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Problem M1.5: Fully-Bypassed Simple 5-Stage Pipeline 
 
Problem M1.5.A Stall

 
We still need the logic for stalls, because we cannot prevent load-use hazard.  If a load instruction is followed by an 
instruction which takes the loaded value as a source operand, we cannot avoid stalling for a cycle.  The following 
instruction sequence illustrates this hazard. 
 
LW  R1, 0(R2)    # R1 <- M[R2] 
ADD R3, R5, R1   # R1 is a source operand of ADD (data dependency) 
       # The correct value of R1 is not available when 
       # ADD is in ID stage.  So it has to stall for a cycle. 
 
 
Problem M1.5.B Bypass Signal

 
Here are the bypass conditions. 
 
Bypass EX->ID ASrc = (rsD=wsE).we-bypassE.re1D  (given in Lecture L5) 
 
Bypass MEM->ID  = (rsD=wsM).weM.re1D 
 
Bypass WB->ID  = (rsD=wsW).weW.re1D 
 
Priority: Bypass EX->ID  > Bypass MEM->ID > Bypass WB->ID 
(In order to execute a given program correctly, the value from the latest producer must be taken if multiple bypass 
paths are active.)  
 
 
Problem M1.5.C Partial Bypassing

 
It is an open question and there is no single correct answer.  Here are a couple of issues to consider as a guideline. 
 
First, you may consider the penalty for not having all the bypass paths.  If we don’t have the bypass path EX→ID, 
we have to stall for three cycles for the hazard to be resolved.  Likewise, not having MEM→ID results in a stall of 
two cycles, and not having WB→ID, in one.  Therefore, you can conclude that the bypass path between EX→ID is 
the most beneficial. 
 
Secondly, the best bypass path depends on the access patterns of data.  The EX→ID bypass path is effective if a 
producer instruction is followed by a consumer, except load-use cases (See solution for M1.5.A).  On the other hand, 
the MEM→ID bypass path works best if there are many load-use cases or many (producer, consumer) pairs have an 
independent instruction between them.  Likewise, the WB→ID bypass path helps when many (producer, consumer) 
pairs are separated by exactly two independent instructions. 
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Problem M1.6: Basic Pipelining  
 
Problem M1.6.A Mux Control Signals (1)

 

PCEn = (S==Execute) 
 
IREn = (S==I-Fetch) 
 
 

AddrSrc = Case S 
 
I-Fetch => PC 
 
Execute  => ALU 
 

 
 
Problem M1.6.B Modified pipeline

 
A stall can occur in 2 different cases. 

1. A structural hazard in the shared memory. 
LD  R1, 16(R2) 
Any instruction following this LD instruction should be stalled. 

 
2. The other is caused by a control hazard, because we don’t have a delay slot. 

J 200 
Any instruction following this J instruction should be flushed. 

 

Problem M1.6.C Mux Control Signals (2)
 

 
PCEnable = not ((opcode == LW) or (opcode == SW)) 
 
 
 

 
AddrSrc = Case opcode 
 
not (LW or SW)  => PC 
 
(LW or SW)  => ALU 
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IRSrc = Case opcode 
 
LW or SW or Jump or Brtaken  => nop
 
Else  => Mem 
 

 
 
Problem M1.6.D 

 
Time PC “IR” PCenable PCSrc1 AddrSrc IRSrc 
t0 I1:100 - 1 pc+4 PC Mem 
t1 I2:104 I1 1 Pc+4 PC Mem 
t2 I3:108 I2 0 * ALU Nop
t3 I3:108 - 1 pc+4 PC Mem
t4 I4:112 I3 1 jabs PC Nop
t5 I7:312 - 1 pc+4 PC Mem
t6 I8:316 I7 1 pc+4 PC Mem

 
 
Problem M1.6.E Self-Modifying Code

 
The answer is no.  The hazard is resolved by the datapath itself because (1) memory accesses are 
serialized by the stall logic at the shared memory and (2) memory write takes only one cycle. 
 
Problem M1.6.F 

 
Due to this rerouting we will now have to stall even if it is an ALU instruction. 
 
Problem M1.6.G Architecture Comparison

 
The Princeton architecture is cheaper than the Harvard architecture, but the Harvard architecture 
is faster than the Princeton architecture. 
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Problem M1.7: A 5-Stage Pipeline with an Additional Adder 
 
Problem M1.7.A Elimination of a hazard

 
The new datapath is trying to eliminate the hazard that occurs when a load instruction is immediately followed by an 
ALU instruction that requires the value that was loaded.  In the original datapath, a pipeline interlock (stall) is 
needed for this type of an instruction sequence, an example of which is shown below.  In Ben’s datapath, this load-
use interlock is not required because the data from the load instruction can be immediately forwarded to the ALU. 
 
LW R1, 0(R3) 
ADDI R1, R1, #5 
 
Problem M1.7.B New Hazard  

 
The new hazard occurs when the result of an ALU operation is needed to calculate the address of a load or store 
instruction. 
 
ADDI R1, R1, #5 
LW R3, 3(R1) 
 
 
Problem M1.7.C Comparison  

 
Now an address-generation interlock is needed for the LW instruction in the sequence in M1.7.B.  Note that this new 
hazard affects both load and store instructions, while the original hazard only affected load instructions.  This is a 
disadvantage of the modified pipeline.  Also, the new datapath requires more hardware (another adder) than the 
original datapath.  However, the load-use hazard illustrated in Problem M1.7.A has been eliminated.  If we examine 
the behavior of typical programs, we will see that the percentage of load instructions resulting in the load-use 
interlock from Problem M1.7.A is higher than the percentage of all loads and stores resulting in the address-
generation interlock from Problem M1.7.B.  This is because many address calculations are based on values that 
change infrequently (e.g. the stack pointer does not change while a procedure is being executed).  If a base address 
register has not been recently changed, then there will be no address-generation interlock.  By contrast, when a load 
is issued, the load value is usually required within a few cycles, so a load-use interlock is much more likely.  
Whether performance is better on the original pipeline or on the modified pipeline will depend on the specific 
program. 
 
Problem M1.7.D Stall Logic

 
The stall equation for only the new hazard is given below.  The op signal is used to determine the instruction 
opcode. 
 
Stall = ((opID = LW) + (opID = SW)).(rsID = wsAC).((opAC = ALU) + (opAC = ALUi)).(wsAC ≠ 0) 
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Problem M1.7.E Datapath Improvement

 
If we eliminated the displacement addressing mode from the MIPS ISA and only supported register indirect 
addressing, then we would no longer need to compute an effective address for loads and stores.  We could improve 
the datapath by eliminating the AC (effective address calculation) stage from Ben’s modified pipeline, resulting in 
the following stages 
 

IF ID EX/MEM WB 
Instruction fetch Instruction decode 

and register fetch 
Execution of ALU 
operations or memory 
access 

Write-back to register 
file 

 
A diagram showing the new pipeline is given below. 

 
 
This new datapath does not have either of the hazards from Ben’s original or modified pipelines.  Thus, bubbles 
would not need to be inserted into the pipeline regardless of the instruction sequence, improving instruction 
throughput.  As a side note, the latency of a single instruction has also been reduced since there are now only 4 
stages instead of 5.  Although this does not improve performance in the steady state, a fewer number of stages does 
help because fewer pipeline registers and bypass paths are required.  However, this instruction set is limited in that it 
only supports register indirect addressing.  This means that displacement addressing would have to be synthesized 
from simpler instructions (see Problem M1.7.F). 
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Problem M1.7.F Displacement Addressing Synthesizing
 
Programmers could synthesize a displacement load/store instruction using the ADDi instruction, a scratch register, 
and the register indirect load/store instruction.  For example, to synthesize the following instruction with 
displacement addressing 
 
LW R1, 4(R2) 
 
we could use the following equivalent instruction sequence, where R3 is a temporary register 
 
ADDI R3, R2, #4 
LW R1, (R3) 
 
The same programs could be written as before using this technique.  However, using this limited ISA may increase 
the number of instructions in the program as compared to the original ISA. 
 
Problem M1.7.G Jumps and Branches

 
If Ben uses the ALU to resolve conditional branches in both his original pipeline and his modified pipeline shown in 
Problem M1.7.A, then there will be an additional cycle of branch delay in the new datapath because the ALU is now 
one stage later in the pipeline.  If we don’t worry about duplicating logic, then we can put a comparator in any stage 
of the pipeline (except Instruction Fetch, as the register file has not yet been read in this stage) in order to resolve 
conditional branches.  The table shown below compares each possible placement of the comparator. 
 

Comparator 
In Stage 

Number 
of Branch 

Delay 
Cycles 

Additional Stall Condition Change in Clock Period 

WB 4 None 
Will remain unchanged since comparator is 
simpler than ALU operation so it cannot be the 
critical path. 

EX/MEM 3 None 
Will remain unchanged since comparator is 
simpler than ALU operation so it cannot be the 
critical path. 

AC 2 
1 cycle stall when the 
ALU output or result of a 
load is used for the branch 

Will remain unchanged since comparator is 
simpler than ALU operation so it cannot be the 
critical path. 

ID 1 
2 cycle stall when the 
ALU output or result of a 
load is used for the branch 

Will likely increase the clock period since it now 
could be on the critical path (fetch register value + 
compare) 

 
Obviously placing the comparator in the Write-Back stage makes no sense since this doesn’t provide an advantage 
over placing the comparator in the Execute/Memory stage, and in fact, it increases the number of branch delay 
cycles by 1.  Placing the comparator in the Address Calculation stage instead of the Execute/Memory stage reduces 
the number of branch delay cycles by 1, but introduces a potential stall condition.  Since the branch delay affects all 
branches, while the stall condition would only affect some of the branches, placing the comparator in the Address 
Calculation stage is to be preferred over the Execute/Memory stage.  Finally, the comparator could be placed in the 
Instruction Decode stage.  If this doesn’t lengthen the critical path, then this would be the best placement, as the 
number of branch delay cycles is reduced to 1.  However, if it does lengthen the critical path—and it likely will—
then the increased cycle time would probably not be worth the reduction in the branch delay, as now all instructions 
will run more slowly. 
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Problem M1.8: Dual ALU Pipeline 
 
 
Problem M1.8.A ALU Usage

 
 

  ALU1 or ALU2? 
add r1, r2, r3 ALU1 
lw  r4, 0(r1)  
add r5, r4, r6 ALU2 
add r7, r5, r8 ALU2 
add r1, r2, r3 ALU1 
lw  r4, 0(r1)  
add r5, r1, r6 ALU1 

 
The following timeline shows the execution of the instructions, with the stage where each 
instruction produces its result highlighted in bold, and the bypassing between instructions shown 
by arrows. 
 
add1 IF ID EX1 EX2 WB       
lw1  IF ID EX1 MEM WB      
add2   IF ID EX1 EX2 WB     
add3    IF ID EX1 EX2 WB    
add4     IF ID EX1 EX2 WB   
lw2      IF ID EX1 MEM WB  
add5       IF ID EX1 EX2 WB 
 
The pipeline is initially idle, so the first add reads its operands from the register file in ID and 
uses ALU1.  The second add uses the result of the lw which is not available by the end of ID; 
therefore the add uses ALU2, and the load data is bypassed to it at the end of EX1.  The third add 
uses the result of the second, so its data is not available by the end of ID; it also uses ALU2, 
allowing the data to be bypassed to it at the end of EX1.  The fourth add has no dependencies on 
the previous instructions; it reads its operands from the register file in ID and uses ALU1.  The 
fifth add uses the result of the fourth add.  This value is bypassed to it at the end of ID from 
EX2/MEM, and it uses ALU1.   
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Problem M1.8.B Control Signal

 
alu2ID = ( ((OPID = ALU) + (OPID = ALUi))  
         ·((rsID = wsEX1) + (rtID = wsEX1)·re2ID)  
         ·(wsEX1 ≠ 0) 
         ·( (OPEX1 = LW) + alu2EX1  ) 
         ) 
 
An ALU instruction uses ALU2 if its operands are not available by the end of ID.  This occurs if 
the ALU instruction (in ID) uses the result of its immediately preceding instruction (in EX1) as a 
source, but the instruction will not produce its result until EX2/MEM.  The two classes of 
instructions which do not produce a result until EX2/MEM are LW instructions and ALU 
instructions which use ALU2.   
 
Note that the feedback dependence of alu2ID on alu2EX1 means that a sequence of ALU 
instructions following a LW will continue to use ALU2 as long as each instruction uses the result 
of its predecessor. 
 
Problem M1.8.C Instruction Sequences Causing Stalls

 

  Stall?  Explanation 
add r1, r2, r3 
lw  r4, 0(r1) No 

The add (in EX1) uses ALU1 and bypasses 
its result to the LW (in ID). 

lw  r1, 0(r2) 
add r3, r1, r4 
lw  r5, 0(r1) 

No 
The first LW (in EX2/MEM) bypasses its 
result to the add (in EX1) which will use 
ALU2, and also to the second LW (in ID). 

lw  r1, 0(r2) 
lw  r3, 0(r1) Yes 

The result of the first LW (in EX1) is not 
available in time for the second LW (in 
ID), so the second LW must stall. 

lw  r1, 0(r2) 
sw  r1, 0(r3) No 

The LW (in EX2/MEM) bypasses its result 
to the SW (in EX1) in time for it to store 
the data in EX2/MEM.

lw  r1, 0(r2) 
add r3, r1, r4 
sw  r5, 0(r3) Yes 

The LW (in EX2/MEM) bypasses its result 
to the add (in EX1) which will use ALU2.  
But, the  result of the add (in EX1) is not 
available in time for the SW (in ID), so the 
SW must stall.

lw  r1, 0(r2) 
add r3, r1, r4 No 

The LW (in EX2/MEM) bypasses its result 
to the add (in EX1) which will use ALU2. 
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Note that the base address operand for both LW and SW must be available by the end of ID, but 
the data operand for SW must only be available by the end of EX1. 
 
 
Problem M1.8.D Stall Equation

 
stallID = ( ((OPID = LW) + (OPID = SW))  
          ·(rsID = wsEX1)  
          ·(wsEX1 ≠ 0) 
          ·((OPEX1 = LW) + alu2EX1) 
          ) 
 
Since all instruction results are produced by the end of EX2/MEM, the operands for an 
instruction are always available by the end of EX1 even if it uses the result of its immediately 
preceding instruction as a source. 
 
The only stall condition is when the base address operand for a memory instruction is not 
available by the end of ID.  This occurs if the memory instruction (in ID) uses the result of its 
immediately preceding instruction (in EX1) as its base address, but the instruction will not 
produce its result until EX2/MEM.  The two classes of instructions which do not produce a result 
until EX2/MEM are LW instructions and ALU instructions which use ALU2. 
 
Note that ALU instructions never need to stall the pipeline.  They either use ALU1 if their 
operands will be available by the end of ID, or ALU2 if their operands will be available by the 
end of EX1. 
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Problem M1.9: Processor Design (Short Yes/No Questions) 
 
Problem M1.9.A Interlock vs. Bypassing

 
No. Data dependencies are preserved with either interlocks or bypassing, so the processors 
always generate the same results.  Bypassing improves performance by eliminating stalls. 
 
 
Problem M1.9.B Delay Slot

 
Yes. The instruction following a taken branch is executed on processor A, but killed on 
processor B so the processors can generate different results. 
 
 
Problem M1.9.C Structural Hazard

 
No.  Both processors retrieve the same data values.  There is only a performance difference 
because processor A must stall an instruction fetch to allow a load instruction to access memory. 
 
 
Problem M1.9.D Microcode

 
No. A wide variety of possible microcoded machines can implement the same user-level ISA 
semantics and generate the same results for all programs. 
 
 
Problem M1.9.E Stall Equation

 
Either answer is acceptable depending on assumptions about the compiler and ISA.    
No: The machines could always generate the same results for a 32-bit ISA.  Also, machine A 
could implement a 64-bit ISA by using two 32-bit registers to hold each 64-bit value and 
carefully handling overflow conditions. 
Yes: The machines could generate different results due to the different overflow properties of 
32-bit and 64-bit registers.  For example, if a value is shifted left, bits are lost using 32-bit 
registers that are retained with 64-bit registers. 


