
 1

 6.823 Computer System Architecture
. Module #1 Solutions (I)

(Problems M1.1 – M1.9)
Last Updated:

9/12/2009

http:/csg.csail.mit.edu/6.823/

Problem M1.1: Self Modifying Code on the EDSACjr

Problem M1.1.A Writing Macros For Indirection

One way to implement ADDind n is as follows:

.macro ADDind(n)
 STORE orig_accum ; Save original accum
 CLEAR ; accum <- 0
 ADD n ; accum <- M[n]
 ADD _add_op ; accum <- ADD M[n]
 STORE _L1 ; M[_L1] <- ADD M[n]
 CLEAR ; accum <- 0
_L1: CLEAR ; This will be replaced by
 ; ADD M[n] and will have
 ; the effect: accum <- M[M[n]]
 ADD _orig_accum ; accum <- M[M[n]] + original accum
.end macro

The first thing we do is save the original accumulator value. This is necessary since the instructions we are going to
use within the macro are going to destroy the value in the accumulator. Next, we load the contents of M[n] into the
accumulator. We assume that M[n] is a legal address and fits in 11 bits.

After getting the value of M[n] into the accumulator, we add it to the ADD template at _add_op. Since the
template has 0 for its operand, the resulting number will have the ADD opcode with the value of M[n] in the
operand field, and thus will be equivalently an ADD M[n]. By storing the contents of the accumulator into the
address _L1, we replace the CLEAR with what is equivalently an ADD M[n] instruction. Then we clear the
accumulator so that when the instruction at _L1 is executed, accum will get M[M[n]]. Finally, we add the
original accumulator value to get the desired result, M[M[n]] plus the original content of the accumulator.

STOREind n can be implemented in a very similar manner.

.macro STOREind(n)
 STORE _orig_accum ; Save original accum
 CLEAR ; accum <- 0
 ADD n ; accum <- M[n]
 ADD _store_op ; accum <- STORE M[n]
 STORE _L1 ; M[_L1] <- STORE M[n]
 CLEAR ; accum <- 0
 ADD _orig_accum ; accum <- original accum
_L1: CLEAR ; This will be replaced by
 ; STORE M[n], and will have the
 ; effect: M[M[n]]<- orig. accum
.end macro

After getting the value of M[n] into the accumulator, we add it to the STORE template at _store_op. Since the
template has 0 for its operand, the resulting number will have the STORE opcode with the value of M[n] in the

 2

operand field, and thus will be equivalently a STORE M[n] instruction. As before, we store this into _L1 and
then restore the accumulator value to its original value. When the PC reaches _L1, it then stores the original value
of the accumulator into M[M[n]].

BGEind and BLTind are very similar to STOREind. BGEind is shown below. BLTind is the same except that
we use _blt_op instead of _bge_op.

.macro BGEind(n)
 STORE _orig_accum ; Save original accum
 CLEAR ; accum <- 0
 ADD n ; accum <- M[n]
 ADD _bge_op ; acuum <- BGE M[n]
 STORE _L1 ; M[_L1] <- BGE M[n]
 CLEAR ; accum <- 0
 ADD _orig_accum ; accum <- original accum
_L1: CLEAR ; This is replaced by BGE M[n]
.end macro

Problem M1.1.B Subroutine Calling Conventions

We implement the following contract between the caller and the callee:

1. The caller places the argument in the address slot between the function-calling jump instruction and the
return address. Just before jumping to the subroutine, the caller loads the return address into the
accumulator.

2. In the beginning of a subroutine, the callee receives the return address in the accumulator. The argument
can be accessed by reading the memory location preceding the return address. The code below shows pass-
by-value as we create a local copy of the argument. Since the subroutine receives the address of the
argument, it’s easy to eliminate the dereferencing and deal only with the address in a pass-by-reference
manner.

3. When the computation is done, the callee puts the return value in the accumulator and then jumps to the
return address.

A call looks like

 ; preceding code sequence
 clear
 add _THREE ; accum <- 3
 bge _here ; skip over pointer
_hereptr .fill _here ; hereptr = &here
_here add _hereptr ; accum <- here+3 = return addr
 bge _sub ; jump to subroutine
 ; The following address location is
 ; reserved for argument passing and
 ; should never be executed as code:
_argument .fill 6 ; argument slot
 ; rest of program

(note that without an explicit program counter, a little work is required to establish the return address).

The subroutine begins:

_sub store _return ; save the return address
 sub _ONE ; accum <- &argument = return address-1
 store _arg ; M[_arg] <- &argument = return address-1

 3

 clear
 ADDind _arg ; accum <- *(&arg0)
 store _arg ; M[_arg] <- arg

And ends (with the return value in the accumulator):

 BGEind _return

The subroutine uses some local storage:
_arg clear ; local copy of argument
_return clear ; reserved for return address

We need the following global constants:
_ONE or 1 ; recall that OR’s opcode is 00000
_THREE or 3 ; so positive constants are easy to form

The following program uses this convention to compute fib(n) as specified in the problem set. It uses the indirection
macros, templates, and storage from part M1.1.A.

;; The Caller Code Section
;; ; preceding code sequence
_caller clear
 add _THREE ; accum <- 3
 bge _here
_hereptr .fill _here
_here add _hereptr ; accum <- here+3 = return addr
 bge _fib ; jump to subroutine

;; The following address location is reserved for
;; argument passing and should never be executed as code
arg0 .fill 4 ; arg 0 slot. N=4 in this example

_rtpnt end

;; The fib Subroutine Code Section

; function call prelude
_fib store _return ; save the return address
 sub _ONE
 store _n ; M[_n] <- &arg0 = return address-1
 clear
 ADDind _n ; accum <- *(&arg0)
 store _n ; M[_n] <- arg0

; fib body
 clear
 store _x ; x=0
 add _ONE
 store _y ; y=1

 clear ; if(n<2)
 add _n
 sub _TWO
 blt _retn

 clear
 store _i ; for (i = 0;

 4

_forloop clear ; i < n-1;
 add _n
 sub _ONE
 sub _i
 sub _ONE
 blt _done
_compute clear
 add _x
 add _y
 store _z ; z = x+y
 clear
 add _y
 store _x ; x = y
 clear
 add _z
 store _y ; y = z

_next clear ; i++)
 add _i
 add _ONE
 store _i
 bge _forloop

_retn clear
 add _n
 BGEind _return ; return n

_done clear
 add _z
 BGEind _return ; return z

;; Global constants (remember that OR's opcode is 00000)

_ONE or 1
_TWO or 2
_THREE or 3
_FOUR or 4

These memory locations are private to the subroutine

_return clear ; return address
_n clear ; n
_x clear
_y clear
_z clear
_i clear ; index
_result clear ; fib

Now we can see how powerful this indirection addressing mode is! It makes programming much simpler.

The 1 argument-1 result convention could be extended to variable number of arguments and results by

1. Leaving as many argument slots in the caller code between the subroutine call instruction and the
return address. This works as long as both the caller and callee agree on how many arguments are
being passed.

2. Multiple results can be returned as a pointer to a vector (or a list) of the results. This implies an
indirection, and so, yet another chance for self-modifying code.

 5

Problem M1.1.C Subroutine Calling Other Subroutines

The subroutine calling convention implemented in Problem M1.1.B stores the return address in a fixed memory
location (_return). When fib_recursive is first called, the return address is stored there. However, this
original return address will be overwritten when fib_recursive makes its first recursive call. Therefore, your
program can never return to the original caller!

