
 
 

 

Problem M3.11: VLIW Programming [?? Hours] 
 
Ben Bitdiddle and Louis Reasoner have started a new company called Transbeta® and are 
designing a new processor named Titanium™. The Titanium processor is a single-issue in-order 
VLIW processor with: 
 

• 2 load/store units. There is no cache and a load has a latency of 4 cycles but is fully 
pipelined. 

• 1 integer ALU: single cycle 
• 1 floating-point multiplier: 3 cycles, fully pipelined 
• 1 floating-point adder: 2 cycles, fully pipelined 
• 1 branch unit with no delay slots and 100% branch prediction accuracy 
• 128 GPRs and 128 FPRs 

 
A single Titanium instruction can issue to all the above units simultaneously. By definition, the 
operations in a Titanium instruction are independent. Every operation in a Titanium instruction 
reads the operands and issues simultaneously. Thus, if one operation is waiting for a result of a 
previous Titanium instruction, the entire Titanium instruction is stalled in the decode stage. 
 
Everything is fully bypassed. Each functional unit has a dedicated writeback port, so there is 
never any contention. Writing to the same register multiple times in the same instruction is 
disallowed in the Titanium ISA. WAW hazards will also cause stalls. The Titanium ISA 
resembles MIPS, except that there can be up to 6 instructions on each line separated by 
semicolons. 
 
You have been hired to work on some hand-optimized math libraries. The most important of 
these is the dot-product, given by Σ(Xn×Yn). 
 
Problem M3.11.A 

 
Ben has translated dot-product from MIPS to the Titanium ISA 
 
// R1 – pointer to X 
// R2 – pointer to Y 
// R5 - n 
// R3 - temp 
// F4 - temp 
// F6 – result 
      MOVI2FP F6,R0 
loop: 
      L.S   F3,0(R1); L.S  F4,0(R2); ADDI R5,R5,#-1 
      MUL.S F3,F3,F4; ADDI R1,R1,#4 
      ADD.S F6,F6,F3; ADDI R2,R2,#4; BNEZ R5,loop 
 
Each iteration takes 9 cycles but the program averages 8 cycles per vector element. Alyssa P. 
Hacker says that it can be done in 1 cycle per vector element for long vectors. Show Ben and 
Louis what the code should be. Louis isn’t too bright so make sure your code is well commented. 



 
 

 

Problem M3.12: Trace Scheduling 
 
Trace scheduling is a compiler technique that increases ILP by removing control dependencies, 
allowing operations following branches to be moved up and speculatively executed in parallel 
with operations before the branch. It was originally developed for statically scheduled VLIW 
machines, but it is a general technique that can be used in different types of machines and in this 
question we apply it to a single-issue MIPS processor. 
 
Consider the following piece of C code (% is modulus) with basic blocks labeled. 
 
A:    if (data % 8 == 0) 
B:      X = V0 / V1; 
      else 
C:      X = V2 / V3; 
D:    if (data % 4 == 0) 
E:      Y = V0 * V1; 
      else 
F:      Y = V2 * V3; 
G: 
 
Assume that data is a uniformly distributed integer random variable that is set sometime before 
executing this code. 
 
     Program’s control flow graph                                       Decision tree 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The control flow graph and the decision tree both show the possible flows of execution through 
basic blocks.  However, the control flow graph captures the static structure of the program, while 
the decision tree captures the dynamic execution (history) of the program. 
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Problem M3.12.A  

 
On the decision tree, label each path with the probability of traversing that path.  For example, 
the leftmost block will be labeled with the total probability of executing the path ABDEG.  (Hint: 
you might want to write out the cases).  Circle the path that is most likely to be executed. 
 
 
 
 
Problem M3.12.B  

 
This is the MIPS code (no delay slots): 
 
A: lw r1, data 
 andi r2, r1, 7  ;; r2 <- r1%8 
 bnez r2, C 
B: div r3, r4, r5 ;; X <- V0/V1 
 j D 
C: div r3, r6, r7 ;; X <- V2/V3 
D: andi r2, r1, 3  ;; r2 <- r1%4 
 bnez r2, F 
E: mul r8, r4, r5 ;; Y <- V0*V1 
 j G 
F: mul r8, r6, r7 ;; Y <- V2*V3 
G: 
 
This code is to be executed on a single-issue processor without branch speculation.  Assume that 
the memory, divider, and multiplier are all separate, long latency, unpipelined units that can run 
in parallel.  Rewrite the above code using trace scheduling.  Optimize only for the most common 
path.  Just get the other paths to work.  Don’t spend your time performing any other 
optimizations.  Ignore the possibility of exceptions.  (Hint: Write the most common path first and 
then add fix-up code.) 
 
 
 
Problem M3.12.C  

 
Assume that the load takes x cycles, divide takes y cycles, and multiply takes z cycles. 
Approximately how many cycles does the original code take? (Ignore small constants.) 
Approximately how many cycles does the new code take in the best case? 
 



 
 

 

Problem M3.13: VLIW Machines [?? Hours] 
 
The program we will use for this problem is listed below. (In all questions, you should assume 
that arrays A, B and C do not overlap in memory.) 
 
 

C code 
 

for (i=0; i<328; i++) { 
    A[i] = A[i] * B[i]; 
    C[i] = C[i] + A[i]; 
} 

 
In this problem, we will deal with the code sample on a VLIW machine. Our machine will have 
six execution units. 
- two ALU units: latency one cycle, also used for branch operations 
- two memory units: latency three cycles, fully pipelined, each unit can perform either a store 

or a load 
- two FPU units: latency four cycles, fully pipelined, one unit can perform fadd operations, 

the other fmul operations. 
Our machine has no interlocks. The result of an operation is written to the register file 
immediately after it has gone through the corresponding execution unit: one cycle after issue for 
ALU operations, three cycles for memory operations and four cycles for FPU operations. The old 
values can be read from the registers until they have been overwritten. 
 
Below is a diagram of our VLIW machine. 
 

 
 

Two Integer Units, 
Single Cycle Latency 

Two Load/Store Units, 
Three Cycle Latency 

Two Floating-Point Units, 
Four Cycle Latency 

Int Op 2 Mem Op 1 Mem Op 2 FP ADD FP MULT Int Op 1 



 
 

 

The program for this problem translates to the following VLIW operations: 
 

loop: 1. ld f1, 0(r1) ; f1 = A[i] 
 2. ld f2, 0(r2) ; f2 = B[i] 
 3. fmul f4, f2, f1 ; f4 = f1 * f2 
 4. st f4, 0(r1) ; A[i] = f4 
 5. ld f3, 0(r3) ; f3 = C[i] 
 6. fadd f5, f4, f3 ; f5 = f4 + f3 
 7. st f5, 0(r3) ; C[i] = f5 
 8. add r1, r1, 4 ; i++ 
 9. add r2, r2, 4  
 10. add r3, r3, 4  
 11. add r4, r4, -1  
 12. bnez r4, loop ; loop 

 
 
Problem M3.13.A  

 
Table M3.13-1, on the next page, shows our program rewritten for our VLIW machine, with 
some operations missing (instructions 2, 6 and 7). We have rearranged the instructions to 
execute as soon as they possibly can, but ensuring program correctness. Please fill in the missing 
operations. (Note, you may not need all the rows.) 
 
 
 
Problem M3.13.B  

 
How many cycles are required to complete one iteration of the loop in steady state? What is the 
performance (flops/cycle) of the program? 
 
 
 
Problem M3.13.C  

 
How many VLIW instructions would the smallest software pipelined loop require? Explain 
briefly. Ignore the prologue and the epilogue. Note: You do not need to write the software 
pipelined version. (You may consult Table M3.13-1 for help.) 
 
 
 
Problem M3.13.D  

 
What would be the performance (flops/cycle) of the program? How many iterations of the loop 
would we have executing at the same time? 
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Problem M3.13.E  

 
If we unrolled the loop once, would that give us better performance? How many VLIW 
instructions would we need for optimal performance? How many flops/cycle would we get? 
Explain. 
 
 
 
Problem M3.13.F  

 
What is the optimal performance in flops/cycle for this program on this architecture? Explain. 
 
 
 
 
Problem M3.13.G  

 
If our machine had a rotating register file, could we use fewer instructions than in Problem 
M3.13.F and still achieve optimal performance? Explain. 
 
 
 
 
Problem M3.13.H  

 
Imagine that memory latency has just increased to 100 cycles. How many instructions 
(approximately) an optimal loop would require? (There is no rotating register file, and ignore 
prologue/epilogue). Explain briefly. 
 

5                50                100              200 
 
 
 
Problem M3.13.I  

 
Now our processor still has a memory latency of up to 100 cycles when it needs to retrieve data 
from main memory, but only 3 cycles if the data comes from the cache. Thus a memory 
operation can complete and write its result to a register anywhere between 3 and 100 cycles after 
being issued. Since our processor has no interlocks, other instructions will continue being issued. 
Thus, given two instructions, it is possible for the instruction issued second to complete and 
write back its result first. Circle how many instructions (approximately) are required for an 
optimal loop. Explain briefly. 
 

5                  50                100              200 



 
 

 

Problem M3.14: VLIW & Vector Coding [?? Hours] 
 
Ben Bitdiddle has the following C loop, which takes the absolute value of elements within a 
vector. 
 
for (i = 0; i < N; i++) { 
    if (A[i] < 0) 
        A[i] = -A[i]; 
} 
 
Problem M3.14.A  

 
Ben is working with an in-order VLIW processor, which issues two MIPS-like operations per 
instruction cycle.  Assume a five-stage pipeline with two single-cycle ALUs, memory with one 
read and one write port, and a register file with four read ports and two write ports.  Also assume 
that there are no branch delay slots, and loads and stores only take one cycle to complete.  Turn 
Ben’s loop into VLIW code.  A[i’s] and N are 32-bit signed integers. Initially, R1 contains N and 
R2 points to A[0]. You do not have to preserve the register values.  Optimize your code to 
improve performance but do not use loop unrolling or software pipelining.  What is the average 
number of cycles per element for this loop, assuming data elements are equally likely to be 
negative and non-negative? 
 
 
 
Problem M3.14.B  

 
Ben wants to remove the data-dependent branches in the assembly code by using predication. He 
proposes a new set of predicated instructions as follows. 
 
1) Augment the ISA with a set of 32 predicate bits P0-P31. 
2) Every standard non-control instruction now has a predicated counterpart, with the following 

syntax: 
 

(pbit1) OPERATION1 ; (pbit2) OPERATION2 
 
 (Execute the first operation of the VLIW instruction if pbit1 is set and execute the second 
operation of the VLIW instruction if pbit2 is set.) 

 
3) Include a set of compare operations that conditionally set a predicate bit. 
 
 CMPLTZ pbit,reg ; set pbit if reg < 0 
 CMPGEZ pbit,reg ; set pbit if reg >= 0 
 CMPEQZ pbit,reg ; set pbit if reg == 0 
 CMPNEZ pbit,reg ; set pbit if reg != 0 



 
 

 

Eliminate all forward branches from Question M314.A with the new predicated operations.  Try 
to optimize your code but do not use software pipelining or loop unrolling. 
 
What is the average number of cycles per element for this new loop? Assume that the predicate-
set compare instructions have a single cycle latency (i.e., they behave similarly to a regular ALU 
instruction including, full bypassing of the predicate bit). 
 
 
 
Problem M3.14.C  

 
Unroll the predicated VLIW code to perform two iterations of the original loop before each 
backward branch.  You should use software pipelining to optimize the code for both performance 
and code density.  What is the average number of cycles per element for a large value of N? 
 
 
 
Problem M3.14.D  

 
Now Ben wants to work with a vector processor with two lanes, each of which has a single-cycle 
ALU and a vector load-store unit.  Write-back to the vector register file takes a single cycle.  
Assume for this part that each vector register has at least N elements. 
 
Ben can also eliminate branches from his code by using vector masks.  He wants to introduce a 
vector mask register as follows. 
 
1) Augment the ISA with a vector mask register, VM. 
2) Every vector instruction now executes each element operation only if the corresponding bit 

in the mask register is set. 
3) Include compare operations that conditionally set the mask register. 
 
S--V 

S--SV 

V1,V2 

F0,V1 

Compare the elements (EQ,NE,GT,LT,GE,LE) in V1 and V2. If condition is 
true, put a 1 in the corresponding bit vector; otherwise put 0. Put the 
resulting bit vector in a vector-mask register (VM). The instruction S--SV 
performs the same compare but using a scalar value as one operand. 

 
Vectorize Ben’s C loop, and replace all branches using vector masks.  What is the average 
number of cycles per element for this loop in steady state for a very large value of N?   
 
 
 
Problem M3.14.E  

Modify the code from Part M3.14.D to handle the case when each vector register has m elements, 
where m may be less than N and is not necessarily a factor of N. 



 
 

 

Problem M3.15: Predication and VLIW [?? Hours] 
 
Problem M3.15.A  

 
Consider the following code. 
 

        l.s   f1, 0(r1)     ; f1 = *r1 
        seq.s r5, f10, f1   ;  
        bneq  f1, f10, else ; if f1==f10 
        add.s f2, f1, f11   ;    f2 = f1 + f11 
        b     if_end        ; else 
else:   add.s f2, f1, f12   ;    f2 = f1 + f12 
if_end: s.s   f2, 0(r2)     ; *r2 = f2 

 
Convert the code above to use predication rather than conditional branches. You should use the 
CMPLTZ, CMPGEZ, CMPEQZ or CMPNEZ instruction from Problem M3.14.B for predication. You 
may use negative predication for instructions, e.g. 
 

  (p1)  add r1, r2, r3    ; if (p1) r1 = r2 + r3 
  (!p1) add r1, r2, r3    ; if (!p1) r1 = r2 + r3 

 
 
 
Problem M3.15.B  

 
Our VLIW processor, called Adamantium, is very similar to the Titanium processor from 
Problem M3.11. Below are the details of our machine. Bold parts are different from Titanium. 
 

• 1 load/store unit: There is no cache and a load has a latency of 2 cycles and is fully pipelined. 
• 1 integer ALU: Single cycle latency 
• no floating-point multiplier unit 
• 1 floating-point adder: 2 cycles, fully pipelined 
• 1 branch unit with no delay slots and 100% branch prediction accuracy 
• 128 GPRs, 128 FPRs and 128 predicate registers 

 
Consider the following simple loop written in predicated MIPS assembler. 
 

loop:      l.s    f1, 0(r1)    ; f1 = *r1 
           cmpnez p1, f1       ; p1 = (f1 != 0) 
      (p1) add.s  f2, f1, f1   ; if (p1) f2 = f1+f1 
      (p1) s.s    f2, 0(r1)    ; if (p1) *r1 = f2 
           addi   r1, r1, #4   ; r1 += 4 
           bneq   r1, r2, loop ; if (r1!=r2) goto loop 
end: 

On the next page, in Table M3.15-1, we have converted the code above into Adamantium code 
and unrolled it twice. Complete a software pipelined version of this loop for Adamantium below 
in Table M3.15-2. You should assume that the number of times the loop needs to execute is 
divisible by the unrolling factor, thus the loop doesn’t need any fix-up code. 
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