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Computer System Architecture  

6.823 Quiz #2 

April 4th, 2014 

Professors Daniel Sanchez and Joel Emer 
 

 

This is a closed book, closed notes exam. 

 

 80 Minutes 

  15 Pages 

 
Notes: 

 Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 

 Please carefully state any assumptions you make. 

 Show your work to receive full credit. 

 Please write your name on every page in the quiz. 

 You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. 

 

 

 

  

 

 

Part A ________       30 Points 

Part B ________       25 Points 

Part C ________       30 Points 

Part D ________       15 Points 

 

 

 

TOTAL        ________  100 Points
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Part A: Virtual Memory (30 pts) 

 
Ben Bitdiddle decides to build a cache with the following properties: 

 16 blocks with 64-bytes per block. 

 2-way set associative organization. 

 Virtually indexed, physically tagged. 

 LRU replacement. 

His memory system looks like the following: 

 16-bit virtual and physical addresses. 

 1024-byte pages. 

 A single-level page table stored in physical memory. The page table base register 

(equal to 0x1000) holds the address of the start of the page table. 

 Page table entries are 16 bits, with the highest order bits indicating the physical 

page number, and the rest as status bits. 

 8-entry fully associative TLB. 

While running his architecture, he is curious about the performance of caches, so he asks 

for some help running through some operations. Fill out the final state of the cache and 

the TLB after the following virtual memory address accesses: 

 
0x05DB: 0000 0101 1101 1011 

0x0B49: 0000 1011 0100 1001 

0x17FB: 0001 0111 1111 1011 

0x1C5E: 0001 1100 0101 1110 

0x35E3: 0011 0101 1110 0011 

 

The contents of physical memory follow after the cache diagrams on the next page. 
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Cache: 

Index Way 0 Way 1 

Valid? Tag Valid? Tag 

0 0  0  

1 1 1010110 0  

2 0  0  

3 0  0  

4 0  0  

5 1 1101101 0  

6 0  0  

7 1 1011100 1 0111011 

 

TLB: 

VPN PPN 

000001 101110 

000010 110110 

000101 011101 

000111 101011 

  

  

  

  

 

From the problem description, addresses are broken up as follows: 

 Virtual memory: 10-bit page offset, 6-bit page number (virtual and physical). 

 Cache: 6-bit block offset, 3-bit tag, 7-bit tag. 

The tag is larger than the page number so we don’t need to worry about using more bits 

of the address than is conventional. 

 

We proceed by looking up the physical page number in the page table from the virtual 

page number. For example, the virtual page number of the first address (0x05DB) is the 

top six bits, or 000001. This tells us to take the first (counting from zero) page table 

entry. Since page table entries are 16 bits and the page table starts at 0x1000, this is 

memory address 0x1002. From the physical memory given on the next page, the page 

table entry is 0xBABE. The physical page number is the top six bits (from problem 

description), which in this case is 101110. We can now enter this into the TLB as the first 

entry (the TLB is fully associative). 

 

Now, onto the cache. The PPN gives us the first six bits of the tag. The tag is seven bits, 

so we take the top bit of the page offset to complete the tag, which is 0 in this case, so the 

tag is 1010110. The index for this address is the next three bits of the page offset, or 111. 

This tells us to insert this tag into the last set in our cache, which we do and mark the set 

valid. 

 

This process repeats for the remaining addresses mechanically, with the third address 

(0x17FB) mapping to the same set as the first and thus using the second way. 
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Memory contents: 

 

Page Table Base Register 
0x1000 

 

Physical Memory 

Address  Value  
0x11FE : 0x7777 

0x11FC : 0xBABA 

0x11FA : 0xAB00 

0x11F8 : 0x1BD1 

0x11F6 : 0x9001 

0x11F4 : 0xAAAA 

0x11F2 : 0xB789 

0x11F0 : 0xDEF0 

 

… 

 

0x1022 : 0xBADE 

0x1020 : 0xBEAD 

0x101E : 0xDEAF 

0x101C : 0xFACE 

0x101A : 0x9ABC 

0x1018 : 0x5678 

0x1016 : 0x1234 

0x1014 : 0xFEED 

0x1012 : 0xD666 

0x1010 : 0xDEAD 

0x100E : 0xADD0 

0x100C : 0x00F0 

0x100A : 0x7734 

0x1008 : 0x3704 

0x1006 : 0x1337 

0x1004 : 0xDAB0 

0x1002 : 0xBABE 

0x1000 : 0xACE0
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Part B: Complex Pipelining (25 points) 
 

 
 

You are designing a processor with the complex pipeline illustrated above. For this 

problem assume there are no unconditional jumps or jump register—only conditional 

branches. 

 

Suppose the following: 

 Each stage takes a single cycle. 

 Branch addresses are known after stage Branch Address Calc/Begin Decode.  

 Branch conditions (taken/not taken) are known after Register File Read. 

 Initially, the processor always speculates that the next instruction is at PC+4, 

without any specialized branch prediction hardware. 

 Branches always go through the pipeline without any stalls or queuing delays. 
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Question 1 (5 points): 

 

How much work is lost (in cycles) on a branch misprediction in this pipeline? 

 

6 cycles are lost when stalls are inserted into pipeline stages A, P, F, B, I and J. 

 

 

 

Question 2 (5 points): 

 

If one quarter of instructions are branches, and half of these are taken, then how much 

should we expect branches to increase the processor’s CPI (cycles per instruction)? 

 

This answer is asking how much CPI is spent on branches in the machine, increase 

relative to a machine that never stalls on branches (e.g. has “magic fetch”). 

 

Branch CPI = misprediction rate x misprediction penalty 

 

From the problem description, we always predict PC+4 or “not taken”. So the 

misprediction rate is just the rate of taken branches. 

 

Branch CPI = fraction branches x fraction taken x misprediction penalty 

 

From the question: 

 

Branch CPI = ¼ x ½ x 6 = ¾  

 

Question 3 (5 points): 

 

You are unsatisfied with this performance and want to reduce the work lost on branches. 

Given your hardware budget, you can add only one of the following: 

 

 A branch predictor to your pipeline that resolves after Instruction Fetch Stage 1. 

 Or a branch target buffer (BTB) that resolves after Instruction Fetch Stage 2. 

 

If each make the same predictions, which do you prefer? In one or two sentences, why? 

 

Branch predictions earlier than B are unhelpful since we don’t have an address to jump to 

even if the branch is predicted taken. So although the BTB is available later in the 

pipeline, it is better to have the BTB since it gives us an address we can use to redirect 

fetch. 
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Question 4 (10 points): 

 

You decide to add the BTB (not the branch predictor). Your BTB is a fully tagged 

structure, so if it predicts an address other than PC+4 then it always predicts the branch 

address of a conditional branch (but not the condition!) correctly. For partial credit, 

show your work.  
 

If the BTB correctly predicts a next PC other than PC+4, what is the effect on the 

pipeline? 

 

We inject two stalls into stages A and P and redirect fetch to the BTB address. So we lose 

2 cycles. 

 

 

If the BTB predicts the next PC incorrectly, what is the effect on the pipeline? 

 

The BTB has exactly the same misprediction penalty as the baseline machine—6 cycles. 

This is true regardless of whether the BTB predicted PC+4 or a different address, since 

no matter what after an incorrect prediction the branch will be followed by six stalls in 

the pipeline. (The penalties are not additive.) 

 

 

 

Assume the BTB predicts PC+4 90% of the time. When the BTB predicts PC+4 it is 

accurate 90% of the time. Otherwise it is accurate 80% of the time. How much should we 

expect branches to increase the CPI of the BTB design? (Don’t bother trying to compute 

exact decimal values.) 

 

This is simply a matter of computing the probabilities of all combinations of prediction 

and accuracy and their associated penalties. 

 

Denote each case as “prediction/actual”. So “T/NT” means the BTB predicted a PC other 

than PC+4, but it turned out that PC+4 was the actual branch resolution. 

 

Branch CPI = T/T CPI + T/NT CPI + NT/T CPI + NT/NT CPI 

 

NT/NT CPI is zero since this just means the BTB predicted PC+4 and no stalls happened. 

 

T/T CPI incurs a penalty of 2 cycles (see above), and this happens when the BTB predicts 

a PC other than PC+4 (10%) and it is correct (80%). So T/T CPI = 2 * 0.1 * 0.8 

 

T/NT CPI and NT/T CPI both incur a penalty of 6 cycles (see above). These occur when 

the BTB is incorrect about its prediction: T/NT rate is 0.1 * 0.2, NT/T rate is 0.9 * 0.1. So 

T/NT CPI = 0.1 * 0.2 * 6 and NT/T CPI  = 0.9 * 0.1 * 6. 

 

Branch CPI = (0.1 * 0.2 + 0.9 * 0.1) * 6 + 0.1 * 0.8 * 2 = 0.82
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Part C: Out-of-order Execution (30 points) 

 

In this problem, we are going to update the state of the processor when different events happen. You are given an out-of-order 

processor in some initial state, as described by the registers (renaming table, physical registers, and free list), one-bit branch predictor, 

and re-order buffer. Your job is to show the changes that occur when some event occurs, starting from the same initial state except 

where noted. For partial credit, briefly describe what changes occur. 
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Question 1 (10 points): 

 

Show the state of the processor if the first load completes (but does not commit). 
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Question 2 (10 points): 

 

Show the state of the processor after the next instruction is issued. 
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Question 3 (5 points): 

 

From the state at the end of Question 2, as the next action can the processor issue (not execute) another instruction?  

 

No. There are no physical registers on the free list. 

 

 

 

 

 

 

In one or two sentences, what does this say about our design? How can we improve it? 

 

We didn’t solve Little’s Law correctly when we sized our physical register file. We need to make it bigger so it can support the 

number of instructions we have in flight in the ROB. 
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Question 4 (5 points): 

 

Show the state of the processor if the first LD triggers a page fault and after abort finishes. 
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Part D: Out-of-order Processor Design (15 points) 

 

 
 

You are designing an out-of-order processor similar to the IBM 360/91 Tomasulo design 

shown above. This design distributes the re-order buffer around the processor, placing 

entries near their associated functional units. In such a design, the distributed ROB 

entries are called “reservation stations”. Entries are allocated when the instruction is 

decoded and freed when the instruction is dispatched to the functional unit. 

 

Your design achieves an average throughput of 1.5 instructions per cycle. Two-thirds of 

instructions are adds, and one-third are multiplies. The latency of each instruction type 

from allocation to completion is 5 cycles for adds and 14 cycles for multiplies. 

 

Type of operation Fraction of instructions Average latency 

Add 2/3 5 

Multiply 1/3 14 

 

The adder and multiplier are each fully pipelined with full bypassing. Once an instruction 

is dispatched to the FU, the adder takes 2 cycles and the multiplier takes 5 cycles. 

 

Throughput Add latency Multiply latency 

1.5 2 5 
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Questions: 

 

How many entries are in use, on average, in the reservation station at each functional unit 

(adder, multiplier) in the steady state? Assume there are infinite entries available if 

needed. What is the average latency of an instruction in this machine? For partial credit, 

feel free to give any formulae you believe may be important to answer this question. 

 

This is a Little’s Law question: T = N / L. 

 

From the fraction of instructions and the machine’s total throughput, we can get the 

throughput of each type of instruction. 

 

Tadd = 2/3 * 3/2 = 1 

Tmul = 1/3 * 3/2 = 1/2 

 

To solve for the number of entries in use, we need to know the average latency an 

instruction spends in the reservation station. From the problem description, reservation 

stations are in use from allocation until the instruction is dispatched to the functional unit. 

So the latency in the reservation station itself is the end-to-end latency minus the latency 

of the functional unit. 

 

Lr,add = Ladd – Lfu,add = 5 – 2 = 3 cycles 

Lr,mul = Lmul – Lfu,mul = 14 – 5 = 9 cycles 

 

Thus the number of entries in use is on average: 

 

Nadd = Tadd * Lr,add = 3 

Nmul = Tmul * Lr,mul = 9 / 2 = 4.5 

 

The average latency can be computed from the frequency of instructions directly: 

 

L = 2/3 Ladd + 1/3 Lmul = 2/3 * 5 + 1/3 * 14 = 8 

 

Or from Little’s Law, but this is more complicated. We now want to know the number of 

adds and multiplies in flight. This is the number of entries plus the number of instructions 

in the FU themselves. The adder has an issue rate of 1, so the adder is always full. The 

multiplier has an issue rate of ½, so it is half full. Therefore: 

 

L = N / T = (3 + 2 + 4.5 + 5/2) / 1.5 = 8 

 

It’s nice to see that they agree, but really the first formulation is much easier. 


