Instruction Pipelining and Hazards

Daniel Sanchez
Computer Science and Artificial Intelligence Laboratory
M.I.T.

Princeton Microarchitecture Datapath & Control for 2-cycles-per-instruction

Princeton Microarchitecture

(redrawn)

Only one of the phases is active in any cycle ⇒ a lot of datapath is not in use at any given time

Sanchez & Emer February 18, 2014

Princeton Microarchitecture Overlapped execution

Can we overlap instruction fetch and execute?

Yes, unless IR contains a Load or Store

Which action should be prioritized? Execute

What do we do with Fetch? Stall it How?

Stalling the instruction fetch

Princeton Microarchitecture

When stall condition is indicated

- don't fetch a new instruction and don't change the PC
- insert a nop in the IR
- set the Memory Address mux to ALU (not shown)

What if IR contains a jump or branch instruction?

Need to stall on branches

Princeton Microarchitecture

When IR contains a jump or branch-taken

- no "structural conflict" for the memory
- but we do not have the correct PC value in the PC
- memory cannot be used Address Mux setting is irrelevant
- insert a nop in the IR
- insert the nextPC (branch-target) address in the PC

Pipelined Princeton Microarchitecture

PCen

Pipelined Princeton: Control Table

Opcode	Stall	Ext Sel	B Src	Op Sel	Mem W	Reg W	WB Src	Reg Dst	PC Src1	PC Src2	IR Src	MAddr Src
ALU	no	*	Reg	Func	no	yes	ALU	rd	pc+4	npc	mem	рс
ALUi	no	sE ₁₆	Imm	Ор	no	yes	ALU	rt	pc+4	npc	mem	рс
ALUiu	no	uE ₁₆	Imm	Ор	no	yes	ALU	rt	pc+4	npc	mem	рс
LW		sE ₁₆	_	+	no	yes	Mem	rt	pc+4	рс	nop	ALU
SW	yes	sE ₁₆	Imm	+	yes	no	*	*	pc+4	рс	nop	ALU
$BEQZ_{z=0}$	yes	sE ₁₆	*	0?	no	no	*	*	br	npc	nop	*
$BEQZ_{z=1}$		sE ₁₆	l	0?	no	no	*	*	pc+4	npc	mem	рс
J	yes	*	*	*	no	no	*	*	jabs	npc	nop	*
JAL	yes	*	*	*	no	yes	PC	R31	jabs	npc	nop	*
JR	yes	*	*	*	no	no	*	*	rind	npc	nop	*
JALR	yes	*	*	*	no	yes	PC	R31	rind	npc	nop	*
NOP	no	*	*	*	no	no	*	*	pc+4	npc	mem	рс

BSrc = Reg / Imm ; WBSrc = ALU / Mem / PC; IRSrc = nop/mem; MAddSrc = pc/ALU RegDst = rt / rd / R31; PCSrc1 = pc+4 / br / rind / jabs; PCSrc2 = pc/nPC

stall & IRSrc columns are identical

Pipelined Princeton Architecture

Clock: $t_{C-Princeton} > t_{RF} + t_{ALU} + t_{M} + t_{WB}$

CPI:

(1- f) + 2f cycles per instruction where f is the fraction of instructions that cause a stall

What is a likely value of f?

An Ideal Pipeline

- All objects go through the same stages
- No sharing of resources between any two stages
- Propagation delay through all pipeline stages is equal
- The scheduling of an object entering the pipeline is not affected by the objects in other stages

These conditions generally hold for industrial assembly lines.

But what about an instruction pipeline?

Pipelined Datapath

Clock period can be reduced by dividing the execution of an instruction into multiple cycles

$$t_C > max \{t_{IM}, t_{RF}, t_{ALU}, t_{DM}, t_{RW}\} (= t_{DM} probably)$$

However, CPI will increase unless instructions are pipelined

How to divide the datapath into stages

Suppose memory is significantly slower than other stages. In particular, suppose

```
t_{IM} = 10 \text{ units}

t_{DM} = 10 \text{ units}

t_{ALU} = 5 \text{ units}

t_{RF} = 1 \text{ unit}

t_{RW} = 1 \text{ unit}
```

Since the slowest stage determines the clock, it may be possible to combine some stages without any loss of performance

Alternative Pipelining

Write-back stage takes much less time than other stages. Suppose we combined it with the memory phase

Maximum Speedup by Pipelining

	Assumptions	Unpipelined	Pipelined	Speedup
1.	$t_{IM} = t_{DM} = 10,$ $t_{ALU} = 5,$ $t_{RF} = t_{RW} = 1$	t _C	t _C	
	4-stage pipeline	27	10	2.7
2.	$t_{IM} = t_{DM} = t_{ALU} = t_{RF} = t_{RW} =$ 4-stage pipeline	5 25	10	2.5
3.	$t_{IM} = t_{DM} = t_{ALU} = t_{RF} = t_{RW} =$ 5-stage pipeline	5 25	5	5.0

What seems to be the message here?

One can achieve higher speedup with more pipeline stages.

February 18, 2014

5-Stage Pipelined Execution

Instruction Flow Diagram

5-Stage Pipelined Execution

Resource Usage Diagram

Pipelined Execution: ALU Instructions

Not quite correct!

We need an Instruction Reg (IR) for each stage

Pipelined MIPS Datapath without jumps

How instructions can interact with each other in a pipeline

- An instruction in the pipeline may need a resource being used by another instruction in the pipeline → structural hazard
- An instruction may depend on something produced by an earlier instruction
 - Dependence may be for a data calculation
 data hazard
 - Dependence may be for calculating the next PC
 control hazard (branches, interrupts)

Data Hazards

r1 is stale. Oops!

Resolving Data Hazards

Strategy 1: Wait for the result to be available by freezing earlier pipeline stages → interlocks

Strategy 2: Route data as soon as possible after it is calculated to the earlier pipeline stage > bypass

Strategy 3: Speculate on the dependence Two cases:

Guessed correctly → do nothing Guessed incorrectly → kill and restart

Resolving Data Hazards (1)

Strategy 1:

Wait for the result to be available by freezing earlier pipeline stages → interlocks

Feedback to Resolve Hazards

- Later stages provide dependence information to earlier stages which can *stall (or kill) instructions*
- Controlling a pipeline in this manner works provided the instruction at stage i+1 can complete without any interference from instructions in stages 1 to i (otherwise deadlocks may occur)

Sanchez & Emer February 18, 2014

Interlocks to resolve Data Hazards

Stalled Stages and Pipeline Bubbles

nop ⇒ pipeline bubble

Interlock Control Logic

Compare the source registers of the instruction in the decode stage with the destination register of the uncommitted instructions.