have N threads and the first load executes in cycle 1, SEQ, which depends on the load,
executes in cycle 2�N + 1. To fully utilize the processor, we need to hide the 100-cycle memory
latency, 2�N + 1 � 101. The minimum number of thread needed is 50.

Problem M3.8.C

Throughput Latency

Better �

Same

Worse �

Problem M3.8.D

In steady state, each thread can execute 6 instructions (SEQ, BNEZ, ADD, BNEZ, LW, LW).
Therefore, to hide 99 cycles between the second LW and SEQ, a processor needs � � 181699 �	
threads.

Problem M3.9: Multithreaded architectures [?? Hours]

Problem M3.9.A

4, since the largest latency for any instruction is 4.

Problem M3.9.B

2/12 = 0.17 flops/cycle, on average we complete a loop every 12 cycles

Problem M3.9.C

Yes, we can hide the latency of the floating point instructions by moving the add instructions in
between floating point and store instructions – we’d only need 3 threads. Moving the third load
up to follow the second load would further reduce thread requirement to only 2.

Problem M3.10: Multithreading [?? Hours]

Problem M3.10.A

Fixed Switching: _________6________ Thread(s)

If we have N threads and L.D. executes in cycle 1, FADD, which depends on the load executes
in cycle 2N + 1. To fully utilize the processor, we need to hide 12-cycle memory latency, 2N + 1
� 13. The minimum number of thread needed is 6.

Data-dependent Switching: ________4_________ Thread(s)

In steady state, each thread can execute 4 instructions (FADD, BNE, LD, ADDI). Therefore, to
hide 11 cycles between ADDI and FADD, a processor needs �11/4� + 1 = 4 threads.

Problem M3.10.B

Fixed Switching: ________2_________ Thread(s)

Each FADD depends on the previous iteration's FADD. If we have N threads and the first
FADD executes in cycle 1, the second FADD executes in cycle 4N + 1. To fully utilize the
processor, we need to hide 5-cycle latency, 4N + 1 � 6. The minimum number of thread needed
is 2.

Data-dependent Switching: ________2_________ Thread(s)

In steady state, each thread can execute 4 instructions (FADD, BNE, LD, ADDI). Therefore, to
hide 2 cycles between ADDI and FADD, a processor needs �2/4� + 1 = 2 threads.

Problem M3.10.C

Consider a Simultaneous Multithreading (SMT) machine with limited hardware resources.
Circle the following hardware constraints that can limit the total number of threads that the
machine can support. For the item(s) that you circle, briefly describe the minimum requirement
to support N threads.

(A) Number of Functional Unit Since not all the treads are executed in each cycle,
the number of functional unit is not a constraint that limits
the total number of threads that the machine can support.

(B) Number of Physical Registers We need at least [N
 (number of architecture registers) + 1]
physical registers.

(C) Data Cache Size This is for performance reasons.

(D) Data Cache Associatively This is for performance reasons.

Problem M3.11: VLIW Programming [?? Hours]

Problem M3.11.A

To get 1 cycle per vector element performance, we need to use loop unrolling and software
pipelining. The original loop is unrolled four times and software pipelined. Two registers (F3
and F7) are used for saving partial sums, which are summed at the end.

At the start of the program n may be any value. By making successive checks and providing fix-
up code, n can be guaranteed to be positive and a multiple of 4 by the prolog.

// R1 - points to X
// R2 - points to Y
// R5 - n
// F7 – result

 // clear partial sum registers
 MOVI2FP F3,R0
 MOVI2FP F7,R0

 // clear temporary registers used for multiply results
 MOVI2FP F2,R0
 MOVI2FP F6,R0
 MOVI2FP F10,R0
 MOVI2FP F14,R0

 // n must be greater than 0
 SGT R3,R5,R0
 BEQZ R3,end // if !(n>0) goto end

 // n must be greater than 0
 ANDI R3,R5,#3
 BEQZ R3,prolog

 // (n>0) && ((n%4)!=0)
 SUB R5,R5,R3
L1:
 L.S F3,0(R1); L.S F4,0(R2); SUBI R3,R3,#1
 MUL.S F3,F3,F4; ADDI R1,R1,#4;
 ADD.S F7,F7,F3; ADDI R2,R2,#4; BNEZ R3,L1

 BEQZ R5,end

 // (n>=4) && ((n%4)==0)
prolog:
 L.S F0, 0(R1); L.S F1, 0(R2); SUBI R5,R5,#4
 L.S F4, 4(R1); L.S F5, 4(R2); ADDI R1,R1,#16
 L.S F8,-8(R1); L.S F9, 8(R2); ADDI R2,R2,#16
 L.S F12,-4(R1); L.S F13,-4(R2); BEQZ R5,epilog

 L.S F0, 0(R1); L.S F1, 0(R2); MUL.S F2, F0, F1; SUBI R5,R5,#4
 L.S F4, 4(R1); L.S F5, 4(R2); MUL.S F6, F4, F5; ADDI R1,R1,#16
 L.S F8,-8(R1); L.S F9, 8(R2); MUL.S F10, F8, F9; ADDI R2,R2,#16
 L.S F12,-4(R1); L.S F13,-4(R2); MUL.S F14,F12,F13; BEQZ R5,epilog

loop:
 L.S F0, 0(R1); L.S F1, 0(R2); MUL.S F2, F0, F1; ADD.S F3,F3, F2; SUBI R5,R5,#4

 L.S F4, 4(R1); L.S F5, 4(R2); MUL.S F6, F4, F5; ADD.S F7,F7, F6; ADDI R1,R1,#16
 L.S F8,-8(R1); L.S F9, 8(R2); MUL.S F10, F8, F9; ADD.S F3,F3,F10; ADDI R2,R2,#16
 L.S F12,-4(R1); L.S F13,-4(R2); MUL.S F14,F12,F13; ADD.S F7,F7,F14; BNEZ R5,loop

epilog:
 MUL.S F2, F0, F1; ADD.S F3,F3, F2
 MUL.S F6, F4, F5; ADD.S F7,F7, F6
 MUL.S F10, F8, F9; ADD.S F3,F3,F10
 MUL.S F14,F12,F13; ADD.S F7,F7,F14

 ADD.S F3,F3, F2
 ADD.S F7,F7, F6
 ADD.S F3,F3,F10
 ADD.S F7,F7,F14

 ADD.S F7,F7,F3

end:

Problem M3.12: Trace Scheduling

Problem M3.12.A

 Program’s control flow graph Decision tree

Problem M3.12.B

ACF: ld r1, data
 div r3, r6, r7 ;; X <- V2/V3
 mul r8, r6, r7 ;; Y <- V2*V3
D: andi r2, r1, 3 ;; r2 <- r1%4
 bnez r2, G
A: andi r2, r1, 7 ;; r2 <- r1%8
 bnez r2, E
B: div r3, r4, r5 ;; X <- V0/V1
E: mul r8, r4, r5 ;; Y <- V0*V1
G:

Problem M3.12.C

Assume that the load takes x cycles, divide takes y cycles, and multiply takes z cycles.
Approximately how many cycles does the original code take? (ignore small constants)
x+max(y,z)

Approximately how many cycles does the new code take in the best case? max(x,y,z)

A

B C

D

E F

G

A

B C

D D

EE FF

G G G G

1/81/8 0 6/8

Problem M3.13: VLIW machines [?? Hours]

Problem M3.13.A

See Table M3.13-1 on the next page.

Problem M3.13.B

12 cycles, 2/12=0.17 flops per cycle

Problem M3.13.C

3 instructions, because there are 5 memory ops and 5 ALU ops, and we can only issue 2 of them
per instruction. (OR 4 instructions, because the slowest operation has a 4-cycle latency.)

Here is the resulting code.

add r1, r1, 4 add r2, r2, 4 ld f1, 0(r1) ld f2, 0(r2) fmul f4, f2, f1

add r3, r3, 4 add r4, r4, -1 ld f3, -4(r3) st f4, -8(r1) fadd f5, f4, f3

bnez r4, loop st f5, -12(r3)

for a particular instruction, white background corresponds to first iteration of the loop, grey
background to the second iteration, yellow background to third, and blue to fourth. Note, one
does not need to write the code to get an answer, because it’s just a question of how many
instructions are needed to express all the operations.

Problem M3.13.D

2/3=0.67 flops per cycle, 4 iterations at a time.

A
LU

1
A

LU
2

M
U

1
M

U
2

FA
D

D

FM
U

L
a
d
d

r
1
,

r
1
,

4

a
d
d

r
2
,

r
2
,

4

l
d

f
1
,

0
(
r
1
)

l
d

f
2
,

0
(
r
2
)

a
d
d

r
3
,

r
3
,

4

a
d
d

r
4
,

r
4
,

-
1

l
d

f
3
,

0
(
r
3
)

f
m
u
l

f
4
,

f
2
,

f
1

s
t

f
4
,

-
4
(
r
1
)

f
a
d
d

f
5
,

f
4
,

f
3

b
n
e
z

r
4
,

l
o
o
p

s
t

f
5
,

-
4
(
r
3
)

T
ab

le
 M

3.
13

-1
: V

L
IW

 P
ro

gr
am

Problem M3.13.E

We would need 5 instructions to execute two iterations and we would get 4/5=0.8 flops/cycle.

Problem M3.13.F

Same as above - 0.8 flops/cycle. We are fully utilizing the memory units, so we can’t execute
more loops/cycle.

Problem M3.13.G

No. We need to unroll the loop once to have an even number of memory ops. Use of the rotating
registers would not allow us to squeeze in more memory ops per iteration, so we'd still need 5
instructions.

Problem M3.13.H

This is actually rather tricky. The correct answer is 5, because without interlocks, we can use the
registers just as values come in for them, using the execution units to “store” the loops. The
intuitive answer is 100 though.

Problem M3.13.I

There are approximately 100 instructions required, because maximum latency will be 100 cycles.

Problem M3.14: VLIW & Vector Coding [?? Hours]

Ben Bitdiddle has the following C loop, which takes the absolute value of elements within a
vector.

for (i = 0; i < N; i++) {
 if (A[i] < 0)
 A[i] = -A[i];
}

Problem M3.14.A

; Initial Conditions:
; R1 = N
; R2 = &A[0]

 SGT R3, R1, R0

BEQZ R3, end ; R3 = (N > 0) | special case N � 0
loop: LW R4, 0(R2) | SUBI R1, R1, #1 ; R4 = A[i] | N--
 SLT R5, R4, R0 | ADDI R2, R2, #4 ; R5 = (A[i] < 0) | R2 = &A[i+1]
 BEQZ R5, next | ; skip if (A[i]�0)

SUB R4, R0, R4 | ; A[i] = -A[i]
SW R4, -4(R2) | ; store updated value of A[i]

next: BNEZ R1, loop | ; continue if N > 0
end:

Average Number of Cycles: ½
 (6 + 4) = 5

; SOLUTION #2

 SGT R3, R1, R0
BNEZ R3, end ; R3 = (N > 0) | special case N � 0

loop: LW R4, 0(R2) | SUBI R1, R1, #1 ; R4 = A[i] | N--
 SLT R5, R4, R0 | ADDI R2, R2, #4 ; R5 = (A[i] < 0) | R2 = &A[i+1]
 BNEZ R5, next | SUB R4, R0, R4 ; skip if (A[i]�0) | A[i] = -A[i]
 SW R4, -4(R2) | ; store updated value of A[i]
next: BNEZ R1, loop | ; continue if N > 0
end:

Average Number of Cycles: ½
 (5 + 4) = 4.5

NOTE: Although this solution minimizes code size and average number of cycles per element for
this loop, it causes extra work because it subtracts regardless of whether it has to or not.

