LO4-1

Instruction Pipelining
and Hazards

Daniel Sanchez
Computer Science and Artificial Intelligence Laboratory

M.L.T.

http://www.csg.csail.mit.edu/6.823

LO4-2

Princeton Microarchitecture
Datapath & Control for 2-cycles-per-instruction

| pCsrc RegWrite & Wen MemWrite | WBSrc
PCen < & Wen
FAdd
clk >
t —v
v clk we clk
> rsil
| > rs2 |4
»Pd- v 31 rd1 . > vV we
— e > WS r
A : r,‘]k ol wd rd2 4 > ALU > add
clk 'y GPRs 2 |z D trdata EPSEEN
Y ata N
A Roreon »] Imm | Memory :}
en=o Ext » wdata
. B ey
|Contro|
AddrSrc=ALU
IRen=off
PCen=on
Wen=on
v v

IRen OpCode RegDst ExtSel OpSel BSrc zero? AddrSrc
February 18, 2014 Sanchez & Emer

LO4-3

Princeton Microarchitecture
(redrawn)

The same

o/(mux not shown)

— —
I I >] > R ALU
»| IMmm > }

Ext

fetch
phase

execute phase

Only one of the phases is active in any cycle
= a lot of datapath is not in use at any given time

February 18, 2014 Sanchez & Emer

L04-4

Princeton Microarchitecture
Overlapped execution

Sy
_I

ALU

_I-‘

»] Imm
Ext

fetch
phase

execute phase

Can we overlap instruction fetch and execute?
Yes, unless IR contains a Load or Store

Which action should be prioritized? Execute

What do we do with Fetch? Stall it How?

February 18, 2014 Sanchez & Emer

LO4-5

Stalling the instruction fetch

Princeton Microarchitecture

P

<
p—

«

V we > R

> addr I’le IR > we rdl > We
A rdata u > > Wdrdz R AL —addr
Memory —_— > s :}
Memory
wdata o] Imm >
| Ext »Wdata
fetch
h
pnase execute phase

vV we
rsi
rs2

0x4 a
A A
nop

When stall condition is indicated
e don’t fetch a new instruction and don’t change the PC
e insert a nop in the IR
e set the Memory Address mux to ALU (not shown)

What if IR contains a jump or branch instruction?

February 18, 2014 Sanchez & Emer

LO4-6

Need to stall on branches

Princeton Microarchitecture

A
g \Y/
nop st

— PCA—>addr N
. rdata u IR—¢

Lk

>] rd1 > e
WS ——
’j > wdrd2 I (AL o
GPRs > rdata >
Memory Mermon }
wdata o Imm >
| Ext »Wdata
fetch
h
phase execute phase

When IR contains a jump or branch-taken
e no "structural conflict” for the memory
e but we do not have the correct PC value in the PC
e memory cannot be used — Address Mux setting is irrelevant
e insert a nop in the IR
e jnsert the nextPC (branch-target) address in the PC

February 18, 2014 Sanchez & Emer

LO4-7

Pipelined Princeton Microarchitecture

PCen

PCSrc2 l PCSrc RegWrite MemWrite | WBSrc

A A

& -

0x4 a 1
FAdd
clk >
clk
_ I v
g VvV we
j_b‘u addr
A 4
A Z

317

\ 4
dile
[
3 <
(]
Y N
L\
"I \ A 4
== 3
an B
= =
a a
N
—
3
\

rdata j—e

- Data
Memory
Ext » wdata
ALU
Control

\ 4
3
3

v JV v
I/

IRSrc

v
v v
OpCode RegDst ExtSel OpSel BSrc zero? MAddrSrc @

February 18, 2014 stallsanchez & Emer

Pipelined Prir

ceton: Control Table

LO4-8

Opcode [Stall JExt| B | Op [Mem | Reg | WB | Reg| PC PC IR | MAddr
Sel | Src | Sel | W W Src | Dst | Srcl [Src2 | Src Src
ALU no * | Reg|Func no yes | ALU| rd |pc+t4 | npc | mem| pcC
ALUi no |sg,.|Imm| Op | no yes | ALU| rt |pc+4 | npc [mem| pcC
ALUiu no |fug,.|Imm| Op | no yes | ALU| rt |pc+4 | npc [mem| pcC
LW yes |skE,.|Imm no yes ([Mem| rt |pc+t4| pc | nop | ALU
SW yes |sk,.|Imm yes no * * |pct4| pc | nop | ALU
BEQZ, , | ¥€s |sE..|] * | 0?7 | no no * * br | npc | nop *
BEQZ,.; | no |sE..| * | 07| no no * * |pct4 | npc | mem| pcC
] yes | * * * no no * * | jabs | npc | nop *
JAL yes | * * * no yes | PC | R31| jabs | npc | nop *
JR yes | * * * no no * * | rind | npc | nop *
JALR yes | * * * no yes | PC | R31| rind | npc [nop *
NOP no * * * no no * * |pctd | npc | mem| pcC

BSrc = Reg / Imm
RegDst=rt/rd / R31; PCSrc1 = pc+4 / br / rind / jabs; PCSrc2 = pc/nPC

February 18, 2014

; WBSrc = ALU / Mem / PC; IRSrc = nop/mem; MAddSrc = pc/ALU

stall & IRSrc columns are identical

LO4-9

Pipelined Princeton Architecture

Clock: Ceprinceton > Trrt Tapyt Tw + Tws

CPI: (1- f) + 2f cycles per instruction
where f is the fraction of
instructions that cause a stall

What is a likely value of f?

February 18, 2014 Sanchez & Emer

An Ideal Pipeline

LO4-10

| stage
] 1

stage
2

e All objects go through the same stages

e No sharing of resources between any two stages

stage

stage

e Propagation delay through all pipeline stages is equal

e The scheduling of an object entering the pipeline
is not affected by the objects in other stages

These conditions generally hold for industrial assembly lines.

But what about an instruction pipeline?

February 18, 2014

Sanchez & Emer

LO4-11

Pipelined Datapath

0x4 a

‘write
fetch decode & Reg-fetch = execute memory _back
phase phase phase phase phase

Clock period can be reduced by dividing the execution of an
instruction into multiple cycles
te > max {tyw, tre tarus toms trwl (= tom probably)

However, CPI will increase unless instructions are pipelined
February 18, 2014 Sanchez & Emer

L0O4-12

How to divide the datapath
INto stages

Suppose memory is significantly slower than
other stages. In particular, suppose

t;y = 10 units
toy = 10 units
tay = 5 units
tkeg = 1 unit
thy = 1 unit

Since the slowest stage determines the clock, it
may be possible to combine some stages without
any loss of performance

February 18, 2014 Sanchez & Emer

L04-13

Alternative Pipelining

0x4 a

i vy

|

i

write
fetch decode & Reg-fetch execute memory back
phase phase phase phase phase

tc > max {tyy, trettaw, tomttrwt = tomt trw
= increase the critical path by 10%

Write-back stage takes much less time than other stages.
Suppose we combined it with the memory phase

February 18, 2014 Sanchez & Emer

LO4-14

Maximum Speedup by Pipelining

Assumptions Unpipelined Pipelined Speedup
t t
1. tw =t = 10, ¢ ¢
taru = 3,
tre = trw= 1
4-stage pipeline 27 10 2.7

2. tm =tom = o = e = Gy = 5
4-stage pipeline 25 10 2.5

3. tim =tom =tay = tre = thw = 5

5-stage pipeline 25 5 5.0

What seems to be the message here?
One can achieve higher speedup with more pipeline stages.

February 18, 2014 Sanchez & Emer

LO4-15

5-Stage Pipelined Execution
Instruction Flow Diagram

0x4
C

I-Fetch Decode, Reg. Fetch Execute

(IF)
time
instructionl
instruction2
instruction3
instruction4
instruction5

February 18, 2014

- Write
Memory -
(ID) (EX) (MA) Back
t0 t1 t2 t3 |t4 t5 t6 t7(WB)
IF, ID, EX, MA,| WB,
IF, ID, EX,|MA,| WB,
IF, ID, |EX,|MA, WB,
IF, |ID, |EX, MA, WB,
IF. |ID. EX: MA. WB.

Sanchez & Emer

LO4-16

5-Stage Pipelined Execution
Resource Usage Diagram

0x4
C

I-Fetch Decode, Reg. Fetch Execute

(IF)
time
o IF
S ID
§ EX
L MA
WB

February 18, 2014

to
Iy

(ID)

t1
I
I

t2
I3
L
Iy

t3
L,
I3
I
Iy

(EX)

Memory -
(MA) Back
te t7 . (WB)
IS

I, Is

Sanchez & Emer

LO4-17

Pipelined Execution:
ALU Instructions

0x4 :H : : _
A A ‘/I:31 A
| T
vowe
»rsl]
»|rs2 A |
—»B »laddr rd1 N Vwe
' ws
inst el a2 — — addr
Inst GPRs 1 |IB | rdata
Memory g LA Data
»| Imm] Memory
Ext I_I P|lwdata
LA A
MD1 MD2

Not quite correct!

We need an Instruction Reg (IR) for each stage

February 18, 2014 Sanchez & Emer

L0O4-18

Pipelined MIPS Datapath
without jumps
F D E M

N | :
2 31
0x4 a

egDs
RegWrite

vVowe OpSel Wri
rsi emWri

I?BC»

\AA 4

»pc— addr rdi A vVowe
_L inst-IR »Ws S v% addr
A »|wd rd2 p——p—>
Inst GPRs 1 1B 3 rdata >
Memory e Al
»] Imm |_| [
Ext |_| ywdata
LA A

MD1 MD2

Gased Cosre)

Control Points Need to
What else is needed? Be Connected

February 18, 2014 Sanchez & Emer

How instructions can interact
with each other in a pipeline

LO4-19

e An instruction in the pipeline may need a
resource being used by another instruction
in the pipeline - structural hazard

e An instruction may depend on something
produced by an earlier instruction

— Dependence may be for a data calculation
- data hazard

— Dependence may be for calculating the next PC
- control hazard (branches, interrupts)

February 18, 2014

Sanchez & Emer

L04-20

Data Hazards

r4 « rl .. rl « ..

0x4
B i
A A l/I:31 A “
vWe "r
»rsl]
»rs2 v
—»B »laddr rd1 i e
i WS
inst e a2 — — addr
Inst GPRs 1 e] rdata >
Memory -1 I Data
JTmm] Memory
Ext Plwdat
X N IAI wdata
MD1 MD2
rl «r0+ 10
r4 «rl + 17 r1 is stale. Oops!

February 18, 2014 Sanchez & Emer

L0O4-21

Resolving Data Hazards

Strategy 1: Wait for the result to be available
by freezing earlier pipeline stages - interlocks

Strategy 2: Route data as soon as possible after
it is calculated to the earlier pipeline stage >

bypass

Strategy 3: Speculate on the dependence
Two cases:
Guessed correctly - do nothing
Guessed incorrectly - kill and restart

February 18, 2014 Sanchez & Emer

L04-22

Resolving Data Hazards (1)

Strategy 1:

Wait for the result to be available by freezing
earlier pipeline stages - interlocks

February 18, 2014 Sanchez & Emer

L04-23

Feedback to Resolve Hazards

o Later stages provide dependence information to
earlier stages which can stall (or kill) instructions

e Controlling a pipeline in this manner works provided
the instruction at stage i+1 can complete without
any interference from instructions in stages 1 to i

(otherwise deadlocks may occur)

February 18, 2014 Sanchez & Emer

LO4-24

Interlocks to resolve Data Hazards

Stall Condition

< V\'/e lT w
"—‘ > rs%]
»rs i
— pgq—>[addr rd1 A AT
inst-I WS m— Y addr
A »lwd rd2 p——p—> .
Inst GPRs ‘\’l- B rdata
Memory b I Data
S ITmm [] Memory >
Ext I_A_I Plwdata
- LA |
MD1 MD2
rlil «r0 + 10
r4 «rl + 17

February 18, 2014 Sanchez & Emer

L04-25

Stalled Stages and Pipeline Bubbles

(I,) r4 « (r1) + 17

(13)
(Is)

Resource
Usage

February 18, 2014

IF
ID
EX
MA
WB

t1

IF,

t1

I

t2 t3 t4 t5 t6 t7

i
1D, ID, ID, ID, EX, MA, WB,
IF, IF, IF; IF, ID; EX; MA; WB,

stalled stages

IF. ID: EX: MA. WB.

t2 t3 t4 t5 t6 t/

I3 I3 I3 I3 IS
IZ IZ IZ IZ I3 15
nop nop nop I, I3 I, I
nop nop nop I, Ij I
nop nop nop I, Ij I

nop = pipeline bubble

Sanchez & Emer

L04-26

Interlock Control Logic

P]
=N

vowe
"—‘ > rs%] J
v »lIrsS
_{Pﬂ (I rd1 A vWe
inst ws LA
. »lwd rd2 —p— addr
Inst GPRs 1 |18 rdata .
Memory T W Data
JImm] Memory >
Ext Plwdata
A N
MD1 MD2

Compare the source registers of the instruction in the decode stage
with the destination register of the uncommitted instructions.

February 18, 2014 Sanchez & Emer

