
Last updated:
9/12/2009

17

Problem M1.5: Fully-Bypassed Simple 5-Stage Pipeline [0.5 Hours]

We have reproduced the fully bypassed 5-stage MIPS processor pipeline from Lecture 5 in
Figure M1.5-A. In this problem, we ask you to write equations to generate correct bypass and
stall signals. Feel free to use any symbol introduced in the lecture.

Problem M1.5.A Stall

Do we still need to stall this pipeline? If so, explain why. (1) Write down the correct equation
for the stall condition and (2) give an example instruction sequence which causes a stall.

Problem M1.5.B Bypass Signal

In Lecture L6, we gave you an example of bypass signal (ASrc) from EX stage to ID stage. In
the fully bypassed pipeline, however, the mux control signals become more complex, because we
have more inputs to the muxes in the ID stage.

Write down the bypass condition for each bypass path in Mux 1. Please indicate the priority of
the signals; that is, if all bypass conditions are met, indicate which signals have the highest and
the lowest priorities.

Bypass EX->ID ASrc = (rsD=wsE).we-bypassE.re1D (given in Lecture L5)

Bypass MEM->ID =

Bypass WB->ID =

Priority:

Problem M1.5.C Partial Bypassing

While bypassing gives us a performance benefit, it may introduce extra logic in critical paths and
may force us to lower the clock frequency. Suppose we can afford to have only one bypass in the
datapath. How would you justify your choice? Argue in favor of one bypass path over another.

Last updated:
9/12/2009

18

Figure M1.5-A: Fully-Bypassed MIPS Pipeline

ASrc
IR IR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdat

addr

wdata

rdata Data
Memory

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

Last updated:
9/12/2009

19

Problem M1.6: Basic Pipelining [1 Hour]

Unlike the Harvard-style (separate instruction and data memories) architectures, machines using
the Princeton-style have a shared instruction and data memory. In order to reduce the memory
cost, Ben Bitdiddle has proposed the following two-stage Princeton-style MIPS pipeline to
replace a single-cycle Harvard-style pipeline from our lectures.

Every instruction takes exactly two cycles to execute (i.e., instruction fetch and execute) and
there is no overlap between two sequential instructions; that is, fetching an instruction occurs in
the cycle following the previous instruction’s execution (no pipelining).

Assume that the new pipeline does not contain a branch delay slot. Also, don’t worry about self-
modifying code for now.

IR

0x4

clk

RegDst

PCSrc1 RegWrite

BSrc zero?

WBSrc

31

PCSrc2

ExtSelOpCode

0x4Add

rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

addr

wdata

rdata
Data
Memory

z
ALU

Add

OpSel

ALU
Control

clk

Add

we

MemWrite

clk

PC

PCen

IRen AddrSrc

clk

Figure M1.6-A: Two-stage pipeline, Princeton-style

Last updated:
9/12/2009

20

Problem M1.6.A Mux Control Signals (1)

Please complete the following control signals. You are allowed to use any internal signals (e.g.,
OpCode, PC, IR, zero?, rd1, data, etc.) but not other control signals (ExtSel, IRSrc, PCSrc, etc.).

Example syntax: PCEn = (OpCode == ALUOp) or ((ALU.zero?) and (not (PC == 17)))

You may also use the variable S which indicates the pipeline’s operation phase at a given time.

S := I-Fetch | Execute (toggles every cycle)

PCEn =

IREn =

AddrSrc = Case _____________

____________ => PC

____________ => ALU

Last updated:
9/12/2009

21

Problem M1.6.B Modified pipeline

After having implemented his proposed architecture, Ben has observed that a lot of datapath is
not in use because only one phase (either I-Fetch or Execute) is active at any given time. So he
has decided to fetch the next instruction during the Execute phase of the previous instruction.

Figure M1.6-B: Modified Two-stage Princeton-style MIPS Pipeline

Do we need to stall this pipeline? If so, for each cause (1) write down the cause in one sentence
and (2) give an example instruction sequence. If not, explain why. (Remember there is no delay
slot.)

Problem M1.6.C Mux Control Signals (2)

Last updated:
9/12/2009

22

Please complete the following control signals in the modified pipeline. As before, you are
allowed to use any internal signals (e.g., OpCode, PC, IR, zero?, rd1, data, etc.) but not other
control signals (ExtSel, IRSrc, PCSrc, etc.)

PCEnable =

AddrSrc = Case _____________

____________ => PC

____________ => ALU

IRSrc = Case _____________

____________ => nop

____________ => Mem

Last updated:
9/12/2009

23

Problem M1.6.D

Now we are ready to put Ben’s machine to the test. We would like to see a cycle-by-cycle
animation of Ben’s two-stage pipelined, Princeton-style MIPS machine when executing the
instruction sequence below. In the following table, each row represents a snapshot of some
control signals and the content of some special registers for a particular cycle. Ben has already
finished the first two rows. Complete the remaining entries in the table. Use * for “don’t care”.

Label Address Instruction
I1 100 ADD
I2 104 LW
I3 108 J I7
I4 112 LW
I5 116 ADD
I6 120 SUB
I7 312 ADD
I8 316 ADD

Time PC “IR” PCenable PCSrc1 AddrSrc IRSrc
t0 I1:100 - 1 pc+4 PC Mem
t1 I2:104 I1 1 Pc+4 PC Mem
t2
t3
t4
t5
t6

Last updated:
9/12/2009

24

Problem M1.6.E Self-Modifying Code

Suppose we allow self-modifying code to execute, i.e., store instructions can write to the portion
of memory that contains executable code. Does the two-stage Princeton pipeline need to be
modified to support such self-modifying code? If so, please indicate how. You may use the
diagram below to draw modifications to the datapath. If you think no modifications are required,
explain why.

Last updated:
9/12/2009

25

Problem M1.6.F

To solve a chip layout problem Ben decides to reroute the input of the WB mux to come from
after the AddrSrc MUX rather than ahead of the AddrSrc MUX. (The new path is shown with a
bold line, the old in a dotted line.) The rest of the design is unaltered.

How does this break the design? Provide a code sequence to illustrate the problem and explain
in one sentence what goes wrong.

Problem M1.6.G Architecture Comparison

Give one advantage of the Princeton architecture over the Harvard architecture.

Give one advantage of the Harvard architecture over the Princeton architecture.

Last updated:
9/12/2009

26

Problem M1.7: A 5-Stage Pipeline with an Additional Adder [1.5 Hours]

In this problem we consider a new datapath to improve the performance of the fully-bypassed 5-
stage 32-bit MIPS processor datapath given in Lecture 5 (reproduced in Figure M1.5-A). In the
new datapath the ALU in the Execute stage is replaced by a simple adder and the original ALU is
moved from the Execute stage to the Memory stage (See Figure M1.7-A). The adder in the 3rd
stage (formerly Execute) is used only for address calculations involving load/store instructions.
For all other instructions, the data is simply forwarded to the 4th stage.

The ALU will now run in parallel with the data memory in the 4th stage of the pipeline (formerly
Mem). During a load/store instruction, the ALU is inactive, while the data memory is inactive
during the ALU instructions. In this problem we will ignore jump and branch instructions.

Problem M1.7.A Elimination of a hazard

What hazard is the new datapath trying to eliminate? Give an example sequence of MIPS
instructions (five or fewer instructions) that would cause a hazard in the original datapath but not
in the new datapath.

Problem M1.7.B New hazard

Give an example sequence of MIPS instructions (five or fewer instructions) that would cause a
pipeline bubble in the new datapath, but not in the original datapath.

Problem M1.7.C Comparison

List the advantages and disadvantages of the new datapath. Which datapath would you
recommend? Justify your choice.

Last updated:
9/12/2009

27

Figure M1.7-A: 5-Stage Pipeline with an Additional Adder

PC A

Y

R M
D

1

addr
ins

Inst
Memory

Imm
Ext

add

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdat

addr

wdata

rdata
Data
Memory

we

A
2

ALU

B
2

B

M
D

2

Writeback to
register file

ALU execution and
memory access

Address
calculation

Instruction decode and
register read

Instruction
fetch

WB EX/MEM AC ID IF

IR

Last updated:
9/12/2009

28

Problem M1.7.D Stall Logic

Write the stall condition (in the style of Lecture L5) for the new hazard arising from the
modification to the data path. Please make use of the following signal names when writing your
stall equations.

Cdest

ws = Case opcode
ALU ⇒ rd
ALUi, LW ⇒ rt
JAL, JALR ⇒ R31

we = Case opcode
ALU, ALUi, LW ⇒ (ws ≠ 0)

 JAL, JALR ⇒ on
... ⇒ off

Cre
re1 = Case opcode

ALU, ALUi, LW,
SW, BZ,
JR, JALR ⇒ on
J, JAL ⇒ off

re2 = Case opcode
ALU, SW ⇒ on
... ⇒ off

Problem M1.7.E Datapath Improvement

Consider a MIPS ISA that only supports register indirect addressing, i.e., it has no displacement
(base+offset) addressing mode. Assuming the new machine only has to support this ISA, how
can the datapath be improved? Draw the new datapath showing your design. (You do not have
to show everything, only the important features like pipeline registers, major components, major
connections, etc.) Compare the hazards in this new datapath with the hazards in the datapath
shown in Figure M1.7-A and the original datapath in Lecture 5 (Figure M1.5-A). Justify the new
datapath.

Problem M1.7.F Displacement Addressing Synthesizing

If the MIPS ISA did not have displacement addressing, what would programmers do? Could you
still write the same programs as before? Explain.

Problem M1.7.G Jumps and Branches

Now we will consider jumps and branches for the pipeline shown in part A of this problem.
Assume that the branch target calculation is performed in the Instruction Decode stage. In what
pipeline stages can you put the logic to determine whether a conditional branch is taken (don’t
worry about duplicating logic)? What are the advantages and disadvantages of the different
choices? For each choice, consider the number of cycles for the branch delay, any additional
stall conditions and any potential changes in the clock period.

Last updated:
9/12/2009

29

Problem M1.8: Dual ALU Pipeline [1 Hour]

In this problem we consider further improvements to the fully bypassed 5-stage MIPS processor
pipeline presented in Lecture 5 and Problem M1.7. In this new pipeline we essentially replace
the Adder in stage 3 (Figure M1.7-A) by a proper ALU with the goal of eliminating all hazards
(Please see Figure M1.8-A).

The Dual ALU Pipeline has two ALUs: ALU1 is in the 3rd pipeline stage (EX1) and ALU2 is in
the 4th pipeline stage (EX2/MEM). A memory instruction always uses ALU1 to compute its
address. An ALU instruction uses either ALU1 or ALU2, but never both. If an ALU
instruction’s operands are available (either from the register file or the bypass network) by the
end of the ID stage, the instruction uses ALU1, otherwise, the instruction uses ALU2.

In this problem, assume that the control logic is optimized to stall only when necessary. You
may ignore branch and jump instructions in this problem.

Figure M1.8-A: Dual ALU Pipeline

A

Y

R M
D

1

addr
inst

Inst
Memory

Imm
Ext

rd1

GPRs

rs1
rs2
ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

A
2

ALU

B
2

B

M
D

2

Writeback to
register file

ALU2 execution
and memory access

ALU1 execution
and address
calculation

Instruction decode and
register read

Instruction
fetch

WB EX2/MEM EX1 ID IF

IR

ALU

P
C

Last updated:
9/12/2009

30

Problem M1.8.A ALU Usage

For the following instruction sequence, indicate which ALU each add instruction uses. Assume
that the pipeline is initially idle (for example, it has been executing nothing but nop instructions).
Registers involved in inter-instruction dependencies are highlighted in bold for your
convenience.

 ALU1 or ALU2?
add r1, r2, r3
lw r4, 0(r1)
add r5, r4, r6
add r7, r5, r8
add r1, r2, r3
lw r4, 0(r1)
add r5, r1, r6

Problem M1.8.B Control Signal

Fill in the equation for the control logic signal alu2ID. This signal is computed during the ID
stage. It should be true if the instruction will use ALU2, or false otherwise. Like other control
logic signals, alu2 travels down the pipeline with an instruction as alu2EX1 and alu2EX2/MEM,
you may use these signals in your equation if needed. In the equation, “+” means logical OR
and “·” means logical AND.

alu2ID = (((OPID = ALU) + (OPID = ALUi))
 ·((rsID = wsEX1) + (rtID = wsEX1)·re2ID)
 ·(wsEX1 ≠ 0)
 ·()
)

Last updated:
9/12/2009

31

Problem M1.8.C Instruction Sequences Causing Stalls

Indicate whether each of the following instruction sequences causes a stall in the pipeline.
Consider each sequence separately and assume that the pipeline is initially idle (for example, it
has been executing nothing but nop instructions). Registers involved in inter-instruction
dependencies are highlighted in bold for your convenience.

 Stall? (yes/no)
add r1, r2, r3
lw r4, 0(r1)

lw r1, 0(r2)
add r3, r1, r4
lw r5, 0(r1)

lw r1, 0(r2)
lw r3, 0(r1)

lw r1, 0(r2)
sw r1, 0(r3)

lw r1, 0(r2)
add r3, r1, r4
sw r5, 0(r3)

lw r1, 0(r2)
add r3, r1, r4

Problem M1.8.D Stall Equation

Give the stall equation for the new pipeline. It should be optimized so that the pipeline only
stalls when necessary to resolve data hazards. You may use the alu2 logic signals from
Question M1.8.B if needed.

stallID =

Last updated:
9/12/2009

32

Problem M1.9: Processor Design (Short Yes/No Questions) [1/12 Hour]

The following statements describe two variants of a processor which are otherwise identical. In
each case, circle "Yes" if the variants might generate different results from the same compiled
program, circle "No" otherwise. You must also briefly explain your reasoning. Ignore
differences in the time that each machine takes to execute the program.

Problem M1.9.A Interlock vs. Bypassing

Pipelined processor A uses interlocks to resolve data hazards, while pipelined processor B has
full bypassing.

Yes / No

Problem M1.9.B Delay Slot

Pipelined processor A uses branch delay slots to resolve control hazards, while pipelined
processor B kills instructions following a taken branch.

Yes / No

Problem M1.9.C Structural Hazard

Pipelined processor A has a single memory port used to fetch instructions and data, while
pipelined processor B has no structural hazards.

Yes / No

Problem M1.9.D Microcode

Microcoded machine A uses 32-bit microcode instructions, while microcoded machine B uses
64-bit microcode instructions.

Yes / No

Problem M1.9.E Stall Equation

Microcoded machine A has 32-bit data registers, while microcoded machine B has 64-bit data
registers.

Yes / No

