
Problem M3.16: Vector Machines [?? Hours] 

Problem M3.16.A  

Consider the implementation of the C-code on the vector machine that executes in a minimum 
number of cycles. Assuming the following initial values, insert vector instructions to complete 
the implementation. 

o R1 points to A[0] 
o R2 points to B[0] 
o R3 points to C[0] 
o R4 contains the value 328 

 ANDI R5, R4, 31  # 328 mod 32 
 MTC1 VLR, R5   # set VLR to remainder 
loop:
 LV V1, R1   # load A 
 LV V2, R2   # load B 
 LV V3, R3   # load C 
 MULV V4, V2, V1  # A * B 
 ADDV V5, V3, V4  # C + A 
 SV V4, R1   # store A 
 SV V5, R3    # store C 
 SLL R7, R5, 2  
 ADD R1, R1, R7  # increment A ptr 
 ADD R2, R2, R7   # increment B ptr 
 ADD R3, R3, R7  # increment C ptr 
 SUB R4, R4, R5   # update loop counter 
 LI R5, 32   # reset VLR to max 
 MTC1 VLR, R5  
 BGTZ R4, loop  



Problem M3.16.B  

The following supplementary information explains the diagram. 
Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and writeback (W).
A vector instruction is also fetched (F) and decoded (D).  Then, it stalls (—) until its required vector 
functional unit is available.  With no chaining, a dependent vector instruction stalls until the previous 
instruction finishes writing back ALL of its elements.  A vector instruction is pipelined across all the lanes in 
parallel.  For each element, the operands are read (R) from the vector register file, the operation executes on 
the load/store unit (M) or the ALU (X) or the MUL (Y), and the result is written back (W) to the vector 
register file. Assume that there is no structural conflict on the writeback port. A stalled vector instruction does 
not block a scalar instruction from executing. 
LV1 and LV2 refer to the first and second LV instructions in the loop. 

cycle
instr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

LV1 F D R M1 M2 M3 M4 W           
LV1    R M1 M2 M3 M4 W          
LV1     R M1 M2 M3 M4 W         
LV1      R M1 M2 M3 M4 W        
LV2  F D 
 
 
 R M1 M2 M3 M4 W       
LV2        R M1 M2 M3 M4 W      
LV2         R M1 M2 M3 M4 W      
LV2          R M1 M2 M3 M4 W      
LV3   F D 
 
 
 
 
 
 R M1 M2 M3M4 W      
LV3            R M1 M2M3M4 W      
LV3             R M1M2M3M4 W      
LV3              R M1M2M3M4 W      

MULV    F D 
 
 
 
 
 
 
 
 
 
 R Y1 Y2 W      
MULV              R Y1 Y2 W      
MULV              R Y1 Y2 W      
MULV              R Y1 Y2 W      
ADDV     F D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 R X1 W      
ADDV              R X1 W      
ADDV              R X1 W      
ADDV              R X1 W      

SV1      F D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 R M1M2M3M4 W      
SV1              R M1M2M3M4 W      
SV1              R M1M2M3M4 W     
SV1              R M1M2M3 M4 W    
SV2       F D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 R M1M2 M3M4 W 
SV2              R M1 M2M3 M4 W
SV2               R M1M2 M3M4 W
SV2                R M1 M2M3M4 W

                  
                  
                  
                  
                  



Problem M3.16.C  

cycle
instr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

LV1 F D R M1 M2 M3 M4 W           
LV1    R M1 M2 M3 M4 W          
LV1     R M1 M2 M3M4 W         
LV1      R M1 M2M3 M4 W        
LV2  F D 
 
 
 R M1M2 M3 M4 W       
LV2        R M1 M2 M3 M4 W      
LV2         R M1 M2 M3 M4 W      
LV2          R M1 M2 M3 M4 W      
LV3   F D 
 
 
 
 
 
 R M1 M2 M3M4 W      
LV3            R M1 M2M3M4 W      
LV3             R M1M2M3M4 W      
LV3              R M1M2M3M4 W      

MULV    F D 
 
 
 
 
 
 R Y1 Y2 W      
MULV             R Y1 Y2 W      
MULV              R Y1 Y2 W      
MULV              R Y1 Y2 W      
ADDV     F D 
 
 
 
 
 
 
 
 
 R X1 W      
ADDV              R X1 W      
ADDV              R X1 W      
ADDV              R X1 W     

SV1      F D 
 
 
 
 
 
 
 R M1M2M3M4 W    
SV1              R M1M2M3M4 W    
SV1              R M1M2M3M4 W    
SV1              R M1M2M3M4 W    
SV1       F D 
 
 
 
 
 
 
 
 
 
 R M1M2M3M4 W    
SV2              R M1M2M3M4 W    
SV2              R M1M2M3M4 W    
SV2              R M1M2M3M4 W    

   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19      
                  
                  
                  
                  
                  
                  



Problem M3.16.D  

What is the performance (flops/cycle) of the program with chaining? 

2*32/19

Problem M3.16.E  

Would loop unrolling of the assembly code improve performance without chaining? Explain. 
(You may rearrange the instructions when performing loop unrolling.) 

Yes. We can overlap some of the vector memory instructions from different loops. 



Problem M3.17: Vector Machines [?? Hours] 

Problem M3.17.A  

The following supplementary information explains the diagram: 
Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and writeback (W).
A vector instruction is also fetched (F) and decoded (D).  Then, it stalls (—) until its required vector 
functional unit is available.  With no chaining, a dependent vector instruction stalls until the previous 
instruction finishes writing back all of its elements.  A vector instruction is pipelined across all the lanes in 
parallel.  For each element, the operands are read (R) from the vector register file, the operation executes on 
the load/store unit (M) or the ALU (X), and the result is written back (W) to the vector register file. 
A stalled vector instruction does not block a scalar instruction from executing. 
LV1 and LV2 refer to the first and second LV instructions in the loop. 

cycle
instr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

LV1 F D R M1 M2 M3 M4 W           
LV1    R M1 M2 M3 M4 W          
LV1     R M1 M2 M3 M4 W         
LV1      R M1 M2 M3 M4 W        
LV2  F D 
 
 
 R M1 M2 M3 M4 W       
LV2        R M1 M2 M3 M4 W      
LV2         R M1 M2 M3 M4 W      
LV2          R M1 M2 M3M4 W      

ADDV   F D 
 
 
 
 
 
 
 
 
 
 
 R X1 W      
ADDV              R X1 W      
ADDV              R X1 W      
ADDV              R X1 W      
SUBVS    F D 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 R X1 W      
SUBVS              R X1 W      
SUBVS              R X1 W      
SUBVS              R X1 W      

SV     F D 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 R M1M2 M3M4   
SV              R M1 M2M3 M4  
SV              R M1M2 M3M4
SV               R M1 M2M3M4

ADDI      F D X M W         
ADDI       F D X M W        
ADDI        F D X M W       
SUBI         F D X M W      
BNEZ          F D X M W      
LV1           F D 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 R M1M2M3M4 W
LV1                 R M1M2M3M4 W
LV1                  R M1M2M3M4 W
LV1                   R M1M2M3M4 W



Problem M3.17.B  

Number of cycles between 
successive vector instructionsVector processor 

configuration LV1,
LV2

LV2,
ADDV

ADDV,
SUBVS

SUBVS,
SV

SV,
LV1

Total cycles 
per vector 
loop iter. 

8 lanes, no chaining 4 9 6 6 4 29 

8 lanes, chaining 4 5 4 2 4 19 

16 lanes, chaining 2 5 2 2 2 13 

32 lanes, chaining 1 5 2 2 1 11 

Note, with 8 lanes and chaining, the SUBVS can not issue 2 cycles after the ADDV because there 
is only one ALU per lane.  Also, since chaining is done through the register file, 2 cycles are 
required between the ADDV and SUBVS and between the SUBVS and SV even with 32 lanes (if 
bypassing was provided, only 1 cycle would be necessary). 



Instr. Number Instruction 
I1 LV    V1, R1
I2 LV    V2, R2
I6 ADDI  R1, R1, 128
I7 ADDI  R2, R2, 128
I10 LV    V5, R1
I11 LV    V6, R2
I3 ADDV  V3, V1, V2
I4 SUBVS V4, V3, R4
I5 SV    R3, V4
I12 ADDV  V7, V5, V6
I13 SUBVS V8, V7, R4
I8 ADDI  R3, R3, 128
I14 SV    R3, V8
I15 ADDI  R1, R1, 128
I16 ADDI  R2, R2, 128
I17 ADDI  R3, R3, 128
I9 SUBI  R5, R5, 32
I18 SUBI  R5, R5, 32
I19 BNEZ  R5, loop

This is only one possible solution.  Scheduling the second iteration’s LV’s (I10 and I11) before 
the first iteration’s SV (I5) allows the LV’s to execute while the load/store unit would otherwise 
be idle.  Interleaving instructions from the two iterations (for example, if I12 were placed 
between I3 and I4) could hide the functional unit latency seen with no chaining.  However, doing 
so would delay the first SV (I5), and hence, increase the overall latency.  This tension makes the 
optimal solution very tricky to find.  Note that to preserve the instruction dependencies, I6 and I7 
must execute before I10 and I11, and I8 must execute after I5 and before I14. 

Problem M3.17.C



Problem M3.18:  Vectorizing memcpy and strcpy [?? Hours] 

Problem M3.18.A  

Because there is only one load/store unit, SV instruction should wait at least till the last element 
of the LV instruction is issued. Since there is only one lane, each SV and LV instruction takes 32 
cycles to issue. In steady state, it takes 32 (LV) + 10 (dead time) + 32 (SV) + 10 (dead time) 
cycles per 32 elements, and 2.62 cycles per element. All scalar instructions can be overlapped 
with SV.

Problem M3.18.B  

We can vectorize strcpy using SEQSV and CLZM.  The algorithm is as follows. First, we load 
32 elements. Second, we use SEQSV to check whether each element has ‘\0’ or not. Third, we 
use CLZM to count the number of the elements before the first ‘\0’ in the vector and set the 
vector length to that number. Then, we do a vector store. If no element has ‘\0’ (i.e. the 
number is 32), we go back to the first step and load the next 32 elements. If a vector has ‘\0’,
strcpy ends. As discussed in the function definition, our strcpy copies one word at a time, 
and assumes that the string is word-aligned with the terminating character of 32-bit ‘\0’.

    ADD     R5,R1,R0 ; store destination address in R5 
    ADD     R4,R2,R0 ; store source address in R4 
    ADDI    R6,R0,#32   
    MTC1    VLR,R6  ; set vector length to 32 
    CVM 
    MOVI2FP F0,R0 
loop:
    LV      V1,R4 
    ADDI    R4,R4,#128 ; bump source pointer 
    SEQSV   F0,V1  ; setup the mask register 
    CLZM    R6,VM        ; number elements before ‘\0’ 
    MTC1    VLR,R6 
    SV      R5,V1 
    ADDI    R5,R5,#128 ; bump destination pointer 
    SUBI    R7,R6,#32    ;
    BEQZ    R7,loop  ; if no element has ‘\0’ goto loop  
    SLLI    R6,R6,#2     ; move destination pointer to
    SUBI    R5,R5,#128   ; the end of the string 
    ADD     R5,R5,R6     ; copy ‘\0’ 



Problem M3.18.C  

Without vector chaining, strcpy takes more cycles per element than memcpy since it has one 
additional vector instruction, SEQSV. It takes 32+10 (LV) + 32 (SEQSV) + 1 (CLZM) + 1 (MTC1)
+ 32 (SV) + 10 (dead time) = 118 cycles per 32 elements or 3.69 cycles per element. 

With vector chaining, the first element of V1 can be bypassed to SEQSV instruction after 10 
cycles.  Store can be executed only after we get the value of VLR, that is, after SEQSV, CLZM,
and MTC1. Therefore, it takes 10 (LV) + 32 (SEQSV) + 1 (CLZM) + 1 (MTC1) + 32 (SV) + 10 
(dead time) = 86 cycles per 32 elements or 2.69 cycles per element. 

In memcpy, both vector instructions (SV and LV) use the same functional unit. Therefore, the 
execution of two instructions cannot be overlapped even with vector chaining. Copying each 
element takes 2.62 cycles as in M3.18.A. With vector chaining, the performance of strcpy is 
comparable to that of memcpy.



Problem M3.19: Performance of Vector Machines [?? Hours] 

 
 
Problem M3.19.A  

With 8 lanes, a 2-cycle dead time and no vector chaining, we get the following pipeline diagram. 

Cycle
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

I1 F D R X1 X2 W                  
I1    R X1 X2 W                 
I1     R X1 X2 W                
I1      R X1 X2 W               
I2  F D D D D D D R X1 X2 W            
I2          R X1 X2 W           
I2           R X1 X2 W          
I2            R X1 X2 W         
I3   F D D D D D D D D D D D D R X1 X2 X3 W    
I3                 R X1 X2 X3 W   
I3                  R X1 X2 X3 W  
I3                   R X1 X2 X3 W

Since each vector has 32 elements, and there are 8 lanes, the vector register file needs to be read 
4 times for each instruction. Although I2 does not need the results of I1, both instructions use the 
vector add unit, so I2 must wait until after I1 completes its last read, plus an additional 2 cycles 
for dead time before beginning its first read. And because there is no chaining, I3, which is 
dependent on I2, needs to wait until I2 has finished its last write back before beginning its first 
read.

The execution time is 18 cycles (from cycle 6 to cycle 23, inclusive). 



Problem M3.19.B  

With 8 lanes, no dead time and flexible chaining, we get the following pipeline diagram. 

Cycle
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

I1 F D R X1 X2 W            
I1    R X1 X2 W           
I1     R X1 X2 W          
I1      R X1 X2 W         
I2  F D D D D R X1 X2 W        
I2        R X1 X2 W       
I2         R X1 X2 W      
I2          R X1 X2 W     
I3   F D D D D D D R X1 X2 X3 W    
I3           R X1 X2 X3 W   
I3            R X1 X2 X3 W  
I3             R X1 X2 X3 W 

With no dead time, I2 can issue its first read after the last read of I1. And with flexible chaining, 
I3 can begin its first read in the same cycle as the first write of I2. 

The execution time is 12 cycles (from cycle 6 to cycle 17, inclusive).

Problem M3.19.C  

With 16 lanes, no dead time and flexible chaining, we get the following pipeline diagram. 

Cycle
1 2 3 4 5 6 7 8 9 10 11 12 13

I1 F D R X1 X2 W        
I1    R X1 X2 W       
I2  F D D R X1 X2 W      
I2      R X1 X2 W     
I3   F D D D D R X1 X2 X3 W  
I3         R X1 X2 X3 W 

Since each vector has 32 elements, and there are 16 lanes, the vector register file needs to be read 
2 times for each instruction. 

The execution time is 8 cycles (from cycle 6 to cycle 13, inclusive). 


