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ISA to Microarchitecture Mapping

• An ISA often designed for a particular 
microarchitectural style, e.g.,

– CISC  microcoded

– RISC  hardwired, pipelined

– VLIW  fixed latency in-order pipelines

– JVM  software interpretation

• But an ISA can be implemented in any 
microarchitectural style

– Core i7: hardwired pipelined CISC (x86) 
machine (with some microcode support)

– This lecture: a microcoded RISC (MIPS) 
machine

– Current  IA-64 processors are hardwired, in-
order pipelines

– PicoJava: A hardware JVM processor
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Microarchitecture: Implementation of an ISA

Structure: How components are connected.
Static

Behavior: How data moves between components
Dynamic

Controller

Data
path

control
pointsstatus

lines
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Microcontrol Unit Maurice Wilkes, 1954

Embed the control logic state table in a memory array

Matrix A Matrix B

Decoder

Next state

op      conditional
code   flip-flop

 address

Control lines  to
ALU, MUXs, Registers
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Microcoded Microarchitecture

Memory
(RAM)

Datapath

controller
(ROM)

AddrData

zero?
busy?

opcode

enMem
MemWrt

holds fixed
microcode instructions 

holds user program 
written in macrocode

instructions (e.g., 
MIPS, x86, etc.)
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MIPS Instruction Formats

6 5 5 16
opcode    rs                    offset BEQZ, BNEZ

6                        26
opcode                 offset J, JAL

6 5 5              16
opcode    rs JR, JALR

opcode rs rt immediate rt  (rs) op immediate

6 5 5       5       5          6
0 rs rt       rd       0       func    rd  (rs) func (rt)ALU

ALUi

6 5 5               16
opcode rs rt         displacement         M[(rs) + displacement]Mem
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A Bus-based Datapath for MIPS

Microinstruction: register to register transfer  (17 control signals)
MA  PC means   RegSel = PC;   enReg=yes; ldMA= yes

B  Reg[rt] means

enMem

MA

addr

data

ldMA

Memory

busy

MemWrt

Bus 32

zero?

A B

OpSel ldA ldB

ALU

enALU

ALU
control

2

RegWrt

enReg

addr

data

rs
rt
rd

32(PC)
31(Link)

RegSel

32 GPRs
+ PC ...

32-bit Reg

3

rs
rt
rd

ExtSel

IR

Opcode

ldIR

Imm
Ext

enImm

2

RegSel = rt;    enReg=yes;    ldB   = yes
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Memory Module

Assumption: Memory operates asynchronously
and is slow as compared to Reg-to-Reg transfers

Enable

Write(1)/Read(0)
RAM

din dout

we

addr busy

bus
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Instruction Execution

Execution of a MIPS instruction involves

1. instruction fetch
2. decode and register fetch
3. ALU operation
4. memory operation (optional)
5. write back to register file (optional)

+ the computation of the 
next instruction address
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Microprogram Fragments

instr fetch: MA  PC
A  PC
IR  Memory
PC  A + 4
dispatch on Opcode

can be
treated as
a macro

ALU:  A  Reg[rs]
B  Reg[rt]
Reg[rd]  func(A,B)
do instruction fetch

ALUi:  A  Reg[rs]
B  Imm sign extension ...
Reg[rt]  Opcode(A,B)
do instruction fetch
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Microprogram Fragments (cont.)

LW:  A  Reg[rs]
B  Imm
MA  A + B
Reg[rt]  Memory
do instruction fetch 

J:  A  PC
B  IR
PC  JumpTarg(A,B)
do instruction fetch 

beqz: A  Reg[rs]
If zero?(A) then go to bz-taken
do instruction fetch 

bz-taken: A  PC
B  Imm << 2
PC  A + B
do instruction fetch 

JumpTarg(A,B) = 
{A[31:28],B[25:0],00}
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MIPS Microcontroller: first attempt

next 
state

PC (state)

Opcode
zero?

Busy (memory)

Control Signals (17)

s

s

6

Program ROM

addr

data

latching the inputs
may cause a 
one-cycle delay

= 2(opcode+status+s) words

How big 
is “s”?

ROM size ?

Word size ?

= control+s bits
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Microprogram in the ROM worksheet

State  Op    zero?    busy     Control points next-state

fetch0 * * * MA  PC fetch1

fetch1 * * yes .... fetch1

fetch1 * * no IR  Memory fetch2

fetch2 * * * A  PC fetch3

fetch3 * * * PC  A + 4 ?

ALU0 * * * A  Reg[rs] ALU1

ALU1 * * * B  Reg[rt] ALU2

ALU2 * * * Reg[rd]  func(A,B) fetch0

fetch3 ALU * * PC  A + 4 ALU0
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Microprogram in the ROM

State  Op    zero?    busy        Control points next-state

fetch0 * * * MA  PC fetch1

fetch1 * * yes .... fetch1

fetch1 * * no IR  Memory fetch2

fetch2 * * * A  PC fetch3

fetch3 ALU * * PC  A + 4 ALU0

fetch3 ALUi * * PC  A + 4 ALUi0
fetch3 LW * * PC  A + 4 LW0

fetch3 SW * * PC  A + 4 SW0

fetch3 J * * PC  A + 4 J0

fetch3 JAL * * PC  A + 4 JAL0

fetch3 JR * * PC  A + 4 JR0

fetch3 JALR * * PC  A + 4 JALR0

fetch3 beqz * * PC  A + 4 beqz0

...
ALU0 * * * A  Reg[rs] ALU1

ALU1 * * * B  Reg[rt] ALU2

ALU2 * * * Reg[rd]  func(A,B) fetch0

L06-14



Sanchez and EmerFebruary 24, 2014 http://www.csg.csail.mit.edu/6.823 

Microprogram in the ROM Cont.

State  Op    zero?    busy        Control points next-state

ALUi0 * * * A  Reg[rs] ALUi1
ALUi1 sExt * * B  sExt16(Imm) ALUi2
ALUi1 uExt * * B  uExt16(Imm) ALUi2
ALUi2 * * * Reg[rd] Op(A,B) fetch0

...
J0 * * * A  PC J1

J1 * * * B  IR J2

J2 * * * PC  JumpTarg(A,B) fetch0

...
beqz0 * * * A  Reg[rs] beqz1

beqz1 * yes * A  PC beqz2

beqz1 * no * .... fetch0

beqz2 * * * B  sExt16(Imm) beqz3

beqz3 * * * PC  A+B fetch0

...
JumpTarg(A,B) = {A[31:28],B[25:0],00}
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Size of Control Store

MIPS: w = 6+2  c = 17 s = ?

no. of steps per opcode = 4 to 6 + fetch-sequence

no. of states  (4 steps per op-group ) x op-groups 

+ common sequences

= 4 x 8 + 10 states = 42 states  s = 6

Control ROM = 2(8+6) x 23 bits  48 Kbytes

size = 2(w+s) x (c + s) Control ROM

data

status & opcode

addr

next PC

Control signals

PC

/
w

/  s

/  c
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Reducing Control Store Size 

• Reduce the ROM height (= address bits)
– reduce inputs by extra external logic

each input bit doubles the size of the 
control store

– reduce states by grouping opcodes
find common sequences of actions

– condense input status bits
combine all exceptions into one, i.e.,
exception/no-exception

• Reduce the ROM width
– restrict the next-state encoding

Next, Dispatch on opcode, Wait for memory, ...
– encode control signals (vertical microcode)

Control store has to be fast  expensive
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MIPS Controller V2

JumpType =
next  | spin

| fetch | dispatch
| feqz  | fnez

Control Signals (17)

Control ROM

address

data

+1 

Opcode ext

PC (state)

jump
logic

zero

PC PC+1

absolute

op-group

busy

PCSrc
input encoding 

reduces ROM height 

next-state encoding 
reduces ROM width 
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Jump Logic

PCSrc = Case  JumpTypes

next  PC+1

spin  if (busy) then PC else PC+1

fetch  absolute

dispatch  op-group

feqz  if (zero) then absolute else PC+1

fnez  if (zero) then PC+1 else absolute
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Instruction Fetch & ALU:MIPS-Controller-2

State  Control points next-state

fetch0 MA  PC 
fetch1 IR   Memory
fetch2 A    PC
fetch3 PC  A + 4 
...
ALU0 A    Reg[rs] 
ALU1 B    Reg[rt] 
ALU2 Reg[rd]func(A,B)

ALUi0 A  Reg[rs] 
ALUi1 B  sExt16(Imm)
ALUi2 Reg[rd] Op(A,B)

next
spin
next
dispatch

next
next
fetch

next
next
fetch
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Load & Store: MIPS-Controller-2

State  Control points next-state

LW0 A    Reg[rs] next 
LW1 B    sExt16(Imm) next
LW2 MA  A+B next
LW3 Reg[rt]  Memory spin
LW4 fetch

SW0 A    Reg[rs] next 
SW1 B    sExt16(Imm) next
SW2 MA  A+B next
SW3 Memory  Reg[rt] spin
SW4 fetch
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Branches: MIPS-Controller-2 

State  Control points next-state

BEQZ0 A  Reg[rs] next
BEQZ1 fnez 
BEQZ2 A  PC next
BEQZ3 B  sExt16(Imm<<2)  next
BEQZ4 PC  A+B fetch

BNEZ0 A  Reg[rs] next
BNEZ1 feqz
BNEZ2 A  PC next
BNEZ3 B  sExt16(Imm<<2)  next
BNEZ4 PC  A+B fetch
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Jumps: MIPS-Controller-2

State  Control points next-state

J0 A    PC next
J1 B    IR next
J2 PC  JumpTarg(A,B) fetch

JR0 A    Reg[rs] next
JR1 PC  A fetch

JAL0 A    PC next 
JAL1 Reg[31]  A next 
JAL2 B    IR next
JAL3 PC  JumpTarg(A,B) fetch

JALR0 A  PC next 
JALR1 B  Reg[rs] next
JALR2 Reg[31]  A next 

JALR3 PC  B fetch
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Implementing Complex Instructions

ExtSel

A B

RegWrt

enReg

enMem

MA

addr addr

data data

rs
rt
rd

32(PC)
31(Link)

RegSel

OpSel ldA ldB ldMA

Memory

32 GPRs
+ PC ...

32-bit RegALU

enALU

Bus

IR

busyzero?Opcode

ldIR

Imm
Ext

enImm

2

ALU
control

2

3

MemWrt

32

rs
rt
rd

Why is microprogramming good for complex instructions?

Amortize fetch cost, allow more operation parallelism
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Complex Instructions
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Reg-Memory-src ALU op:
rd  M[(rs)] op (rt)

Reg-Memory-dst ALU op:
M[(rd)]  (rs) op (rt)

Mem-Mem ALU op:
M[(rd)]  M[(rs)] op M[(rt)]

String instructions:
M[(rd):(rd)+rc]  M[(rs):(rs)+rc] op M[(rt):(rt)+rc]

Complex instructions usually do not require datapath 
modifications in a microprogrammed implementation 

-- only extra space for the control program

Implementing these instructions using a hardwired 
controller is difficult without datapath modifications
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Mem-Mem ALU Instructions: 
MIPS-Controller-2

Mem-Mem ALU op          M[(rd)]  M[(rs)] op M[(rt)]

ALUMM0 MA  Reg[rs] next
ALUMM1 A    Memory spin
ALUMM2 MA  Reg[rt] next
ALUMM3 B    Memory spin
ALUMM4 MA Reg[rd] next
ALUMM5 Memory  func(A,B) spin
ALUMM6 fetch

L06-26



Sanchez and EmerFebruary 24, 2014 http://www.csg.csail.mit.edu/6.823 

Performance Issues

Microprogrammed control 
 multiple cycles per instruction

Cycle time ? 
tC > max(treg-reg, tALU, tROM, tRAM)

Given complex control, tALU & tRAM can be broken
into multiple cycles.  However, tROM cannot be
broken down.  Hence 

tC > max(treg-reg, tROM)

Suppose  10 * tROM < tRAM

Good performance, relative to the single-cycle
hardwired implementation, can be achieved
even with a CPI of 10 
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VAX 11-780 Microcode
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Some more history …

• IBM 360

• Microcoding through the seventies

• Microcoding now
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Microprogramming in IBM 360

Only the fastest models (75 and 95) were hardwired

M30 M40 M50 M65

Datapath 
width (bits)

8 16 32 64

inst width 
(bits)

50 52 85 87

code size 
(K minsts)

4 4 2.75 2.75

store 
technology

CCROS TCROS BCROS BCROS

store cycle 
(ns)

750 625 500 200

memory 
cycle (ns)

1500 2500 2000 750

Rental fee
($K/month)

4 7 15 35
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Microcode Emulation

• IBM initially miscalculated the importance of 
software compatibility with earlier models 
when introducing the 360 series

• Honeywell stole some IBM 1401 customers by 
offering translation software (“Liberator”) for 
Honeywell H200 series machine

• IBM retaliated with optional additional 
microcode for 360 series that could emulate 
IBM 1401 ISA, later extended for IBM 7000 
series
– one popular program on 1401 was a 650 simulator, so 

some customers ran many 650 programs on emulated 
1401s

– (650 simulated on 1401 emulated on 360)
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Microprogramming thrived in 70’s

• Significantly faster ROMs than DRAMs were 
available

• For complex instruction sets, datapath and 
controller were cheaper and simpler

• New instructions, e.g., floating point, could 
be supported without datapath modifications

• Fixing bugs in the controller was easier

• ISA compatibility across various models 
could be achieved easily and cheaply

Except for the cheapest and fastest machines, 
all computers were microprogrammed
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Horizontal vs Vertical Code

• Horizontal code has wider instructions
– Multiple parallel operations per instruction

– Fewer steps per macroinstruction

– Sparser encoding  more bits

• Vertical code has narrower instructions
– Typically a single datapath operation per instruction

– separate instruction for branches

– More steps to per macroinstruction

– More compact   less bits

• Nanocoding
– Tries to combine best of horizontal and vertical code

# Instructions

Bits per Instruction
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Nanocoding

• MC68000 had 17-bit code containing either 10-bit jump or 9-
bit nanoinstruction pointer

– Nanoinstructions were 68 bits wide, decoded to give 196 
control signals

code ROM

nanoaddress

code 
next-state

address

PC (state)

nanoinstruction ROM
data

Exploits recurring 
control signal patterns 
in code, e.g., 

ALU0 A  Reg[rs] 
...
ALUi0 A  Reg[rs]
...
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Microprogramming: early eighties

• Evolution bred more complex micro-machines
• Complex instruction sets led to the need for subroutine and 

call stacks in code
• Need for fixing bugs in control programs was in conflict with 

read-only nature of ROM 
WCS  (B1700, QMachine, Intel432, …)

• With the advent of VLSI technology assumptions about 
ROM & RAM speed became invalid -> more complexity

• Better compilers made complex instructions less 
important.

• Use of numerous micro-architectural innovations, e.g., 
pipelining, caches and buffers, made multiple-cycle 
execution of reg-reg instructions unattractive
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Microcode Pipelining
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uCode
Fetch

Write-
back

uCode
Fetch

Write-
back

uCode
Fetch

Exec
Write-
back

Exec

Exec

To compete against RISC pipelines micro-coded machines
pipelined micro-code execution
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Modern Usage

• Microprogramming is far from extinct

• Played a crucial role in micros of the Eighties
DEC uVAX, Motorola 68K series, Intel 386 and 486

• Microcode plays an assisting role in most modern
CISC micros (AMD and Intel)
• Most instructions are executed directly, i.e., with hard-wired

control
• Infrequently-used and/or complicated instructions invoke the

microcode engine

• Patchable microcode common for post-fabrication
bug fixes, e.g. Intel Pentiums load mcode patches
at bootup
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Writable Control Store (WCS)

• Implement control store with SRAM not ROM
– MOS SRAM memories now almost as fast as control store 

(core memories/DRAMs were 2-10x slower)
– Bug-free microprograms difficult to write

• User-WCS provided as option on several 
minicomputers
– Allowed users to change microcode for each processor

• User-WCS failed
– Little or no programming tools support
– Difficult to fit software into small space
– Microcode control tailored to original ISA, less useful for 

others
– Large WCS part of processor state - expensive context 

switches
– Protection difficult if user can change microcode
– Virtual memory required restartable microcode
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Thank you.
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A Bus-based Datapath for MIPS

Microinstruction: register to register transfer  (17 control signals)

enMem

MA

addr

data

ldMA

Memory

busy

MemWrt

Bus 32

zero?

A B

OpSel ldA ldB

ALU

enALU

ALU
control

2

RegWrt

enReg

addr

data

rs
rt
rd

32(PC)
31(Link)

RegSel

32 GPRs
+ PC ...

32-bit Reg

3

rs
rt
rd

ExtSel

IR

Opcode

ldIR

Imm
Ext

enImm

2
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