
 
 

 

Problem M3.16: Vector Machines [?? Hours] 
 
In this problem, we analyze the performance of vector machines.  We start with a baseline vector 
processor with the following features. 
 

• 32 elements per vector register 
• 8 lanes 
• One ALU per lane: 1 cycle latency 
• One MULT per lane: 2 cycle latency, fully pipelined 
• One LOAD/STORE unit per lane: 4 cycle latency, fully pipelined 
• No dead time 
• No support for chaining 
• Scalar instructions execute on a separate 5-stage fully-bypassed pipeline 

 
To simplify the analysis, we assume a magic memory system with no bank conflicts and no 
cache misses.  Also, scalar operands of vector instructions are read in the Decode stage. 
 
The program we will use for this problem is listed below. (In all questions, you should assume 
that arrays A, B and C do not overlap in memory.) 
 

C code 
 

for (i=0; i<328; i++) { 
    A[i] = A[i] * B[i]; 
    C[i] = C[i] + A[i]; 
} 

 



 
 

 

 
Problem M3.16.A  

 
Consider the implementation of the C-code on the vector machine that executes it in the least 
number of cycles. Assuming the following initial values, insert vector instructions to complete 
the implementation. 
 

o R1 points to A[0] 
o R2 points to B[0] 
o R3 points to C[0] 
o R4 contains the value 328 

 
 ANDI R5, R4, 31  # 328 mod 32 
 MTC1 VLR, R5   # set VLR to remainder 
loop: 
 LV V1, R1   # load A 
 LV V2, R2   # load B 
 SLL R7, R5, 2  
 ADD R1, R1, R7  # increment A ptr 
 ADD R2, R2, R7   # increment B ptr 
 ADD R3, R3, R7  # increment C ptr 
 SUB R4, R4, R5  # update loop counter 
 LI R5, 32   # reset VLR to max 
 MTC1 VLR, R5  
 BGTZ R4, loop  
 
 
 



 
 

 

 
Problem M3.16.B  

 
Complete the pipeline diagram below with the loop code from Question M3.16.A on the baseline 
vector processor for one loop iteration. Do not fill in scalar instructions. Assume the scalar 
registers are available immediately, whenever needed. You may not require the entire length of 
the table. 
 
The following supplementary information explains the diagram. 

Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and writeback (W). 
A vector instruction is also fetched (F) and decoded (D).  Then, it stalls (—) until its required vector 
functional unit is available.  With no chaining, a dependent vector instruction stalls until the previous 
instruction finishes writing back ALL of its elements.  A vector instruction is pipelined across all the lanes in 
parallel.  For each element, the operands are read (R) from the vector register file, the operation executes on 
the load/store unit (M) or the ALU (X) or the MUL (Y), and the result is written back (W) to the vector 
register file. Assume that there is no structural conflict on the writeback port. A stalled vector instruction does 
not block a scalar instruction from executing. 
LV1 and LV2 refer to the first and second LV instructions in the loop. 

cycle 
instr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

LV1 F D R M1 M2 M3 M4 W           
LV1    R M1 M2 M3 M4 W          
LV1     R M1 M2 M3 M4 W         
LV1      R M1 M2 M3 M4 W        
LV2  F D ⎯ ⎯ ⎯ R M1 M2 M3 M4 W       
LV2        R M1 M2 M3 M4 W      
LV2         R M1 M2 M3 M4 W      
LV2          R M1 M2 M3 M4 W      

                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   



 
 

 

 
Problem M3.16.C  

 
In this question, we analyze the performance benefits of chaining.   
 
Vector chaining is done through the register file. An element can be read (R) on the same cycle 
in which it is written back (W), or it can be read on any later cycle (chaining is flexible).   
 
Complete the pipeline diagram below, with loop code from Question M3.16.A on a chained 
vector processor for one loop iteration. Do not fill in scalar instructions. Assume the scalar 
registers are available immediately, whenever needed. You may not require the entire length of 
the table. 
 

cycle 
instr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

LV1 F D R M1 M2 M3 M4 W           
LV1    R M1 M2 M3 M4 W          
LV1     R M1 M2 M3M4 W         
LV1      R M1 M2M3 M4 W        
LV2  F D ⎯ ⎯ ⎯ R M1M2 M3 M4 W       
LV2        R M1 M2 M3 M4 W      
LV2         R M1 M2 M3 M4 W      
LV2          R M1 M2 M3 M4 W      

                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                 
                   
                   
                   
                 
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   

 
 



 
 

 

 
Problem M3.16.D  

 
What is the performance (flops/cycle) of the program with chaining? 
 
 
 
 
Problem M3.16.E  

 
Would loop unrolling of the assembly code improve performance without chaining? Explain. 
(You may rearrange the instructions when performing loop unrolling.) 
 
 
 



 
 

 

Problem M3.17: Vector Machines [?? Hours] 
 
In this problem, we analyze the performance of vector machines.  We start with a baseline vector 
processor with the following features. 
 

• 32 elements per vector register 
• 8 lanes 
• One ALU per lane: 1 cycle latency 
• One load/store unit per lane: 4 cycle latency, fully pipelined 
• No dead time 
• No support for chaining 
• Scalar instructions execute on a separate 5-stage pipeline 

 
To simplify the analysis, we assume a magic memory system with no bank conflicts and no 
cache misses.   
 
We consider the execution of the following loop. 
 

C code 
 

for (i=0; i<320; i++) { 
    C[i] = A[i] + B[i] – 1; 
} 

assembly code 
 
# initial conditions: 
#   R1 points to A[0]  
#   R2 points to B[0] 
#   R3 points to C[0] 
#   R4 = 1 
#   R5 = 320 
 
loop: 
  LV    V1, R1      # load A 
  LV    V2, R2      # load B 
  ADDV  V3, V1, V2  # add A+B 
  SUBVS V4, V3, R4  # subtract 1 
  SV    R3, V4      # store C 
  ADDI  R1, R1, 128 # incr. A pointer 
  ADDI  R2, R2, 128 # incr. B pointer 
  ADDI  R3, R3, 128 # incr. C pointer 
  SUBI  R5, R5, 32  # decr. count 
  BNEZ  R5, loop    # loop until done 

 



 
 

 

 
Problem M3.17.A  

 
Complete the pipeline diagram of the baseline vector processor running the given code. 
 
The following supplementary information explains the diagram: 

Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and writeback (W). 
A vector instruction is also fetched (F) and decoded (D).  Then, it stalls (—) until its required vector 
functional unit is available.  With no chaining, a dependent vector instruction stalls until the previous 
instruction finishes writing back all of its elements.  A vector instruction is pipelined across all the lanes in 
parallel.  For each element, the operands are read (R) from the vector register file, the operation executes on 
the load/store unit (M) or the ALU (X), and the result is written back (W) to the vector register file. 
A stalled vector instruction does not block a scalar instruction from executing. 
LV1 and LV2 refer to the first and second LV instructions in the loop. 

 
cycle 

instr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
LV1 F D R M1 M2 M3 M4 W            
LV1    R M1 M2 M3 M4 W           
LV1     R M1 M2 M3 M4 W          
LV1      R M1 M2 M3 M4 W         
LV2  F D ⎯ ⎯ ⎯ R M1 M2 M3 M4 W        
LV2        R M1 M2 M3 M4 W       
LV2         R M1 M2 M3 M4 W       
LV2          R M1 M2 M3M4 W       

ADDV   F D ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ R X1 W       
ADDV              R X1 W       
ADDV              R X1 W       
ADDV              R X1 W       
SUBVS    F D ⎯              
SUBVS                    
SUBVS                    
SUBVS                    

SV     F D ⎯             
SV                    
SV                    
SV                    

ADDI      F D X M W          
ADDI       F D X M W         
ADDI        F D X M W        
SUBI         F D X M W       
BNEZ          F D X M W       
LV1           F D ⎯       
LV1                    
LV1                    
LV1                    

 
 



 
 

 

 
Problem M3.17.B  

 
In this question, we analyze the performance benefits of chaining and additional lanes.  Vector 
chaining is done through the register file and an element can be read (R) on the same cycle in 
which it is written back (W), or it can be read on any later cycle (chaining is flexible).  For this 
question, we always assume 32 elements per vector register, so there are 2 elements per lane with 
16 lanes, and 1 element per lane with 32 lanes. 
 
To analyze performance, we calculate the total number of cycles per vector loop iteration by 
summing the number of cycles between the issuing of successive vector instructions.  For 
example, in Question M3.17.A, LV1 begins execution in cycle 3, LV2 in cycle 7 and ADDV in 
cycle 16.  Therefore, there are 4 cycles between LV1 and LV2, and 9 cycles between LV2 and 
ADDV. 
 
Complete the following table.  The first row corresponds to the baseline 8-lane vector processor 
with no chaining.  The second row adds flexible chaining to the baseline processor, and the last 
two rows increase the number of lanes to 16 and 32. 
(Hint: You should consider each pair of vector instructions independently, and you can ignore 
the scalar instructions.) 
 

Number of cycles between 
successive vector instructions Vector processor 

configuration LV1, 
LV2 

LV2, 
ADDV

ADDV, 
SUBVS

SUBVS,
SV 

SV, 
LV1 

Total cycles 
per vector 
loop iter. 

8 lanes, no chaining 4 9     
 

8 lanes, chaining  
 

     

16 lanes, chaining  
 

     

32 lanes, chaining  
 

     

 



 
 

 

 
Even with the baseline 8-lane vector processor with no chaining (used in Question M3.17.A), we 
can improve performance using software loop-unrolling and instruction scheduling.  As a first 
step, we unroll two iterations of the loop and rename the vector registers in the second iteration. 

 
loop: 
I1:    LV    V1, R1      # load A 
I2:    LV    V2, R2      # load B 
I3:    ADDV  V3, V1, V2  # add A+B 
I4:    SUBVS V4, V3, R4  # subtract 1 
I5:    SV    R3, V4      # store C 
I6:    ADDI  R1, R1, 128 # incr. A pointer 
I7:    ADDI  R2, R2, 128 # incr. B pointer 
I8:    ADDI  R3, R3, 128 # incr. C pointer 
I9:    SUBI  R5, R5, 32  # decr. count 
I10:   LV    V5, R1      # load A 
I11:   LV    V6, R2      # load B 
I12:   ADDV  V7, V5, V6  # add A+B 
I13:   SUBVS V8, V7, R4  # subtract 1 
I14:   SV    R3, V8      # store C 
I15:   ADDI  R1, R1, 128 # incr. A pointer 
I16:   ADDI  R2, R2, 128 # incr. B pointer 
I17:   ADDI  R3, R3, 128 # incr. C pointer 
I18:   SUBI  R5, R5, 32  # decr. count 
I19:   BNEZ  R5, loop    # loop until done 

 
Reorder the instructions in the unrolled loop to improve performance on the baseline vector 
processor (your solution does not need to be optimal). 
Provide a valid ordering by listing the instructions below (a few have already been filled in for 
you).  You may assume that the A, B and C arrays do not overlap. 
 

Instr. Number Instruction 
I1 LV    V1, R1 
I2 LV    V2, R2 
  
  
  
  
  
  
  
  
  
  
  
I15 ADDI  R1, R1, 128 
I16 ADDI  R2, R2, 128 
I17 ADDI  R3, R3, 128 
I9 SUBI  R5, R5, 32 
I18 SUBI  R5, R5, 32 
I19 BNEZ  R5, loop 

 
Problem M3.17.C 

 



 
 

 

Problem M3.18:  Vectorizing memcpy and strcpy [?? Hours] 
 
Ben Bitdiddle has bought a state-of-the-art vector machine, the Zirconium™, which has vector 
registers holding up to 32 elements, and has decided to vectorize his C library functions. As a 
starting point, he vectorizes the C function memcpy. The specification for memcpy is given as 

 
/* copy n words from ct to s, and return s.   */ 
/* The actual C code copies one byte at a time.   */ 
/* Our version copies one word at a time.     */ 
void *memcpy(void *s, void *ct, size_t n)  
 
Ben implements memcpy in the following fashion, assuming s, ct, and n are in registers R1, 
R2, and R3 respectively. Assume that there are no delay slots. 
 
    ADD    R5,R1,R0   ; store destination address in R5 
    ADD    R4,R2,R0   ; store source address in R4 
    ANDI   R6,R3,#31  ; N % 32 
    MTC1   VLR,R6   ; put length in vector length register 
loop: 
    LV     V1,R4 
    SV     R5,V1 
    SUB   R3,R3,R6   ; subtract elements 
    SLLI   R6,R6,#2 
    ADD    R4,R4,R6   ; bump source pointer 
    ADD    R5,R5,R6   ; bump destination pointer 
    ADDI   R6,R0,#32 
    MTC1   VLR,R6   ; reset to full length 
    BNEZ   R3,loop   ; any more to do? 
 
Problem M3.18.A  

 

The Zirconium processor has one load/store unit with a single lane that is fully pipelined with a 
latency of 10 cycles and a dead time of 10 cycles. Instructions do not need to spend an extra 
cycle writing back values. All scalar instructions are executed on a separate 5-stage pipelined 
fully-bypassed datapath. Therefore, the execution of scalar instructions and vector instructions 
maybe overlapped. How many cycles are required to copy each element when a very long 
memory vector is copied, i.e., in steady state? 



 
 

 

 

Problem M3.18.B  
 
Ben’s next target is strcpy, defined as follows: 
 
/* copy string ct to string s, including ‘\0’ and return s */ 
/* The actual C code copies one byte at time.              */ 
/* Our version copies one word at a time.        */ 
void *strcpy(void *s, void *ct) 
 
The difference between strcpy and memcpy is that strcpy terminates when it sees the string 
terminating character ‘\0’ while memcpy copies a given length. 

Ben makes several attempts to vectorize the code, but gives up deciding that it is not vectorizable. 
Alyssa, however, informs Ben that this function can be vectorized using some additional vector 
instructions listed below. 

 
CLZM R1,VM Counts the number of leading 0s in the vector-mask register VM and puts 

the result in R1. For example, if the contents of VM are 0001010...000, 
clzm R1,VM puts 3 into R1.  

 
S--V 

S--SV 

V1,V2 

F0,V1 

Compare the elements (EQ,NE,GT,LT,GE,LE) in V1 and V2. If the 
condition is true, put a 1 in the corresponding bit vector; otherwise put 0. 
Put the resulting bit vector in the vector-mask register (VM). The instruction 
S--SV performs the same compare but using a scalar value as one 
operand. 

 

Given the additional instructions, help Ben write vectorized code for the Zirconium processor. 
Assume s and ct are in register R1 and R2, respectively. The Zirconium processor does not 
have virtual memory and does not trap on memory protection violations on vector memory loads. 
Also, assume that a string must be word-aligned. The terminating character must start at a word 
boundary and the remaining 3 bytes after the terminating character must be 0x0. (Hint: The 
ASCII value of ‘\0’ is 0.) 

 
 
 
Problem M3.18.C  

 

Compare the performance of vectorized memcpy and vectorized strcpy with and without 
vector chaining. Specifically, how many cycles are required to transfer one element in steady 
state? Assume that there is one vector compare unit with one lane and one cycle latency that 
compares whether two values are equal.  



 
 

 

Problem M3.19: Performance of Vector Machines [?? Hours] 
 
The vector processor Germanium™ has a vector addition and a vector multiply unit with the 
following attributes. 
 
1) Vector registers have 32 elements. The vector register file supports 2 read ports and 1 write 

port for each addition unit and multiplication unit. 
 
2) The vector addition unit has a 2-cycle latency and is fully pipelined. 
 
3) The vector multiplication unit has a 3-cycle latency and is fully pipelined. 
 
You are now given the following code. 
 

I1: ADDV  V3,V2,V1 
I2: ADDV  V4,V2,V1 
I3: MULTV V5,V4,V3 
 

Note: All vectors are 32 elements in length. 
 
 
Problem M3.19.A  

 
Draw a pipeline diagram of the Germanium processor running the given code, assuming it has 8 
lanes, a 2-cycle dead time, and no vector chaining. Instruction fetch takes one cycle, so does 
instruction decode (unless the instruction is stalled). Reading data from the register file also takes 
one cycle. Use F for fetch, D for Decode, R for Vector register read and W for write back. 
 
How many cycles does the given code take to execute? Count execution time as the number of 
cycles from when the first result is written to when the last result is written (inclusive).  
 
Pipeline diagram for ADDV V3,V2,V1 and vector lengths of 24 elements, is shown below. 
Because we need to do 24 operations using 8 lanes, the vector register file should be read three 
times. X1 is the first stage of the addition unit and X2 is the second. In cycle 6, the results of the 
first 8 operations are written back. This instruction takes 3 cycles to execute. 
 
Time  
 
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 
F D R X1 X2 W   
   R X1 X2 W  
    R X1 X2 W 
 
 
 



 
 

 

 
Problem M3.19.B  

 
Draw a pipeline diagram of the Germanium processor running the given code, assuming it has 8 
lanes, no dead time, and vector chaining. Vectoring chaining is done through the register file. A 
vector unit can read an element from the register file in the same cycle it is being written back. 
How many cycles does the given code take to execute? 
 
 
 
Problem M3.19.C  

 
Draw a pipeline diagram of the Germanium processor running the given code, assuming it has 16 
lanes, no dead time, and vector chaining. How many cycles does the given code take to execute? 
 


