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Computer System Architecture  

6.823 Quiz #4 

May 14th, 2014 

Professors Daniel Sanchez and Joel Emer 
 

 

This is a closed book, closed notes exam. 

 

 80 Minutes 

  15 Pages 

 
Notes: 

 Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 

 Please carefully state any assumptions you make. 

 Show your work to receive full credit. 

 Please write your name on every page in the quiz. 

 You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. 

 

 

 

  

 

 

Part A ________       25 Points 

Part B ________       55 Points 

Part C ________       20 Points 

 

 

 

TOTAL        ________  100 Points
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Part A: Network Effects (25 pts) 

 
You are choosing between several network topologies for your on-chip network, shown 

below. 

 

Ring: 

 
 

Mesh: 

 
 

Binary tree: 

 
 

Legend: 
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Question 1 (10 points): 

 

Your first task is to evaluate these topologies along several important dimensions. Fill in 

the table below as a function of the number of nodes in the network, N. You can safely 

assume N is an even power of 2, giving a complete mesh and binary tree. For partial 

credit, give the asymptotic growth instead. 

 

 Ring Mesh Tree 

Number 

of links 

𝑁 2(𝑁 − √𝑁) 2𝑁 − 2 

Diameter 

 

𝑁

2
 2(√𝑁 − 1) 2 log2𝑁 

Average 

distance 

𝑁

4
 

2(√𝑁 − 1)

3
 

≈ log2𝑁 

Bisection 

bandwidth 

2 √𝑁 1 

 

To compute the number of links, consider how many outgoing channels leave each 

router, and divide by 2 since they are bidirectional links. Then compute how many 

routers you need for N cores. In all cases, the number of links grows proportional to 𝑁 

since we are considering topologies where the number of channels per router is constant 

with respect to 𝑁. 
 

Ring: With a bidirectional ring, you have N routers and 2 outgoing channels for each, 

giving N bidirectional links. At worst you have to go half way around the ring to reach 

another node, for a diameter of 𝑁/2. On average you will need to do half of this, or 𝑁/4. 

To split the network in half, you must cut 2 links, for a bisection bandwidth of 2. 

 

Mesh: You have 4 outgoing channels for each router, except those on the perimeter of the 

mesh. So you expect the answer to be 2𝑁 minus those on the perimeter, or the number of 

channels on the edge divided by 2, 2√𝑁. The diameter of a mesh is the distance from the 

top-left to bottom-right, which is twice the number of links in each dimension. The 

average distance is complicated because, unlike the ring, the starting position makes a 

difference. Without going into details, this gives you length/3, and the length here is the 

length of a dimension. You have to traverse this for each dimension, so we multiply by 

two. Finally the bisection bandwidth is just the bandwidth across an even split of nodes in 

the network, or the length of a dimension, √𝑁. 

 

Tree: The tree is the most complicated to compute the number of links. To form a tree of 

size 𝑁, we combine two trees of size 𝑁/2. This gives a recurrence relation: the number of 

links for a tree of size 𝑁 is twice the number of links for 𝑁/2 nodes, plus 2. Or in other 
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words, 𝐿(𝑁) = 2𝐿(𝑁/2) + 2. This yields the solution 𝐿(𝑁) = 2𝑁 − 2. The diameter is 

the distance traversing up to the top of the tree and back down again—twice the 

logarithm of the number of nodes. The average distance is similar, since half the nodes 

are contained in the other side of the tree, so the distance is roughly proportional to 

log𝑁. The exact answer for this is very complicated and we were generous in awarding 

points. Finally, the bisection bandwidth is just a single link, since cutting any link at the 

root divides the network. 

 

Another question we could have asked, and is worth thinking about, is scenarios when 

each of these topologies could be better than the others. 

 

The ring requires the fewest links and simplest routers of the three topologies here. For 

small systems, it is probably the best choice, since the difference between diameter and 

average distance only becomes substantial as 𝑁 grows large. (At small 𝑁, rings can have 

lower distances actually.) 

 

A mesh is probably best for large systems since distances grow slowly—with the square 

root of 𝑁—and bisection bandwidth also grows with 𝑁—although not proportionally. 

The mesh requires the most complicated routers, however, so there are non-trivial costs 

in adopting a mesh topology. 

 

Finally the tree has the best asymptotic growth of distance and so might be beneficial for 

large systems, but only if bandwidth requirements are low since the bisection bandwidth 

is so low. Also note that we have computed average distance assuming uniform traffic. A 

well-designed parallel algorithm should account for locality, in which case the picture 

gets a lot murkier. 
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In a sudden flash of inspiration, you decide to use the following topology: 

 

 
 

Having decided upon a topology, you now want to make sure your system works 

properly. All links are bidirectional. 

 

Question 2 (5 points): 

 

Show how deadlock could arise in the network by drawing an example on the graph 

above. Explain your answer in one or two sentences. 

 

If B is sending a message to C through BAEC, and E is sending a message to A through 

ECBA, then B can grab BA and E can grab EC and the system is deadlocked. 
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Question 3 (10 points): 

 

Draw the channel dependency graph (CDG) for your topology. 

 

The CDG connects links on the network to each other if one link can route to another. 

Links can be grouped into four categories on this topology based on their 

incoming/outgoing links. 

 

Incoming/Outgoing Links 

1/1 AB, BA 

1/2 AE, BC, DE, DC 

2/1 EA, CB, ED, CD 

2/2 EC, CE 

 

The adjacency list for this CDG is below. (Just think: from this link, where can I go?) 

Note the symmetry. 

 

AB: BC 

BA: AE 

AE: ED, EC 

BC: DC, CE 

DE: EC, EA 

DC: CE, CB 

EA: AB 

CB: BA 

ED: DC 

CD: DE 

EC: CD, CB 

CE: ED, EA 

 

Show an example of how to eliminate routes to prevent deadlock on the CDG. 

 

There are many possible answers to this. You must eliminate edges until the CDG is a 

DAG. 
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Part Deux: Synchronicity (55 points) 

 
(Same as Handout #14.) You are writing a queue to be used in a multi-producer/single-

consumer application. (Producer threads write messages that are read by one consumer.) 

We assume here a queue with infinite space. The basic code is shown below. 

 

TST rs, Imm(rt) is the test-and-set instruction, which atomically loads the value at 

Imm(rt) into rs, and if the value is zero, updates the memory location at Imm(rt) to 

1. This atomic instruction is useful for implementing locks: a value of 1 at the memory 

location indicates that someone holds the lock, and a value of 0 means the lock is free. 

 

Producer pushes a message onto queue: (memory operations in bold) 
 

void push(int** tail_ptr, int* tail_write_lock, int message) { 

while (lock_try(tail_write_lock) == false); 

**tail_ptr = message; 

*tail_ptr++; 

lock_release(tail_write_lock); 

} 

 

# R1 – contains address of data to enqueue 

# R2 – contains the address of the tail pointer of queue 

# R3 – address of tail pointer write lock 

P1 SpinLock:TST R4, 0(R3)  # try to acquire tail write lock 

P2  BNEZ R4, R4, SpinLock 

P3  LD R4, 0(R2)  # get tail pointer 

P4  ST R1, 0(R4)  # write message to tail 

P5  ADD R4, R4, 4  # update tail pointer 

P6  ST R4, 0(R2) 

P7  ST R0, 0(R3)   # release lock 

 

Consumer pops a message off queue: (memory operations in bold) 
 

int pop(int** head_ptr, int** tail_ptr) { 

while (*head_ptr == *tail_ptr); 

int message = **head_ptr; 

*head_ptr++; 

return message; 

} 

 

# R1 – will receive address contained in message 

# R2 – contains the address of the head pointer of queue 

# R3 – contains the address of the tail pointer of the queue  

C1 Retry: LD R4, 0(R2)  # get head pointer 

C2  LD R5, 0(R3)  # get tail pointer 

C3  SUB R5, R4, R5  # is there a message? 

C4  BNEZ R5, Pop 

C5  JMP Retry 

C6 Pop: LD R1, 0(R4)  # read message from queue 

C7  ADD R4, R4, 4  # update head pointer 

C8  ST R4, 0(R2) 
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Question 1 (10 points): 

 

You are trying to port this code to an architecture that does not have the TST instruction 

(but, happily, the rest of the ISA is unchanged). Instead the new architecture has load-

reserve/store-conditional instructions. Implement TST rs, 0(rt) using load-

reserve/store-conditional: 
 

LR rs, Imm(rt): 

 rs  Memory[(rt) + Imm] 

 Track address (rt) + Imm 

 

SC rs, Imm(rt): 

 If (rt) + Imm modified: 

  rs  0     # Fail 

 Else: 

  Memory[(rt) + Imm] = (rs) # Succeed 

  rs  1 

 

TST rs, 0(rt): 

 LR rs, 0(rt)   # test: is 0(rt) 1? 

 BNEZ rs, skip 

 ADD rs, rs, 1  # set: try to store 1 

 SC rs, 0(rt) 

 NOR rs, rs, rs # invert result to match TST 

skip: NOP 
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Question 2 (10 points): 

 

This new architecture is also not sequentially consistent. Give an example of memory 

orderings between the producer and consumer that would result in incorrect behavior. 

Explain your answer fully or you will not receive credit.  

 

Your answer should look something like: 
P1, P3, P4, C1, C2, P6, P7, C1, C2, C6, C8 

(Except that this is a sequentially consistent ordering, so it is not a correct answer.) 

 

If the tail write is visible to the consumer before the message write, then we have a 

problem. Thus any sequence that contains the subsequence: 

 

P6 C6 P4 

 

Will read an invalid message. There are many other invalid sequences. 
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Question 3 (10 points): 

 

Show where memory fences should be added to the producer and consumer code to 

ensure correctness with a weak consistency model. Explain your answer fully. 

 
P1 SpinLock:TST R4, 0(R3)  # try to acquire tail write lock 

  FENCE_WR # don’t read tail ptr before getting lock 

 

P2  BNEZ R4, R4, SpinLock 

 

 

P3  LD R4, 0(R2)  # get tail pointer 

 

 

P4  ST R1, 0(R4)  # write message to tail 

  FENCE_WW # don’t update tail before writing message 

 

P5  ADD R4, R4, 4  # update tail pointer 

 

 

P6  ST R4, 0(R2) 

  FENCE_WW # don’t release lock before updating tail 

 

P7  ST R0, 0(R3)   # release lock 

 

 

 
 

 

C1 Retry: LD R4, 0(R2)  # get head pointer 

 

 

C2  LD R5, 0(R3)  # get tail pointer 

 

 

C3  SUB R5, R4, R5  # is there a message? 

 

 

C4  BNEZ R5, Pop 

 

 

C5  JMP Retry 

  FENCE_RR # don’t read message before tail is updated 

 

C6 Pop: LD R1, 0(R4)  # read message from queue 

 

 

C7  ADD R4, R4, 4  # update head pointer 

 

 

C8  ST R4, 0(R2) 
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Question 4 (5 points): 

 

Let’s next consider performance with a single producer thread and consumer thread. The 

following happens repeatedly: 

1. The producer executes all instructions to push a message on the queue. 

2. The consumer executes all instructions to pop a message off the queue. 

Assume data, head, and tail pointers all lie in different, non-conflicting cache blocks. 

 

First, after a few messages have been sent through the queue, will the consumer ever miss 

reading the head pointer? Will the producer ever miss reading the tail write lock, or fail to 

acquire the tail write lock? Explain in one or two sentences. 

 

No, the head pointer belongs exclusively to the consumer. Likewise with a single 

producer, the tail write lock belongs exclusively to the producer. The consumer and 

producer will ping-pong on the tail pointer, however, since each uses it. 

 

Question 5 (5 points): 

 

We’ll now focus on the tail pointer only. Assuming a MSI invalidate coherence protocol, 

show the state of the tail pointer in the producer and consumer cache after each operation 

in the sequence below. Show any data or permissions transfers, e.g. “MemoryC” or “C 

invalidates P”. 

 

Operation Producer tail 

pointer state 

Consumer tail 

pointer state 

Transfers 

 I I  

P1 TST try lock    

P3 LD tail_ptr S  P  Memory 

P4 ST message    

P6 ST new_tail M   

P7 ST release lock    

C1 LD head_ptr    

C2 LD tail_ptr S S C  P 

C6 LD message    

C7 ST new_head    

P1 TST try lock    

P3 LD tail_ptr    

P4 ST message    

P6 ST new_tail M I P invalidates C 

P7 ST release lock    

C1 LD head_ptr    

C2 LD tail_ptr S S C  P; Memory  P 

C6 LD message    

C7 ST new_head    

 

How many state transitions occur per message in the steady state? 2 (second half of table)  
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Question 6 (5 points): 

 

Stay focused on the tail pointer only. Assume an update coherence protocol where the 

state of each line is either valid (V) or invalid (I). Show the state of the tail pointer in the 

producer and consumer cache after each operation in the sequence below in the steady 

state. Show any data or permissions transfers, e.g. “MemoryC” or “C invalidates P”. 

 

Operation Producer tail 

pointer state 

Consumer tail 

pointer state 

Transfers 

 I I  

P1 TST try lock    

P3 LD tail_ptr V  P  Memory 

P4 ST message    

P6 ST new_tail V   

P7 ST release lock    

C1 LD head_ptr    

C2 LD tail_ptr V V C  P 

C6 LD message    

C7 ST new_head    

P1 TST try lock    

P3 LD tail_ptr V V  

P4 ST message    

P6 ST new_tail V V C  P 

P7 ST release lock    

C1 LD head_ptr    

C2 LD tail_ptr V V  

C6 LD message    

C7 ST new_head    

  

How many state transitions occur per message in the steady state? Zero, but one data 

transfer (P6). Memory may also be updated at P6, depending on the protocol (if not, VI 

must writeback). 
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Question 7 (10 points): 

 

Your new architecture supports “remote access” for cached lines. This lets you assign a 

“home cache” for lines so that all memory operations will be sent over the network to 

operate remotely on the line without allocating it in the requesting cache. 

 

For example, if line 0x100 is homed to processor A, and processor B writes 0x100, then 

processor A’s cache will be updated and processor B’s will be unchanged. 

 

Assume the tail pointer is mapped to the producer’s cache, and the cache uses an MSI 

invalidate protocol (similar to Question 5). Once again, show the state of the tail pointer 

for the sequence of operations in the steady state and data/permission transfers: 

 
Operation Producer tail 

pointer state 

Consumer tail 

pointer state 

Transfers 

 I I  

P1 TST try lock    

P3 LD tail_ptr S  P  Memory 

P4 ST message    

P6 ST new_tail M   

P7 ST release lock    

C1 LD head_ptr    

C2 LD tail_ptr   C processor  P 

C6 LD message    

C7 ST new_head    

P1 TST try lock    

P3 LD tail_ptr    

P4 ST message    

P6 ST new_tail    

P7 ST release lock    

C1 LD head_ptr    

C2 LD tail_ptr   C processor  P 

C6 LD message    

C7 ST new_head    

 

How many state transitions occur per message in the steady state? Zero, but one data 

transfer. The difference is that in this case the transfer is on demand—which may or may 

not be an improvement, depending on consumer behavior. 
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Part III: The Truth Will Set You Free (20 points) 
 

Question 1 – Peanuts (5 points): 

 

Snoopy coherence protocols rely on broadcast communication to detect sharing and 

updates. These are conventionally implemented using bus networks that allow for one 

message to be sent at a time to all nodes on the network. 

 

Ben Bitdiddle is implementing a bus-based snoopy coherence protocol. One fifth of 

instructions access memory, and one quarter of these miss in the core’s local cache 

(either because the line is invalid or doesn’t have necessary permissions). Assuming each 

memory operation consists of a request and acknowledgement, the network traffic per 

core is therefore: 
1

5
×

1

4
× 2 =

1

10

messages

instruction
. Assume all messages fit within a single 

network flit. 

 

Assuming a fixed IPC of 1, perfect bus arbitration, and infinite buffers, how many cores 

can the bus support? 

 

 
 

A bus has an aggregate throughput of 1 message per cycle. 

 

A memory operation requires 2 messages on 1/20 of instructions, or 1/10 messages per 

cycle. 

 

The number of cores this system can support is 1 = 𝑁/10 so 𝑁 = 10. 
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Question 2 – …To rule them all (10 points): 

 

Ben needs to build a larger system than the bus network will allow, so he changes the 

system to use a unidirectional ring network. In this design, the core issuing the memory 

operation sends the request around the ring, and each node along the way either forwards 

the request or replaces it with its response. Assuming fixed IPC of 1 and a single-cycle 

per hop in the network, at how many cores will this design saturate? 

 

 
 

The ring with 𝑁 cores has an aggregate throughput of 𝑁 messages per cycle. (It is a 

unidirectional ring.) 

 

Each memory operation requires one circuit around the ring, or 𝑁 messages. Each core 

produces one request every 20 instructions, so the messages generated per core is 𝑁/20. 
 

Thus the number of cores is 𝑁 = 𝑁/(𝑁/20) = 20. 
 

Maybe a simpler way to see this is that with the bus, each memory operation required 

global communication twice (for the request and response). In the ring, each memory 

request requires global communication only once—since ~half the nodes see the request 

and the rest simply forward the response. Since we are placing half the demand on the 

network, we can support twice as many cores.  
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Question 3 – Matryoshka (5 points): 

 

Ben next explores the tradeoffs in cache design between an inclusive cache, where the 

parent always has a copy of every line in the child’s cache, and non-inclusive caches, 

where this isn’t guaranteed. 

 

Give one advantage and one disadvantage of a non-inclusive cache design. 

 

Non-inclusive caches allow the parent cache to get rid of a copy of a line without 

invalidating the child’s copy. This essentially increases the capacity of the parent cache, 

since it can use the space to store new lines instead of copies of the child’s contents. 

 

The downside of this is that the parent no longer knows from looking at its own contents 

whether or not a child has a line. This makes coherence more expensive since the parent 

must now check with the children to see if they have a line, for example to process an 

invalidate when the line is written elsewhere. 

 

One way to try to get the best of both worlds is to separate coherence tracking and data 

storage into separate structures. So rather than having the directory in the cache tags, the 

directory is a separate structure. This directory can be kept inclusive with the cache non-

inclusive. 


