
 21

Problem M2.8: Virtual Memory Bits

Problem M2.8.A

The answer depends on certain assumptions in the OS. Here we assume that the OS does

everything that is reasonable to keep the TLB and page table coherent. Thus, any change that

OS software makes is made to both the TLB and the page table.

However, the hardware can change the U bit (whenever a hit occurs this bit will be set) and the

M bit (whenever a page is modified this bit will be set). Thus, these are the only bits that need to

be written back. Note that the system will function correctly even if the U bit is not written back.

In this case the performance would just decrease.

It is also important to note, that if the entry is laid out properly in memory, all the hardware-

modified bits in the TLB can be written back to memory with a single memory write instruction.

Thus it makes no difference whether one or two bits have been modified in the TLB, because

writing back one bit or two bits still requires writing back a whole word.

Problem M2.8.B

An advantage of this scheme is that we do not need the TLB Entry Valid bit in the TLB

anymore. One bit savings is not very much.

A disadvantage of this scheme is that the kernel needs to ensure that all TLB entries always are

valid. During a context switch, all TLB entries would need to be restored (this is time-

consuming). And, in general, whenever a TLB entry is invalidated, it will have to be replaced

with another entry.

Problem M2.8.C

Changes to exceptions: ―Page Table Entry Invalid‖ and ―TLB Miss‖ exceptions are replaced

with exceptions ―TLB Entry Invalid‖ and ―TLB No Match‖

The TLB Entry Invalid exception will be raised if the VPN matches the TLB tag but the

(combined) valid bit is false. When this exception is raised the kernel will need to consult the

page table entry to see if this is a TLB miss (valid bit in page table entry is true), or an access of

an invalid page table entry (valid bit in page table entry is false). Depending on what the cause

of the exception was, it will then have to perform the necessary operations to recover.

The TLB No Match exception will be raised if the VPN does not match any of the TLB tags. If

this exception is raised the kernel will do the same thing it did when a TLB Miss occurred in the

previous design.

 22

Problem M2.8.D

When loading a page table entry into the TLB, the kernel will first check to see if the page table

entry is valid or not. If it is valid, then the entry can safely be loaded into the TLB. If the page

table entry is not valid, then the Page Table Entry Invalid exception handler needs to be called to

create a valid entry before loading it into the TLB. Thus we only keep valid page table entries in

the TLB. If a page table entry is to be invalidated, the TLB entry needs to be invalidated.

Changes to exceptions: Page Table Entry Invalid exception is not raised by the TLB anymore.

Problem M2.8.E

The solution for Problem M2.8.C ends up taking two exceptions, if the PTE has the combined

valid bit set to invalid. The first exception will be the TLB No Match exception, which will call a

handler. The handler will load the corresponding PTE into the TLB and restart the instruction.

The instruction will cause another exception right away, because the valid bit will be set to

invalid. The exception will be the TLB Entry Invalid exception.

The solution for Problem M2.8.D will only take one exception, because the handler for Page

Table Entry Invalid exception will get called by the TLB Miss handler. When the instruction that

caused the exception is restarted, it will execute correctly, because the handler will have created

a valid PTE and put it in the TLB.

Thus Bud Jet’s solution in M2.8.D will be faster.

Problem M2.8.F

Yes, the R bit can be removed in the same way we removed the V bit in 8.D. When loading a

page table entry into the TLB we check if the data page is resident or not. If it is resident, we can

write the entry into the TLB. If it is not resident, we go to the nonresident page handler, loading

the page into memory before loading the entry into the TLB. Thus, we only keep page table

entries of resident pages in the TLB. In order to preserve this invariant, the kernel will have to

invalidate the TLB entry corresponding to any page that gets swapped out. There’s no

performance penalty since the page was going to be loaded in from disk anyway to service the

access that triggered the fault.

Problem M2.8.G

The OS needs to check the permissions before loading the entry into the TLB. If permissions

were violated, then the Protection Fault handler is called. Thus, we only keep page table entries

of pages that the process has permissions to access.

 23

Problem M2.8.H

Whenever a page table entry is loaded into the TLB the U bit in the page table PTE can be set.

Thus, we do not need the U bit in the TLB entry anymore.

Whenever a Write Fault happens (store and W bit is 0) the kernel will check the page table PTE

to see if the W bit is set there. If it is not set the old Write Fault handler will be called. If the W

bit is set, then the kernel will set the M bit in the PTE, set the W bit in the TLB entry to 1, and

restart the store instruction. Thus, the M bit is not needed in the TLB either, and hence, TLB

entries do not need to be written back to the page table anymore.

 24

 Problem M2.9: Page Size and TLBs

Problem M2.9.A

The L1 index and L2 index fields are the same, but the Page Offset field subsumes the L3 index

and increases to 22 bits.

Problem M2.9.B Page Table Overhead

PTO4KB =
16 KB + 16 KB + 8 KB

=
40 KB

= 1.3%
3 MB 3 MB

PTO4MB =
16 KB + 16 KB

=
32 KB

= 0.8%
4 MB 4 MB

For the 4KB page mapping, one L3 table is sufficient to map the 768 pages since each contains

1024 PTEs. Thus, the page table consists of one L1 table (16KB), one L2 table (16KB), and one

L3 table (8KB), for a total of 40 KB. The 768 4KB data pages consume exactly 3MB. The total

overhead is 1.3%..

The page table for the 4MB page mapping, requires only one L1 table (16KB) and one L2 table

(16KB), for a total of 32 KB. A single 4MB data pages is used, and the total overhead is 0.8%.

Problem M2.9.C Page Fragmentation Overhead

PFO4KB =
0

= 0%
3 MB

PFO4MB =
1 MB

= 33%
3 MB

With the 4KB page mapping, all 3MB of the allocated data is accessed. With the 4MB page

mapping, only 3MB is accessed and 1MB is unused. The overhead is 33%.

L1 index

33 43

L2 index

22 32 21

Page Offset

0

11 bits 11 bits 22 bits

 25

Problem M2.9.D

Data TLB misses

Page table memory

references (per miss)

4KB: 768 3

4MB: 1 2

The program sequentially accesses all the bytes in each page. With the 4KB page mapping, a

TLB miss occurs each time a new page of the input or output data is accessed for the first time.

Since the TLB has more than 3 entries (it has 64), there are no misses during the subsequent

accesses within each page. The total number of misses is 768. With the 4MB page mapping, all

of the input and output data is mapped using a single page, so only one TLB miss occurs.

For either page size, a TLB miss requires loading an L1 page table entry and then loading an L2

page table entry. The 4KB page mapping additionally requires loading an L3 page table entry.

Problem M2.9.E

1.01 10 1,000 1,000,000

Although the 4KB page mapping incurs many more TLB misses, with either mapping the

program executes 2M loads, 1M adds, and 1M stores (where M = 2
20

). With the 4MB mapping,

the single TLB miss is essentially zero overhead. With the 4KB mapping, there is one TLB miss

for every 4K loads or stores. Each TLB miss requires 3 page table memory references, so the

overhead is less than 1 page table memory reference for every 1000 data memory references.

Since the TLB misses likely cause additional overhead by disrupting the processor pipeline, a

1% slowdown is a reasonable but probably conservative estimate.

 26

 Problem M2.10: Page Size and TLBs

Problem M2.10.A

If all data pages are 4KB

Address translation cycles = 100 + 100 +100 (for L1, L2 and L3 PTE)

Data access cycles = 4K * 100

(there is no cache, this assumes that memory access is byte-wise)

If all data pages are 1MB

Address translation cycles = 100 + 100 (for L1, L2 PTE)

Data access cycles = 1M * 100

(there is no cache, this assumes that memory access is byte-wise)

Problem M2.10.B

Address translation cycles = (256*3 + 3 + 1) * 100

(Note that the arrays are contiguous and share some PTE entries. 256 L3 PTEs per array * 3

arrays, 1 L2 PTE per array * 3 arrays, 1 L1 PTE)

Data access cycles = 3M*100

Problem M2.10.C

No. For the sample program given, all L3 PTEs are used only once.

Problem M2.10.D

4. (1 for L1 and 3 for L2)

Problem M2.10.E

This question was poorly worded. It was intended that the use of data cache will not be very

helpful since the 4K pages keep conflicting with each other in the cache.

 27

Problem M2.11: 64-bit Virtual Memory

This problem examines page tables in the context of processors with a 64-bit addressing.

Problem M2.11.A Single level page tables

12 bits are needed to represent the 4KB page. There are 64-12=52 bits in a VPN. Thus, there

are 2
52

 PTEs. Each is 8 bytes. 2
52

 * 2
3
 = 2

55
, or 32 petabytes!

Problem M2.11.B Let’s be practical

2
2
 segments * 2

(44-12)
 virtual pages = 2

34
 PTEs. 2

3
 (bytes/PTE) * 2

34
 PTEs = 2

37
 bytes.

It is possible to interpret the question as there being 3 segments of 2
44

 bytes. Thus we’d need:

3 segments * 2
(44-12)

 virtual pages = 2
33

 + 2
32

 PTEs. 2
3
*(2

33
+ 2

32
) = 2

36
 + 2

35
 bytes.

Problem M2.11.C Page table overhead

The smallest possible page table overhead occurs when all pages are resident in memory. In this

case, the overhead is

8(2
11

 + 2
11

*2
11

 + 2
11

*2
11

*2
10

) / 2
44

 2
35

/ 2
44

 1 / 2
9

The largest possible page table overhead occurs when only one data page is resident in memory.

In this case, we need 1 L0 page table, 1 L1 page table, 1 L2 page table in order to get data page.

Thus the overhead is:

8(2
11

 + 2
11

 + 2
10

) / 2
12

= 10

Problem M2.11.D PTE Overhead

PPN is 40-12=28 bits. 28+1+1+3=33 bits.

There are 31 wasted bits in a 64 bit page table entry. It turns out that some of the ―wasted‖ space

is recovered by the OS to do bookkeeping, but not much.

 28

Problem M2.11.E Page table implementation

The top level has 1024 = 2
10

 entries. Next level also has 1024 = 2
10

 entries. The 3
rd

 level has 512

= 2
9
 entries. So the table is as follows:

Index Length (bits)

Top-level (―page directory‖) 10

2
nd

-level 10

3
rd

-level 9

Problem M2.11.F Variable Page Sizes

Minimum = 4KB * 64 = 256KB

Maximum = 16MB * 64 = 1GB

Problem M2.11.G Virtual Memory and Caches

Alyssa’s suggestion solves the homonym problem. If we add a PID as a part of the cache tag, we

can ensure that two same virtual addresses from different processes can be distinghuished in the

cache, because their PIDs will be different.

Putting a PID in the tag of a cache does not solve the synonym problem. This is because the

synonym problem already deals with different virtual addresses, which presumably would have

different tags in the cache. In fact, those two virtual addresses would usually belong to different

processes, which would have different PIDs.

Ben is wrong in thinking that changing the cache to be direct mapped helps in any way. The

homonym problem still happens, because same virtual addresses still receive the same tags. The

synonym problem still happens because two different virtual addresses still receive different

tags.

One way to solve both these problems is to make the cache physically tagged, as described in

Lecture 10.

 29

Problem M2.12: Cache Basics

Problem M2.12.A

 Virtually indexed Physically indexed

Direct-mapped (A) G A, C, E, G

2-way Set-associative (B) C, G A, C, E, G

Problem M2.12.B

Index V Tags (way0) V Tags (way1)

0 1 0x45 0

1 1 0x3D 0

2 1 0x2D 1 0x25

3 1 0x1D 0

Problem M2.12.C

0x34 (hit: index 2)

-> 0x38 (miss: index 3)

-> 0x50 (miss: index 2)

-> 0x54 (hit: index 2)

-> 0x208 (hit: index 1)

-> 0x20C (hit: index 1)

-> 0x74 (miss: index 2)

-> 0x54 (hit: index 2)

Because there are 5 hits and 3 misses,

Average memory access time = 1 + 3 / 8 * 16 = 7 cycles

 30

Problem M2.13: Cache Basics

Problem M2.13.A

Virtual address 0x00030 -> Physical address (0x00D40)

VPN PPN

0x0100 0x0F01

0x0003 0x00D4

TLB states

Problem M2.13.B

Virtual address 0x00050 -> Physical address (0x00E20)

VPN PPN

0x0100 0x0F01

0x0101 0x0F02

0x0005 0x00E2

TLB states

Problem M2.13.C

New CPI = 2 + (0.01+0.02)*20 = 2.6

 31

Problem M2.14: Cache Basics (Fall 2010 Part A)

Problem M2.14.A

Suppose we have a virtually-indexed, physically-tagged 2-way set associative cache. Each

way has 8 cache blocks (i.e., there are 8 sets) and the block size is 8 bytes. The page size is 256

bytes, and the byte-addressed machine uses 16-bit virtual address and 16-bit physical address.

Do not worry about aliasing problems for this question.

The next diagram shows the corresponding breakdown of a virtual address and a physical

address in this system (index, tag, and byte offset). Replace ―A‖, ―B‖, ―C‖ and ―D‖ with bit

indexes showing the size of each field. Note that tags should contain the minimum number of

bits required to provide the information needed to check whether the cache hits.

A: __5__ B: __2__ C: __7__ D: __5__

Problem M2.14.B

Now, we test the cache by accessing the following virtual address. We provide the

corresponding binary number for the virtual address.

 0x0151 (0000000101010001)

The table below shows the current TLB states. After each address is accessed, complete tables on

the next page and show the progression of cache states (in the tables, inv = invalid, and the

column shows tags). Assume that the Least Recently Used (LRU) replacement policy is used.

―LRU way‖ bit in the cache represents the way that is least recently used. (Note that this bit

should also be updated if necessary.) You may only fill in the elements in the table when a

value changes from the previous table. Write tags in hexadecimal numbers. If the memory

access is a cache hit, mark with “V” where the hit occurred. Note that the cache uses physical

tags.

 32

Problem M2.14.C

Suppose we have a 2-way set-associative cache. Each way has 8 cache blocks (i.e., there are 8

sets) and the block size is 8 bytes/block, so the total is 128 bytes. The following figure shows

each cache block in this cache configuration.

0. Initial State

1. State after access 0x0151

idx

LRU

Way?

Tags

(Way 0)

Tags

(Way 1)

idx
LRU

Way?

Tags

(Way 0)

Tags

(Way 1)

 0 0 inv 0x40

0

 1 0 inv inv

1

 2 0 0x8B 0x14

2 1 0x69

 3 0 inv inv

3

 4 0 inv inv

4

 5 1 0x3F 0xAA

5

 6 0 inv inv

6

 7 1 0xC3 0x1F

7

 33

Cache Configuration

Suppose this cache is virtually indexed. A program wants to read from a virtual address 0x6E,

and the physical address of this virtual address 0x6E is unknown (could be arbitrary). Enumerate

all blocks (A,B,C,D,…) that can possibly hold the content of the virtual address 0x6E, for each

given page size in the next table.

Page Size Block(s) which can be mapped to

16 bytes F, N

32 bytes F, N

64 bytes F, N

Problem M2.14.D

Now, suppose the cache is physically indexed. A program wants to read from the same virtual

address 0x6E, and the physical address of this virtual address 0x6E is unknown (could be

arbitrary). Enumerate all blocks (A,B,C,D,…) that can possibly hold the content of the virtual

address 0x6E, for each given page size in the next table.

 34

Page Size Block(s) which can be mapped to

16 bytes B, D, F, H, J, L, N, P

32 bytes B, F, J, N

64 bytes F, N

 35

Problem M2.15: Hierarchical Page Table & TLB (Fall 2010 Part B)

Suppose there is a virtual memory system with 64KB page which has 2-level hierarchical page

table. The physical address of the base of the level 1 page table (0x01000) is stored in a special

register named Page Table Base Register. The system uses 20-bit virtual address and 20-bit

physical address. The following figure summarizes the page table structure and shows the

breakdown of a virtual address in this system. The size of both level 1 and level 2 page table

entries is 4 bytes and the memory is byte-addressed. Assume that all pages and all page tables

are loaded in the main memory. Each entry of the level 1 page table contains the physical

address of the base of each level 2 page tables, and each of the level 2 page table entries holds

the PTE of the data page (the following diagram is not drawn to scale). As described in the

following diagram, L1 index and L2 index are used as an index to locate the corresponding 4-

byte entry in Level 1 and Level 2 page tables.

2-level hierarchical page table

A PTE in level 2 page tables can be broken into the following fields (Don’t worry about status

bits for the entire part).

 36

Problem M2.15.A

Assuming the TLB is initially at the state given

below and the initial memory state is to the right, what

will be the final TLB states after accessing the virtual

address given below? Please fill out the table with the final

TLB states. You only need to write VPN and PPN

fields of the TLB. The TLB has 4 slots and is fully

associative and if there are empty lines they are taken first

for new entries. Also, translate the virtual address (VA)

to the physical address (PA). For your convenience, we

separated the page number from the rest with the

colon “:”.
.

VPN PPN

0x8 0x3

Initial TLB states

Virtual Address:

 0xE:17B0 (1110:0001011110110000)

VPN PPN

0x8 0x3

0xE 0x6

Final TLB states

VA 0xE17B0 => PA _________0x617B0__________

 37

Problem M2.15.B

What is the total size of memory required to store both the level 1 and 2 page tables?

4 * 4 (level 1) + 4 * 4* 4 (level 2) = 80 bytes

Problem M2.15.C

Ben Bitdiddle wanted to reduce the amount of physical memory required to store the page table,

so he decided to only put the level 1 page table in the physical memory and use the virtual

memory to store level 2 page tables. Now, each entry of the level 1 page table contains the

virtual address of the base of each level 2 page tables, and each of the level 2 page table entries

contains the PTE of the data page (the following diagram is not drawn to scale). Other system

specifications remain the same. (The size of both level 1 and level 2 page table entries is 4

bytes.)

Ben’s design with 2-level hierarchical page table

 38

Assuming the TLB is initially at the state given

below and the initial memory state is to the right

(different from M2.15.A), what will be the final TLB

states after accessing the virtual address given

below? Please fill out the table with the final TLB states.

You only need to write VPN and PPN fields of the TLB.

The TLB has 4 slots and it is fully associative and if there

are empty lines they are taken first for new entries. Also,

translate the virtual address to the physical address.

Again, we separated the page number from the rest with

the colon “:”.

.

Initial TLB states

Virtual Address:

0xA:0708 (1010:0000011100001000)

VPN PPN

0x8 0x1

0x2 0x1

0xA 0xF

Final TLB states

VA 0xA0708 => PA ____________0xF0708___________

VPN PPN

0x8 0x1

 39

Problem M2.15.D

Alice P. Hacker examines Ben’s design and points out that his scheme can result in infinite loops.

Describe the scenario where the memory access falls into infinite loops.

1. When the TLB is empty

2. When the VPN of the virtual address and the VPN of the level 1 page table entry are the

same

