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Problem M1.1: Self Modifying Code on the EDSACjr 
 
Problem M1.1.A Writing Macros For Indirection

 
One way to implement ADDind n is as follows: 
 
.macro ADDind(n) 
 STORE  orig_accum ; Save original accum 
 CLEAR    ; accum <- 0 
 ADD  n  ; accum <- M[n] 
 ADD  _add_op ; accum <- ADD M[n] 
 STORE  _L1  ; M[_L1] <- ADD M[n] 
 CLEAR    ; accum <- 0 
_L1: CLEAR    ; This will be replaced by  
     ; ADD M[n] and will have  
     ; the effect: accum <- M[M[n]] 
 ADD  _orig_accum ; accum <- M[M[n]] + original accum 
.end macro 
 
The first thing we do is save the original accumulator value.  This is necessary since the instructions we are going to 
use within the macro are going to destroy the value in the accumulator.  Next, we load the contents of M[n] into the 
accumulator.  We assume that M[n] is a legal address and fits in 11 bits.   
 
After getting the value of M[n] into the accumulator, we add it to the ADD template at _add_op.  Since the 
template has 0 for its operand, the resulting number will have the ADD opcode with the value of M[n] in the 
operand field, and thus will be equivalently an ADD M[n]. By storing the contents of the accumulator into the 
address _L1, we replace the CLEAR with what is equivalently an ADD M[n] instruction. Then we clear the 
accumulator so that when the instruction at _L1 is executed, accum will get M[M[n]].  Finally, we add the 
original accumulator value to get the desired result, M[M[n]] plus the original content of the accumulator. 
 
STOREind n can be implemented in a very similar manner. 
 
.macro STOREind(n) 
 STORE  _orig_accum ; Save original accum 
 CLEAR    ; accum <- 0 
 ADD  n  ; accum <- M[n] 
 ADD  _store_op ; accum <- STORE M[n]    
 STORE  _L1  ; M[_L1] <- STORE M[n] 
 CLEAR    ; accum <- 0 
 ADD  _orig_accum ; accum <- original accum 
_L1: CLEAR    ; This will be replaced by  
     ; STORE M[n], and will have the 
     ; effect: M[M[n]]<- orig. accum 
.end macro 
 
After getting the value of M[n] into the accumulator, we add it to the STORE template at _store_op.  Since the 
template has 0 for its operand, the resulting number will have the STORE opcode with the value of M[n] in the 
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operand field, and thus will be equivalently a STORE M[n] instruction.  As before, we store this into _L1 and 
then restore the accumulator value to its original value.  When the PC reaches _L1, it then stores the original value 
of the accumulator into M[M[n]]. 
 
BGEind and BLTind are very similar to STOREind.  BGEind is shown below.  BLTind is the same except that 
we use _blt_op instead of _bge_op. 
 
.macro BGEind(n) 
 STORE  _orig_accum ; Save original accum 
 CLEAR    ; accum <- 0 
 ADD  n  ; accum <- M[n] 
 ADD  _bge_op ; acuum <- BGE M[n] 
 STORE  _L1  ; M[_L1] <- BGE M[n] 
 CLEAR    ; accum <- 0 
 ADD  _orig_accum ; accum <- original accum 
_L1: CLEAR    ; This is replaced by BGE M[n] 
.end macro 
 
 
Problem M1.1.B Subroutine Calling Conventions

 
We implement the following contract between the caller and the callee: 

1. The caller places the argument in the address slot between the function-calling jump instruction and the 
return address.  Just before jumping to the subroutine, the caller loads the return address into the 
accumulator. 

2. In the beginning of a subroutine, the callee receives the return address in the accumulator. The argument 
can be accessed by reading the memory location preceding the return address.  The code below shows pass-
by-value as we create a local copy of the argument.  Since the subroutine receives the address of the 
argument, it’s easy to eliminate the dereferencing and deal only with the address in a pass-by-reference 
manner. 

3. When the computation is done, the callee puts the return value in the accumulator and then jumps to the 
return address. 

 
A call looks like 
 
  ......   ; preceding code sequence 
  clear 
  add  _THREE ; accum <- 3 
  bge  _here  ; skip over pointer 
_hereptr .fill  _here  ; hereptr = &here 
_here  add  _hereptr ; accum <- here+3 = return addr 
  bge  _sub  ; jump to subroutine 
      ; The following address location is 
      ; reserved for argument passing and  
      ; should never be executed as code: 
_argument .fill 6   ; argument slot 
  ......   ; rest of program 
 
(note that without an explicit program counter, a little work is required to establish the return address). 
 
The subroutine begins: 
 
_sub  store  _return ; save the return address 
  sub  _ONE  ; accum <- &argument = return address-1 
  store  _arg  ; M[_arg] <- &argument = return address-1 
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  clear 
  ADDind _arg  ; accum <- *(&arg0) 
  store  _arg  ; M[_arg] <- arg 
 
And ends (with the return value in the accumulator): 
 
  BGEind _return 
       
The subroutine uses some local storage: 
_arg  clear    ; local copy of argument 
_return clear    ; reserved for return address 
 
We need the following global constants: 
_ONE  or  1  ; recall that OR’s opcode is 00000 
_THREE or  3  ; so positive constants are easy to form 
   
The following program uses this convention to compute fib(n) as specified in the problem set.  It uses the indirection 
macros, templates, and storage from part M1.1.A. 
  
;; The Caller Code Section 
;; ......    ; preceding code sequence 
_caller clear 
  add  _THREE ; accum <- 3 
  bge  _here 
_hereptr .fill  _here 
_here  add  _hereptr ; accum <- here+3 = return addr 
  bge  _fib  ; jump to subroutine 
 
;; The following address location is reserved for 
;; argument passing and should never be executed as code 
arg0  .fill  4  ; arg 0 slot.  N=4 in this example 
 
_rtpnt end 
 
;; The fib Subroutine Code Section 
 
; function call prelude 
_fib  store  _return ; save the return address 
  sub  _ONE 
  store  _n  ; M[_n] <- &arg0 = return address-1 
  clear 
  ADDind _n  ; accum <- *(&arg0) 
  store  _n  ; M[_n] <- arg0 
  
; fib body 
  clear  
  store  _x  ; x=0 
  add  _ONE 
  store  _y  ; y=1 
  
  clear    ; if(n<2) 
  add  _n 
  sub  _TWO 
  blt  _retn 
  
  clear 
  store  _i  ; for (i = 0; 
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_forloop clear    ; i < n-1; 
  add  _n 
  sub  _ONE 
  sub  _i 
  sub  _ONE 
  blt  _done 
_compute clear 
  add  _x 
  add  _y 
  store  _z  ; z = x+y 
  clear 
  add  _y 
  store  _x  ; x = y 
  clear 
  add  _z 
  store  _y  ; y = z 
  
_next  clear         ; i++)  
  add  _i 
  add  _ONE 
  store  _i 
  bge  _forloop  
 
_retn    clear 
  add _n 
  BGEind _return ; return n 
  
_done  clear    
  add  _z 
  BGEind _return ; return z 
  
;; Global constants (remember that OR's opcode is 00000) 
 
_ONE  or 1 
_TWO  or 2 
_THREE or 3 
_FOUR  or 4 
 
These memory locations are private to the subroutine 
 
_return clear  ; return address 
_n  clear  ; n 
_x  clear 
_y  clear 
_z  clear 
_i  clear  ; index 
_result clear  ; fib 
 
Now we can see how powerful this indirection addressing mode is!  It makes programming much simpler.   
 
The 1 argument-1 result convention could be extended to variable number of arguments and results by 

1. Leaving as many argument slots in the caller code between the subroutine call instruction and the 
return address.  This works as long as both the caller and callee agree on how many arguments are 
being passed. 

2. Multiple results can be returned as a pointer to a vector (or a list) of the results. This implies an 
indirection, and so, yet another chance for self-modifying code. 
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Problem M1.1.C Subroutine Calling Other Subroutines

 
The subroutine calling convention implemented in Problem M1.1.B stores the return address in a fixed memory 
location (_return). When fib_recursive is first called, the return address is stored there. However, this 
original return address will be overwritten when fib_recursive makes its first recursive call. Therefore, your 
program can never return to the original caller! 
 


