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Princeton Microarchitecture
Datapath & Control for 2-cycles-per-instruction
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Princeton Microarchitecture
(redrawn)

The same
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Only one of the phases is active in any cycle
= a lot of datapath is not in use at any given time
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Princeton Microarchitecture
Overlapped execution
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Can we overlap instruction fetch and execute?
Yes, unless IR contains a Load or Store

Which action should be prioritized? Execute

What do we do with Fetch? Stall it How?
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Stalling the instruction fetch

Princeton Microarchitecture
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When stall condition is indicated
e don’t fetch a new instruction and don’t change the PC
e insert a nop in the IR
e set the Memory Address mux to ALU (not shown)

What if IR contains a jump or branch instruction?
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Need to stall on branches

Princeton Microarchitecture
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When IR contains a jump or branch-taken
e no "structural conflict” for the memory
e but we do not have the correct PC value in the PC
e memory cannot be used — Address Mux setting is irrelevant
e insert a nop in the IR
e jnsert the nextPC (branch-target) address in the PC
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Pipelined Princeton Microarchitecture
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Pipelined Prir

ceton: Control Table

LO4-8

Opcode [ Stall JExt| B | Op [Mem | Reg | WB | Reg| PC PC IR | MAddr
Sel | Src | Sel | W W Src | Dst | Srcl [ Src2 | Src Src
ALU no * | Reg|Func no yes | ALU| rd |pc+t4 | npc | mem| pcC
ALUi no |sg,.|Imm| Op | no yes | ALU| rt |pc+4 | npc [ mem| pcC
ALUiu no |fug,.|Imm| Op | no yes | ALU| rt |pc+4 | npc [ mem| pcC
LW yes |skE,.|Imm no yes ([Mem| rt |pc+t4| pc | nop | ALU
SW yes |sk,.|Imm yes no * * |pct4| pc | nop | ALU
BEQZ, , | ¥€s |sE..|] * | 0?7 | no no * * br | npc | nop *
BEQZ,.; | no |sE..| * | 07| no no * * |pct4 | npc | mem| pcC
] yes | * * * no no * * | jabs | npc | nop *
JAL yes | * * * no yes | PC | R31| jabs | npc | nop *
JR yes | * * * no no * * | rind | npc | nop *
JALR yes | * * * no yes | PC | R31| rind | npc [ nop *
NOP no * * * no no * * |pctd | npc | mem| pcC

BSrc = Reg / Imm
RegDst=rt/rd / R31; PCSrc1 = pc+4 / br / rind / jabs; PCSrc2 = pc/nPC

February 18, 2014

; WBSrc = ALU / Mem / PC; IRSrc = nop/mem; MAddSrc = pc/ALU

stall & IRSrc columns are identical
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Pipelined Princeton Architecture

Clock: Ceprinceton > Trrt Tapyt Tw + Tws

CPI: (1- f) + 2f cycles per instruction
where f is the fraction of
instructions that cause a stall

What is a likely value of f?
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An Ideal Pipeline

LO4-10

| stage
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e All objects go through the same stages

e No sharing of resources between any two stages

stage

stage

e Propagation delay through all pipeline stages is equal

e The scheduling of an object entering the pipeline
is not affected by the objects in other stages

These conditions generally hold for industrial assembly lines.

But what about an instruction pipeline?
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Pipelined Datapath

0x4 a

‘write
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Clock period can be reduced by dividing the execution of an
instruction into multiple cycles
te > max {tyw, tre tarus toms trwl ( = tom probably)

However, CPI will increase unless instructions are pipelined
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How to divide the datapath
INto stages

Suppose memory is significantly slower than
other stages. In particular, suppose

t;y = 10 units
toy = 10 units
tay = 5 units
tkeg = 1 unit
thy = 1 unit

Since the slowest stage determines the clock, it
may be possible to combine some stages without
any loss of performance
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Alternative Pipelining
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tc > max {tyy, trettaw, tomttrwt = tomt trw
= increase the critical path by 10%

Write-back stage takes much less time than other stages.
Suppose we combined it with the memory phase
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Maximum Speedup by Pipelining

Assumptions Unpipelined Pipelined Speedup
t t
1. tw =t = 10, ¢ ¢
taru = 3,
tre = trw= 1
4-stage pipeline 27 10 2.7

2. tm =tom = o = e = Gy = 5
4-stage pipeline 25 10 2.5

3. tim =tom =tay = tre = thw = 5

5-stage pipeline 25 5 5.0

What seems to be the message here?
One can achieve higher speedup with more pipeline stages.
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5-Stage Pipelined Execution
Instruction Flow Diagram

0x4
C

I-Fetch Decode, Reg. Fetch Execute

(IF)
time
instructionl
instruction2
instruction3
instruction4
instruction5

February 18, 2014

- Write
Memory -
(ID) (EX) (MA) Back
t0 t1 t2 t3 |t4 t5 t6 t7 ....(WB)
IF, ID, EX, MA,| WB,
IF, ID, EX,|MA,| WB,
IF, ID, |EX,|MA, WB,
IF, |ID, |EX, MA, WB,
IF. |ID. EX: MA. WB.

Sanchez & Emer



LO4-16

5-Stage Pipelined Execution
Resource Usage Diagram
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Pipelined Execution:
ALU Instructions
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Not quite correct!

We need an Instruction Reg (IR) for each stage
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Pipelined MIPS Datapath
without jumps
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Control Points Need to
What else is needed? Be Connected
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How instructions can interact
with each other in a pipeline

LO4-19

e An instruction in the pipeline may need a
resource being used by another instruction
in the pipeline - structural hazard

e An instruction may depend on something
produced by an earlier instruction

— Dependence may be for a data calculation
- data hazard

— Dependence may be for calculating the next PC
- control hazard (branches, interrupts)

February 18, 2014
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Data Hazards
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Resolving Data Hazards

Strategy 1: Wait for the result to be available
by freezing earlier pipeline stages - interlocks

Strategy 2: Route data as soon as possible after
it is calculated to the earlier pipeline stage >

bypass

Strategy 3: Speculate on the dependence
Two cases:
Guessed correctly - do nothing
Guessed incorrectly - kill and restart
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Resolving Data Hazards (1)

Strategy 1:

Wait for the result to be available by freezing
earlier pipeline stages - interlocks
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Feedback to Resolve Hazards

o Later stages provide dependence information to
earlier stages which can stall (or kill) instructions

e Controlling a pipeline in this manner works provided
the instruction at stage i+1 can complete without
any interference from instructions in stages 1 to i

(otherwise deadlocks may occur)
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Interlocks to resolve Data Hazards

Stall Condition
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Stalled Stages and Pipeline Bubbles
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i
1D, ID, ID, ID, EX, MA, WB,
IF, IF, IF; IF, ID; EX; MA; WB,

stalled stages

IF. ID: EX: MA. WB.

t2 t3 t4 t5 t6 t/

I3 I3 I3 I3 IS
IZ IZ IZ IZ I3 15
nop nop nop I, I3 I, I
nop nop nop I, Ij I
nop nop nop I, Ij I

nop =  pipeline bubble
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Interlock Control Logic
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Compare the source registers of the instruction in the decode stage
with the destination register of the uncommitted instructions.
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