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Computer System Architecture  

6.823 Quiz #1 

March 7th, 2014 

Professors Daniel Sanchez and Joel Emer 
 

 

This is a closed book, closed notes exam. 

 

 80 Minutes 

  16 Pages 

 
Notes: 

 Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 

 Please carefully state any assumptions you make. 

 Show your work to receive full credit. 

 Please write your name on every page in the quiz. 

 You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. 

 

 

 

  

 

 

Part A ________     40 Points 

Part B ________     35 Points 

Part C ________     25 Points 

 

 

 

TOTAL        ______  100 Points
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Part A: Execute Data Instruction (40 pts) 

 
One day, Ben Bitdiddle started an EDSACjr-based company. Ben wanted to leverage the 

speed of read-only memory and avoid the inherent hazards of the Princeton architecture, 

so he went with a Harvard architecture. Unfortunately, Ben’s system didn’t have any 

index registers, so he couldn’t write self-modifying code. That meant there were a large 

number of programs he couldn’t implement anymore. Ben decided to add an instruction 

to solve this problem. He called his new instruction EXD , for execute data. The EXD 

instruction treats the contents of the accumulator as a new instruction and executes 

whatever that instruction may be. If the accumulator does not contain a valid instruction, 

then EXD falls back on the processor’s fault handling for bad instructions (which you 

needn’t worry about). 

 

For example, from Handout #1 the instruction ADD 6 (which adds the contents of 

memory at address six to the accumulator) is encoded as: 0000 1000 0000 0110. 

 

Therefore if the contents of the accumulator are 0000 1000 0000 0110, the EXD 

instruction will interpret the accumulator as an ADD 6 instruction, and add the contents 

of memory at address six to the accumulator (now interpreted as the number: 0000 1000 

0000 0110 = 2054). So if memory at address six holds the value one, then the 

accumulator will become 0000 1000 0000 0111. (Which can be interpreted either as the 

instruction ADD 7 or the number 2055.) 

 

To simplify writing assembly code, Ben Bitdiddle also augments the EDSACjr’s 

instruction set with a load instruction, LD n. This load simply places the value in 

memory address n into the accumulator: ACC  Mem[n]. LD is encoded as 01011 n; 

that is, the opcode is 01011. 

 

Question 1 (5 points): 

 

When Ben shows his idea to Alyssa P. Hacker, she points out that EXD could cause an 

infinite loop. Provide a specific code sequence that illustrates Alyssa’s point, using EXD 

to loop forever. 

 
 LD exd 

exd: EXD 
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Question 2 (10 points): 

 

Ignoring Alyssa’s observation, Ben decided to implement his EXD instruction for the 

EDSACjr, but he started having trouble figuring out how to use it. Help Ben by writing a 

series of EDSACjr instructions that will perform an indirect reduced add (that is, the 

instructions will take a vector of pointers, follow each pointer, and sum up the values 

stored at the locations in memory that the pointers specify). In C++, this might look 

something like: 

 
int s=0; 

for (int i=0; i < 10; i++){ 

    s += *A[i]; 

} 

 

Fill in the template below with assembly code for this program on the Harvard EDSACjr. 

You can define memory contents for both the data and instruction memories. 

 
Data Mem                               Instr Mem

Addr Data 

A: 120 

 107 

 122 

  130 

 151 

 112 

 132 

 109 

 140 

 117 

 

s: 0 

i: 10 

 

107: 40 

109: 10 

112: 24 

117: 50  

120: 5 

122: 10 

130: 20 

132: 29 

140: 22 

151: 12 

 

one: 1 

 

ldz: LD 0 (0000 1000 0000 0000) 

lda: LD A (0000 1 + A) 

 
 

 

 

Addr  Data 

Loop: LD i 

 SUB one 

 BLT Done 

 STORE i 

 

 

 

 

 

 

 LD lda 

 ADD i 

 EXD 

 ADD ldz 

 EXD 

 ADD s 

 STORE s 

 

 

 

 

 

 

 

 

 

 CLEAR 

 BGE Loop 

Done: HLT 
 

 



Name ____________________________ 

 

Page 4 of 18 

 

Question 3 (15 points): 

 

Ben is so proud of his EXD instruction that he decides to implement it in MIPS using 

microprogramming, extending EXD to include a register field rs and then executing the 

contents of rs. 

 

First, write register transfer language (i.e. pseudocode like: A  PC) for Ben’s 

microcoded MIPS implementation of EXD: 

 

 

IR  Reg[rs] 

NOP; dispatch 

 

 

Fill in the sheet on the next page with the microcode for EXD. Use don’t cares (*) for 

fields where it is safe to use don’t cares. The solution should be elegant and efficient 

(fewest number of new states needed and hardware added). In order to further simplify 

this problem, ignore the busy signal and assume that the memory is as fast as the register 

file. You should try to optimize your implementation for minimum number of cycles 

necessary and for maximum number of don’t-care signals. 

 

Please comment your code clearly. If the pseudocode for a line does not fit in the space 

provided, or if you have additional comments, you may write in the margins as long as 

you do it neatly. Make sure that your microcode fetches the next instruction. 
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Bus-based MIPS architecture for microcoding.  
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State Pseudocode ld 

IR 

Reg 

sel 

Reg 

W 

En 

Reg 

ld 

A 

ld 

B 

ALU En 

ALU 

ld 

MA 

Mem 

W 

En 

Mem 

Ex 

Sel 

En 

Imm 

µBr Jump 

target 

Fetch0 MA  PC 

A  PC 

* PC 0 1 1 * * 0 1 * 0 * 0 Next * 

 IR  Mem 1 * * 0 0 * * 0 * 0 1 * 0 Next * 

 PC  A+4 

B  A+4 

0 PC 1 1 * 1 A+4 1 * * 0 * 0 Dis-

patch 

* 

                 

Nop0: - * * * 0 * * * 0 * * 0 * 0 Jump Fetch0 

                 

EXD: IR  Reg[rs] 1 rs 0 1 * * * 0 * * 0 * 0 Next * 

 NOP; dispatch * * * 0 * * * * * * 0 * * Dis-

patch 

* 
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Question 4 (10 points): 

 

Grateful for your help, Ben was nonetheless unhappy with the performance of the 

microcode. So he decided to implement a pipelined version of EXD. Ben realized that the 

EXD instruction was in and of itself a control hazard. Help Ben safeguard his pipeline. 

The diagram below shows the front end of the five-stage pipeline we used in class. A new 

datapath and mux have been added to move rd1 into the instruction register of the 

decode stage. 

 

 
 

Your task is to write the new stall signal (stall’) and fill in the missing signal, 

EXDmux. Write your signal in terms of signals (e.g., PC or rd1 or IRD) and feel free to 

use the old stall signal (stall). 

 

 

stall’  =  stall | Opcode(IRd) == EXD 

 

 

 

EXDmux =  Opcode(IRd) == EXD
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Part B: Write Effective Address Extensions (35 points) 

 
You’ve noticed that many programs execute code similar to the following during loops: 

 
LD  R1, 4(R2) 

ADD R2, R2, 4 

 

Or: 

 
ST  R1, 4(R2) 

ADD R2, R2, 4 

 

You want to optimize your architecture for this common case. You are going to do so by 

adding “write effective address” variants of the load and store instructions, LDWA and 

STWA. The semantics of these instructions are that they will perform the normal memory 

operation (LD or ST) and then write the effective address in the register that indexed into 

memory (not the register whose contents are read/written to memory). Specifically these 

instructions do the following: 

 
LDWA rs, rt, Imm: 

 rs  Memory[(rt) + Imm] 

 rt  (rt) + Imm 

 

STWA rs, rt, Imm: 

 Memory[(rt) + Imm]  (rs) 

 rt  (rt) + Imm 

 

These extensions allow us to rewrite the previous examples as: 

 
LDWA R1, R2, 4 

 

And: 

 
STWA R1, R2, 4 
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Question 1 (10 points): 

 

You start with implementing STWA. For the following sequence of instructions and the standard five-stage pipeline (shown above), 

indicate how each instruction will flow through the pipeline on the following page. Assume full bypassing and stall logic are 

implemented for your architecture. Use arrows to indicate forwarding and dashes for stalls, as illustrated. 
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Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 

LD R1, 0(R2) F D E M W         

ADD R3, R1, 10  F D - E M W       

LD R4, 0(R3)   F - D E M W      

STWA, R4, R1, 4     F D - E M W    

STWA R4, R1, 4      F - D E M W   

ADD R2, R1, R3        F D E M W  

 

Instructions cannot enter a pipeline stage that other instructions occupy. If an instruction is stalled in fetch, then no subsequent 

instruction can enter fetch until that instruction has moved to decode. 

 

This solution assumes all forwarding is done during decode, as in lecture. Bypassing from memory to execute can avoid the second 

stall because R1 is available at that point. This solution is also acceptable if indicated (next page). 
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Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 

LD R1, 0(R2) F D E M W         

ADD R3, R1, 10  F D - E M W       

LD R4, 0(R3)   F - D E M W      

STWA, R4, R1, 4     F D E M W     

STWA R4, R1, 4      F D E M W    

ADD R2, R1, R3       F D E M W   
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Question 2 (5 points): 

 

You next want to implement LDWA, and quickly realize that LDWA runs into a structural hazard on the register file. You decide to fix 

this by adding an extra writeback stage (W2) to your pipelined design as shown above. In one or two sentences, explain what the 

hazard is and why the additional stage fixes it (assume correct stall logic). 

 

The register file has a single write port, but LDWA writes two registers. Buffering the values to be written in an additional pipeline 

phase gives us two chances to write the register file per LDWA, but may force the pipeline to stall in writeback if there are multiple 

LDWAs. 
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Question 3 (10 points): 

 

Assume that the six-stage design above has full bypassing and correct stall logic. Fill in the pipeline for the instructions given below, 

using arrows and dashes as before. 

 

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 

LD R1, 0(R2) F D E M W1 W2        

ADD R3, R1, 10  F D - E M W1 W2      

LDWA R5, R3, 0   F - D E M W1 W2     

ADD R1, R3, R4     F D E M W1 W2    

LDWA R5, R3, 0      F D E M - W1 W2  

ADD R1, R5, R0       F D - E M W1 W2 

Register being 

written to RF 

- - - - R1 
LD 

- R3 
ADD 

R5 
LDWA 

R3 
LDWA 

R1 
ADD 

R5 
LDWA 

R3 
LDWA 

R1 
ADD 

Structural hazard on register file causes stalls in writeback (even with extra stage) as LDWAs write their registers.  
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Question 4 (5 points): 

 

Adding a second writeback stage is only one way to fix this structural hazard. An alternative design is to add a second write port to the 

register file. Quickly sketch the datapath for this design in the diagram above. You do not need to write the stall logic. (Additional 

signals are: we2, ws2, wd2.) 

 

IRw goes to we2 and ws2 via an independent path. Y is latched again in another register for writeback and written to wd2. Y can also 

be written directly to the register file, making stage four a combined Memory/ALU Writeback stage, but in this case we2 and ws2 

must come from IRe. 
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Question 5 (5 points): 

 

In one or two sentences, explain the tradeoffs between adding an additional pipeline stage vs. adding a write port to the register file. 

What conditions might favor one or the other design? 

 

Increasing the ports in the register file increases its size quadratically. If the register file is the critical path in the pipeline, this will 

slow down the processor, and no matter what it increases area and power overheads. On the other hand, if applications commonly stall 

on the structural hazard due to many LDWAs, it may be worth it to add a write port to the register file. An additional stage can also 

complicate bypassing and stalling logic, although this is likely to be less expensive than expanding the register file. (The latency of the 

additional pipeline stage, ignoring stalls, is not a major concern.)
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Part C: Caches (25 points) 

 

Your processor has an 8-line level 1 data cache as illustrated below. Suppose that cache 

lines are 32 bytes (256 bits) and memory a 

ddresses are 16 bits, with byte-addressable memory. The cache is indexed by low bits 

without hashing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T T T T T T T T I I I O O O O O 
Question 1 (10 points): 

 

Divide the bits of the address according to how they are used to access the cache (tag, 

index, offset). Drawn above (letters). Block size is 32 bytes, so there are five offset bits. 

We have 8 lines in a direct mapped organization (as indicated by diagram), so we need 

three index bits. The remaining 8 bits constitute the tag. 

 

What exactly is contained in the cache tags? (Include all bits necessary for correct 

operation of the cache as discussed in lecture.) The tag bits of address and valid and dirty 

bits (dirty not required since lecture didn’t cover cache writes). Replacement policy bits 

are not present because the cache is direct mapped. 

 

How many bits in total are needed to implement the level 1 data cache? The cache 

consists of tag and data arrays, or 8 lines x (256 bytes/block + 10 bits/tag) = 2128 bits. 

Tags Data 

Address (16 bits) 
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Question 2 (5 points): 

 

Suppose the processor accesses the following data addresses starting with an empty 

cache: 

 
0x0028: 0000 0000 0010 1000 Miss 

0x102A: 0001 0000 0010 1010 Miss 

0x9435: 1001 0100 0011 0101 Miss 

0xEFF4: 1110 1111 1111 0100 Miss 

0xBEEF: 1011 1110 1110 1111 Miss 

0x4359: 0100 0011 0101 1001 Miss 

0x01DE: 0000 0001 1101 1110 Miss 

0x8075: 1000 0000 0111 0101 Miss 

0x9427: 1001 0100 0010 0111  Hit 

 

What would the level 1 data cache tags look like after this sequence? How many hits 

would there be in the level 1 data cache? (Don’t worry about filling in the Data column – 

we didn’t give you the data!) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We did not knock off points for not showing status bits, although an exact solution would 

show which lines were dirty and valid. (Dirty is ambiguous since the problem doesn’t 

specify whether accesses are reads or writes.) 

- 

0x00, 0x10, 0x94 

0x43 

0x80 

- 

- 

0x01 

0xEF, 0xBE 

Tags 
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Question 3 (10 points): 

 

Suppose that the level 1 data cache has a hit rate of 40% on your application, an access 

time of a single cycle, and a miss penalty to memory of forty cycles. What is the average 

memory access time? 

 

AMAT = hit time + miss rate * miss penalty 

 = 1 + (1 - 0.4) * 40 

 = 25 cycles 

 

Or, equivalently: 

 

AMAT = hit rate * hit time + miss rate * miss time 

 = 0.4 * 1 + 0.6 * (1 + 40) 

 = 25 cycles 

 

You aren’t happy with your memory performance, so you decide to add a level two 

cache. Suppose the level two cache has a hit rate of 50%. What access time must the level 

two cache have for this to be a good design (ie, reduce AMAT)? 

 

The L2 lies between the L1 and memory, and is only accessed if the L1 misses. To get to 

memory, you therefore need to miss in the L1 then miss in the L2 then go to memory (all 

sequentially). 

 

There are two ways to solve this problem. The first is to realize that if the L2 improves 

the system’s average memory access time, then it must improve the AMAT of accesses 

into it (ignoring whatever happens at the L1). In other words, each level of the cache 

hierarchy can be modeled independently of levels below it. This simplifies the problem to 

solving for the L2 access time such that: 

 

L2 AMAT < Memory time 

L2 access time + L2 miss rate * Memory time < Memory time  

L2 access time + 0.5 * 40 < 40 

L2 access time < 20 

 

If instead you model the full cache hierarchy, the L2 only sees lines that the miss in the 

L1. Thus with an L2, the L1’s miss penalty is the average memory access time of the L2. 

So the equation is: 

 
L1 access time + L1 miss rate * L2 AMAT < L1 access time + L1 miss rate * Memory 

time 

L2 AMAT < (L1 miss rate * Memory time + L1 access time – L1 access time) / L1 miss 

rate 

L2 AMAT < Memory time 

 

Now we are back to the formula we derived first by solving the L2 independently. 


