Complex Pipelining:

Out-of-Order Execution, Register Renaming and Exceptions

Daniel Sanchez
Computer Science and Artificial Intelligence Laboratory M.I.T.

CDC 6600-style Scoreboard

CDC 6600-style Scoreboard

Instructions are issued in order;

CDC 6600-style Scoreboard

Instructions are issued in order;
An instruction is issued only if

CDC 6600-style Scoreboard

Instructions are issued in order; An instruction is issued only if
- It cannot cause a RAW hazard

CDC 6600-style Scoreboard

> Instructions are issued in order; An instruction is issued only if
> - It cannot cause a RAW hazard
> \Rightarrow if operands are read immediately then no need to remember sources of instructions in the execute phases

CDC 6600-style Scoreboard

Instructions are issued in order;
An instruction is issued only if

- It cannot cause a RAW hazard
\Rightarrow if operands are read
immediately then no need to
remember sources of
instructions in the execute
phases
- It cannot cause a WAW hazard

CDC 6600-style Scoreboard

> Instructions are issued in order; An instruction is issued only if
> - It cannot cause a RAW hazard
> \Rightarrow if operands are read immediately then no need to remember sources of instructions in the execute phases
> - It cannot cause a WAW hazard
> \Rightarrow There can be at most instruction in the execute phase that can write in a

CDC 6600-style Scoreboard

Instructions are issued in order; An instruction is issued only if

- It cannot cause a RAW hazard
\Rightarrow if operands are read immediately then no need to remember sources of instructions in the execute phases
- It cannot cause a WAW hazard
\Rightarrow There can be at most instruction in the execute phase that can write in a

Scoreboard:
Two bit-vectors

CDC 6600-style Scoreboard

Instructions are issued in order; An instruction is issued only if

- It cannot cause a RAW hazard
\Rightarrow if operands are read immediately then no need to remember sources of instructions in the execute phases
- It cannot cause a WAW hazard
\Rightarrow There can be at most instruction in the execute phase that can write in a
 particular register

Busy[FU\#]: Indicates FU's availability These bits are hardwired to FU's.

Scoreboard:
Two bit-vectors

CDC 6600-style Scoreboard

Instructions are issued in order; An instruction is issued only if

- It cannot cause a RAW hazard
\Rightarrow if operands are read immediately then no need to remember sources of instructions in the execute phases
- It cannot cause a WAW hazard
\Rightarrow There can be at most instruction in the execute phase that can write in a
 particular register

Scoreboard:
Two bit-vectors

Busy[FU\#]: Indicates FU's availability These bits are hardwired to FU's.

WP[reg\#]: Records if a write is pending for a register

Set to true by the Issue stage and set to false by the WB stage

Reminder: Scoreboard Dynamics

Sanchez \& Emer

Reminder: Scoreboard Dynamics

Sanchez \& Emer

Reminder: Scoreboard Dynamics

$\underbrace{\begin{array}{l} \text { Issue } \\ \text { time } \end{array}}$	Functional Unit Stat Int(1) Add(1) ${ }^{\text {Mult(3) }}$				Div(4)				WB	WP	
t0					f6					f6	
$\mathrm{t} 1 \mathrm{I}_{2}$	f2					f6				f6, f2	
t2							f6		f2	f6, f2	\underline{I}_{2}
t3 I_{3}			f0					$f 6$		f6, f0	
t4				f0					f6	f6, f0	$\underline{\underline{I}}$
t5 I_{4}				f0	8					f0, f8	
t6						f8			f0	f0, f8	\underline{I}_{3}
t7 I_{5}		f10					88			f8, f10	
t8								f8	f10	f8, f10	\underline{I}_{5}
t9									f8	f8	\underline{I}_{4}
	DIVD			f6,		f6	,		$f 4$	Issue	
I_{2}	LD			f2,			5 (r3)			WP	
I_{3}	MUL			fo,		f2			$f 4$	WP	
I_{4}	DIVD			f8,		$f 6$			$f 2$	WP	WP
I_{5}	SUB			f10,		f0			f6	Busy[

Sanchez \& Emer

Reminder: Scoreboard Dynamics

$\begin{aligned} & \text { Issue } \\ & \text { time } \end{aligned}$	Functional Unit Status Int(1) Add(1) Mult(3) $\operatorname{Div}(4)$ WB									WP	
t0 ${ }_{1}$					f6					f6	
$\mathrm{t} 1 \mathrm{I}_{2}$	f2					f6				f6, f2	
t2							f6		f2	f6, f2	\underline{I}
t3 I_{3}			f0					f6		f6, f0	
t4				f0					f6	f6, f0	$\underline{\underline{I}}$
$t 5{ }_{4}$				f0	8					f0, f8	
t6						f8			f0	f0, f8	\underline{I}
t7 I_{5}		f10					88			f8, f10	
t8								${ }^{\text {f }}$	f10	f8, f10	\underline{I}
t9									$f 8$	f8	I_{4}
$\mathrm{t} 10 \mathrm{I}_{6}$		f6								f6	
I_{1} I_{2}	$\begin{aligned} & \text { DIVD } \\ & \text { LD } \end{aligned}$		$\begin{aligned} & \text { f6, } \\ & \text { f2, } \end{aligned}$			f6, 45(r3)			f4	Issue checks:	
I_{3}	MULTD					f2,			$f 4$	WP[de	
I_{4}	DIVD								f2	WP[src1] or W	
I_{5}	SUBD		$\begin{aligned} & \text { f8, } \\ & \text { f10, } \end{aligned}$			f0,			f6	Busy[

Sanchez \& Emer

Reminder: Scoreboard Dynamics

Sanchez \& Emer

In-Order Issue Limitations: an example

In-order: $1(2, \underline{1})$. $234 \underline{3} 5$. . . $\underline{5} 6 \underline{6}$

In-Order Issue Limitations: an example

Out-of-Order Issue

How can we address the delay caused by a RAW dependence associated with the next in-order instruction?

Out-of-Order Issue

How can we address the delay caused by a RAW dependence associated with the next in-order instruction?

Find something else to do!

Out-of-Order Issue

How can we address the delay caused by a RAW dependence associated with the next in-order instruction?

Find something else to do!

- Issue stage buffer holds multiple instructions waiting to issue.

Out-of-Order Issue

How can we address the delay caused by a RAW dependence associated with the next in-order instruction?

Find something else to do!

- Issue stage buffer holds multiple instructions waiting to issue.
- Decode adds next instruction to buffer if there is space and the instruction does not cause a WAR or WAW hazard.

Out-of-Order Issue

How can we address the delay caused by a RAW dependence associated with the next in-order instruction?

Find something else to do!

- Issue stage buffer holds multiple instructions waiting to issue.
- Decode adds next instruction to buffer if there is space and the instruction does not cause a WAR or WAW hazard.
- Can issue any instruction in buffer whose RAW hazards are satisfied (for now at most one dispatch per cycle). A writeback (WB) may enable more instructions.

In-Order Issue Limitations: an example

	F2,	$34(\mathrm{R} 2)$	latency		
1	LD	1			
2	LD	F 4,	$45(\mathrm{R} 3)$	long	
3	MULTD	F 6,	F 4,	F 2	3
4	SUBD	F,	F 2,	F 2	1
5	DIVD	F 4,	F 2,	F 8	4
6	ADDD	F 10,	F 6,	F 4	1

In-order: $1(2, \underline{1})$. $234 \underline{3} 5$. . . $\underline{5} 6 \underline{6}$

In-Order Issue Limitations: an example

	F2,	$34(\mathrm{R} 2)$	latency		
1	LD	1			
2	LD	F 4,	$45(\mathrm{R} 3)$	long	
3	MULTD	F 6,	F 4,	F 2	3
4	SUBD	F,	F 2,	F 2	1
5	DIVD	F 4,	F 2,	F 8	4
6	ADDD	F 10,	F 6,	F 4	1

In-order:	$1(2, \underline{1}) \underline{2} 34 \underline{3} 5 . . . \underline{5} 6 \underline{6}$
Out-of-order:	$1(2, \underline{1}) 4 \underline{4}23 . . \underline{3} 5 . . . \underline{5} 6 \underline{6}$

In-Order Issue Limitations: an example

In-order:	$1(2, \underline{1}) \underline{2} 34 \underline{3} 5 . . . \underline{5} 6 \underline{6}$
Out-of-order:	$1(2, \underline{1}) 4 \underline{4}23 . . \underline{3} 5 . . . \underline{5} 6 \underline{6}$

Out-of-order execution did not allow any significant improvement!

Instruction-level Parallelism via Renaming

			latency		
1	LD	F2,	$34(\mathrm{R} 2)$	1	
2	LD	F 4,	$45(\mathrm{R} 3)$	long	
3	MULTD	F 6,	F 4,	F 2	3
4	SUBD	F,	F,	F 2	1
5	DIVD	F 4,	F 2,	F 8	4
6	ADDD	F 10,	F 6,	F 4	1

In-order:

$$
1(2, \underline{1}) \text {. } \underline{2} 34 \underline{4} \underline{3} 5 \text {. . . } \underline{5} 6 \underline{6}
$$

Instruction-level Parallelism via Renaming

			latency		
1	LD	F2,	$34(\mathrm{R} 2)$	1	
2	LD	F 4,	$45(\mathrm{R} 3)$	long	
3	MULTD	F,	F,	F,	3
4	SUBD	F,	F,	F,	1
5	DIVD	F 4,	F 2,	F 8	4
6	ADDD	F 10,	F 6,	F 4	1

In-order: $1(2, \underline{1})$. $234 \underline{3} 3$. . . $\underline{5} 6 \underline{6}$

Renaming eliminates WAR and WAW hazards

Instruction-level Parallelism via Renaming

Renaming eliminates WAR and WAW hazards (renaming \Rightarrow additional storage)

Instruction-level Parallelism via Renaming

Renaming eliminates WAR and WAW hazards (renaming \Rightarrow additional storage)

Instruction-level Parallelism via Renaming

Renaming eliminates WAR and WAW hazards (renaming \Rightarrow additional storage)

Instruction-level Parallelism via Renaming

Renaming eliminates WAR and WAW hazards (renaming \Rightarrow additional storage)

Which feature of an ISA limits the number of instructions in the pipeline?

Which feature of an ISA limits the number of instructions in the pipeline?

Number of Registers

How many Instructions can be in the pipeline

Which feature of an ISA limits the number of instructions in the pipeline?

Number of Registers

Out-of-order dispatch by itself does not provide any significant performance improvement!

Little's Law

Throughput $(T)=$ Number in Flight (N) / Latency (L)

Example:
4 floating point registers
8 cycles per floating point operation
\Rightarrow

Little's Law

Throughput $(T)=$ Number in Flight $(N) /$ Latency (L)

Example:
4 floating point registers
8 cycles per floating point operation
$\Rightarrow \quad 1 / 2$ issues per cycle!

Overcoming the Lack of Register Names

Floating Point pipelines often cannot be kept filled with small number of registers.

IBM 360 had only 4 Floating Point Registers
Can a microarchitecture use more registers than specified by the ISA without loss of ISA compatibility ?

Overcoming the Lack of Register Names

Floating Point pipelines often cannot be kept filled with small number of registers.

IBM 360 had only 4 Floating Point Registers
Can a microarchitecture use more registers than specified by the ISA without loss of ISA compatibility ?

Yes, Robert Tomasulo of IBM suggested an ingenious solution in 1967 based on on-the-fly register renaming

Register Renaming

- Decode does register renaming and adds instructions to the issue stage reorder buffer (ROB)
\Rightarrow renaming makes WAR or WAW hazards impossible
- Any instruction in ROB whose RAW hazards have been satisfied can be dispatched.
\Rightarrow Out-of-order or dataflow execution

Dataflow execution

Instruction slot is candidate for execution when:
-It holds a valid instruction ("use" bit is set)
-It has not already started execution ("exec" bit is clear)
-Both operands are available (p1 and p2 are set)

Renaming \& Out-of-order Issue

 An example

1	LD	F2,	34(R2)	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?
-When can a name be reused?

Renaming \& Out-of-order Issue

 An example

1	LD	F2,	34(R2)	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?

Renaming \& Out-of-order Issue

 An exampleRenaming table
Reorder buffer

	data
F1	
F2	
F3	
F4	
F5	
F6	
F7	
F8	

1	LD	F2,	$34($ R2 $)$	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Renaming \& Out-of-order Issue

 An example

1	LD	F2,	34(R2)	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Renaming \& Out-of-order Issue

 An exampleRenaming table
Reorder buffer

F1 p data	
F2	t1
F3	
F4	
F5	
F6	
F7	
F8	

1	LD	F2,	$34($ R2)	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Renaming \& Out-of-order Issue

 An exampleRenaming table
Reorder buffer

F1 p data	
F2	t1
F3	
F4	
F5	
F6	
F7	
F8	

1	LD	F2,	34(R2)	
2	LD	F4,	45(R3)	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Renaming \& Out-of-order Issue

 An exampleRenaming table
Reorder buffer

F1 p data	
F2	t1
F3	
F4	
F5	
F6	
F7	
F8	

1	LD	F2,	$34($ R2)	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Renaming \& Out-of-order Issue

 An exampleRenaming table
Reorder buffer

F1 p data	
F2	v1
F3	
F4	
F5	
F6	
F7	
F8	

1	LD	F2,	$34($ R2)	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Renaming \& Out-of-order Issue An example

1	LD	F2,	34(R2)	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Renaming \& Out-of-order Issue An example

1	LD	F2,	34(R2)	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Renaming \& Out-of-order Issue An example

1	LD	F2,	$34($ R2 $)$	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Renaming \& Out-of-order Issue An example

1	LD	F2,	$34($ R2 $)$	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Renaming \& Out-of-order Issue An example

1	LD	F2,	$34($ R2 $)$	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Renaming \& Out-of-order Issue An example

1	LD	F2,	$34($ R2 $)$	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Renaming \& Out-of-order Issue An example

1	LD	F2,	$34($ R2 $)$	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Renaming \& Out-of-order Issue An example

1	LD	F2,	$34($ R2 $)$	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Renaming \& Out-of-order Issue An example

1	LD	F2,	$34($ R2 $)$	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Renaming \& Out-of-order Issue An example

Renaming table p data		Reorder buffer								
		Ins\# use exec op p1 src1 p2 src2								
F1			0							
F2	v1	2	1	1	LD					
F3		3	1	0	MUL	0	t2		1	v1
F4	t5	4	0							
F5		5	1	0	DIV	1	v		0	t4
F6	t3									
F7										
F8	v4									
dat										

1	LD	F2,	$34($ R2 $)$	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Renaming \& Out-of-order Issue An example

Renaming table p data		Reorder buffer								
		Ins\# use exec op p1 src1 p2 src2								
F1			0							
F2	v1	2	1	1	LD					
F3		3	1	0	MUL	0	t2		1	v1
F4	t5	4	0							
F5		5	1	0	DIV	1	v		1	v4
F6	t3									
F7										
F8	v4									
dat										

1	LD	F2,	$34($ R2 $)$	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Renaming \& Out-of-order Issue An example

Ren	O				ord	r	f			
	da	Ins	use		op	p1	S		p2	src2
F1			0							
F2	v1	2	0							
F3		3	1	0	MUL	0	t2		1	v1
F4	t5	4	0							
F5		5	1	0	DIV	1	v		1	v4
F6	t3									
F7										
F8	$v 4$									
data $\left(\mathrm{v}_{\mathrm{i}}\right) / \operatorname{tag}\left(\mathrm{t}_{\mathrm{i}}\right)$										

1	LD	F2,	$34($ R2 $)$	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Renaming \& Out-of-order Issue An example

1	LD	F2,	34(R2)	
2	LD	F4,	$45($ R3 $)$	
3	MULTD	F6,	F4,	F2
4	SUBD	F8,	F2,	F2
5	DIVD	F4,	F2,	F8
6	ADDD	F10,	F6,	F4

- When are names in sources replaced by data?

Whenever an FU produces data
-When can a name be reused?
Whenever an instruction completes

Data-Driven Execution

Renaming table \& reg file

Reorder buffer

- Instruction template (i.e., tag t) is allocated by the Decode stage, which also stores the tag in the reg file
- When an instruction completes, its tag is deallocated

Data-Driven Execution

Renaming
table \&
reg file

Reorder buffer

Replacing the

 tag by its value is an expensive operation

Ins\#	use	exec	op	p1	src1	p2	src2
t_{2}							
\cdot							
t_{2}							
t_{n}							

- Instruction template (i.e., tag t) is allocated by the Decode stage, which also stores the tag in the reg file
- When an instruction completes, its tag is deallocated

Simplifying Allocation/Deallocation

Instruction buffer is managed circularly
-"exec" bit is set when instruction begins execution
-When an instruction completes its "use" bit is marked free

- ptr_{2} is incremented only if the "use" bit is marked free

IBM 360/91 Floating Point Unit

 R. M. Tomasulo, 1967

Effectiveness?

Renaming and Out-of-order execution was first implemented in 1969 in IBM 360/91 but did not show up in the subsequent models until midnineties.
Why?

Effectiveness?

Renaming and Out-of-order execution was first implemented in 1969 in IBM 360/91 but did not show up in the subsequent models until midnineties.
Why?

1. Effective on a very small class of programs

Effectiveness?

Renaming and Out-of-order execution was first implemented in 1969 in IBM 360/91 but did not show up in the subsequent models until midnineties.
Why?

1. Effective on a very small class of programs
2. Did not address the memory latency problem which turned out be a much bigger issue than FU latency
3. Made exceptions imprecise

Effectiveness?

Renaming and Out-of-order execution was first implemented in 1969 in IBM 360/91 but did not show up in the subsequent models until midnineties.
Why?

1. Effective on a very small class of programs
2. Did not address the memory latency problem which turned out be a much bigger issue than FU latency
3. Made exceptions imprecise

One more problem needed to be solved

Effectiveness?

Renaming and Out-of-order execution was first implemented in 1969 in IBM 360/91 but did not show up in the subsequent models until midnineties.
Why?

1. Effective on a very small class of programs
2. Did not address the memory latency problem which turned out be a much bigger issue than FU latency
3. Made exceptions imprecise

One more problem needed to be solved
Control transfers

Effectiveness?

Renaming and Out-of-order execution was first implemented in 1969 in IBM 360/91 but did not show up in the subsequent models until midnineties.
Why?

1. Effective on a very small class of programs
2. Did not address the memory latency problem which turned out be a much bigger issue than FU latency
3. Made exceptions imprecise

One more problem needed to be solved

Control transfers

More on this in the next lecture

Precise Exceptions

Exceptions are relatively unlikely events that need special processing, but where adding explicit control flow instructions is not desired, e.g., divide by 0, page fault

Exceptions can be viewed as an implicit conditional subroutine call that is inserted between two instructions.

Therefore, it must appear as if the exception is taken between two instructions (say I_{i} and $\mathrm{I}_{\mathrm{i}+1}$)

- the effect of all instructions up to and including I_{i} is complete
- no effect of any instruction after I_{i} has taken place

The handler either aborts the program or restarts it at $\mathrm{I}_{\mathrm{i}+1}$.

Effect on Exceptions

Out-of-order Completion

I_{1}	DIVD	f6,	f6,	f4
I_{2}	LD	f2,	$45(\mathrm{r} 3)$	
I_{3}	MULTD	f0,	f2,	f4
I_{4}	DIVD	f8,	f6,	f2
I_{5}	SUBD	f10,	f0,	f6
I_{6}	ADDD	f6,	f8,	f2

out-of-order comp $1 \begin{array}{llllllllllll} & 2 & \underline{2} & 3 & \underline{1} & 4 & \underline{3} & 5 & \underline{5} & \underline{4} & 6 & \underline{6}\end{array}$

Effect on Exceptions

Out-of-order Completion

I_{1}	DIVD	f6,	f6,	f4
I_{2}	LD	f2,	$45(r 3)$	
I_{3}	MULTD	f0,	f2,	$\mathrm{f4}$
I_{4}	DIVD	f8,	f6,	f 2
I_{5}	SUBD	f10,	f0,	$\mathrm{f6}$
I_{6}	ADDD	f6,	f8,	f 2

out-of-order comp $1 \begin{array}{llllllllllll} & 2 & \underline{2} & 3 & \underline{1} & 4 & \underline{3} & 5 & \underline{5} & \underline{4} & 6 & \underline{6}\end{array}$

Consider exceptions

Effect on Exceptions

Out-of-order Completion

I_{1}	DIVD	f6,	f6,	f4
I_{2}	LD	f2,	$45(r 3)$	
I_{3}	MULTD	f0,	f2,	$\mathrm{f4}$
I_{4}	DIVD	f8,	f6,	f 2
I_{5}	SUBD	f10,	f0,	$\mathrm{f6}$
I_{6}	ADDD	f6,	f8,	f 2

out-of-order comp $1 \begin{array}{llllllllllll} & 2 & \underline{2} & 3 & 1 & 4 & \underline{3} & 5 & \underline{5} & \underline{4} & 6 & \underline{6}\end{array}$
Consider exceptions

Effect on Exceptions

Out-of-order Completion

I_{1}	DIVD	f6,	f6,	$\mathrm{f4}$
I_{2}	LD	f2,	$45(\mathrm{r} 3)$	
I_{3}	MULTD	f0,	f2,	$\mathrm{f4}$
I_{4}	DIVD	f8,	f6,	f 2
I_{5}	SUBD	f10,	f0,	$\mathrm{f6}$
I_{6}	ADDD	f6,	f8,	f 2

$\begin{array}{llllllllllllll}\text { out-of-order comp } & 1 & 2 & \underline{2} & 3 & 1 & 1 & 4 & \underline{3} & 5 & \underline{5} & \underline{4} & 6 & \underline{6} \\ \text { Consider exceptions } & & & & & & \end{array}$

Effect on Exceptions

Out-of-order Completion

I_{1}	DIVD	f6,	f6,	f4
I_{2}	LD	f2,	45(r3)	
I_{3}	MULTD	f0,	f2,	f4
I_{4}	DIVD	f8,	f6,	f2
I_{5}	SUBD	f10,	f0,	f6
I_{6}	ADDD	f6,	f8,	f2

Effect on Exceptions

Out-of-order Completion

I_{1}	DIVD	f6,	f6,	f4
I_{2}	LD	f2,	$45(r 3)$	
I_{3}	MULTD	f0,	f2,	$\mathrm{f4}$
I_{4}	DIVD	f8,	f6,	f 2
I_{5}	SUBD	f10,	f0,	$\mathrm{f6}$
I_{6}	ADDD	f6,	f8,	f 2

Effect on Exceptions

Out-of-order Completion

I_{1}	DIVD	f6,	f6,	f4
I_{2}	LD	f2,	$45(\mathrm{r3})$	
I_{3}	MULTD	f0,	f2,	f4
I_{4}	DIVD	f8,	f6,	f2
I_{5}	SUBD	f10,	fo,	f6
I_{6}	ADDD	f6,	f8,	f2

Precise exceptions are difficult to implement at high speed

- want to start execution of later instructions before exception checks finished on earlier instructions

Exceptions

Exceptions

- Exceptions create a dependence on the value of the next PC

Exceptions

- Exceptions create a dependence on the value of the next PC
- Options for handling this dependence:

Exceptions

- Exceptions create a dependence on the value of the next PC
- Options for handling this dependence:
- Stall

Exceptions

- Exceptions create a dependence on the value of the next PC
- Options for handling this dependence:
- Stall

No

Exceptions

- Exceptions create a dependence on the value of the next PC
- Options for handling this dependence:
- Stall

No

- Bypass

Exceptions

- Exceptions create a dependence on the value of the next PC
- Options for handling this dependence:
- Stall

No

- Bypass

No

Exceptions

- Exceptions create a dependence on the value of the next PC
- Options for handling this dependence:
- Stall
- Bypass
- Find something else to do

No
No

Exceptions

- Exceptions create a dependence on the value of the next PC
- Options for handling this dependence:
- Stall
- Bypass
- Find something else to do

No
No

Exceptions

- Exceptions create a dependence on the value of the next PC
- Options for handling this dependence:
- Stall
- Bypass
- Find something else to do
- Change the architecture

No
No
No

Exceptions

- Exceptions create a dependence on the value of the next PC
- Options for handling this dependence:
- Stall
- Bypass
- Find something else to do
- Change the architecture

No
No
No
Sometimes: Alpha, Multiflow

Exceptions

- Exceptions create a dependence on the value of the next PC
- Options for handling this dependence:
- Stall
- Bypass
- Find something else to do
- Change the architecture
- Speculate!

No
No
No
Sometimes: Alpha, Multiflow

Exceptions

- Exceptions create a dependence on the value of the next PC
- Options for handling this dependence:
- Stall
- Bypass
- Find something else to do
- Change the architecture
- Speculate!

No
No
No
Sometimes: Alpha, Multiflow
Most common approach!

Exceptions

- Exceptions create a dependence on the value of the next PC
- Options for handling this dependence:
- Stall
- Bypass
- Find something else to do
- Change the architecture
- Speculate!

No
No
No
Sometimes: Alpha, Multiflow
Most common approach!

- How can we handle rollback on mis-speculation

Exceptions

- Exceptions create a dependence on the value of the next PC
- Options for handling this dependence:
- Stall
- Bypass
- Find something else to do
- Change the architecture
- Speculate!

No
No
No
Sometimes: Alpha, Multiflow Most common approach!

- How can we handle rollback on mis-speculation

Delay state update until commit on speculated instructions

Exceptions

- Exceptions create a dependence on the value of the next PC
- Options for handling this dependence:
- Stall
- Bypass
- Find something else to do
- Change the architecture
- Speculate!

No
No
No
Sometimes: Alpha, Multiflow Most common approach!

- How can we handle rollback on mis-speculation

Delay state update until commit on speculated instructions

- Note: earlier exceptions must override later ones

Phases of Instruction Execution

Exception Handling

 (In-Order Five-Stage Pipeline)

Exception Handling (In-Order Five-Stage Pipeline)

Exception Handling (In-Order Five-Stage Pipeline)

Exception Handling (In-Order Five-Stage Pipeline)

Exception Handling (In-Order Five-Stage Pipeline)

Exception Handling (In-Order Five-Stage Pipeline)

Exception Handling (In-Order Five-Stage Pipeline)

Hold exception flags in pipeline until commit point (M stage)

Exception Handling (In-Order Five-Stage Pipeline)

Hold exception flags in pipeline until commit point (M stage)

Exception Handling (In-Order Five-Stage Pipeline)

Hold exception flags in pipeline until commit point (M stage)
-If exception at commit:

- update Cause/EPC registers
- kill all stages
- fetch at handler PC

Exception Handling (In-Order Five-Stage Pipeline)

Hold exception flags in pipeline until commit point (M stage)
-If exception at commit:

- update Cause/EPC registers
- kill all stages
- fetch at handler PC

Exception Handling (In-Order Five-Stage Pipeline)

Hold exception flags in pipeline until commit point (M stage)
-If exception at commit:

- update Cause/EPC registers
- kill all stages
- fetch at handler PC

Exception Handling (In-Order Five-Stage Pipeline)

Hold exception flags in pipeline until commit point (M stage) -If exception at commit:

- update Cause/EPC registers
- kill all stages
- fetch at handler PC

Exception Handling (In-Order Five-Stage Pipeline)

- update Cause/EPC registers
- kill all stages
- fetch at handler PC

Inject external interrupts at commit point

Exception Handling (In-Order Five-Stage Pipeline)

- update Cause/EPC registers
- kill all stages
- fetch at handler PC

Inject external interrupts at commit point

In-Order Commit for Precise Exceptions

- Instructions fetched and decoded into instruction reorder buffer in-order
- Execution is out-of-order (\Rightarrow out-of-order completion)
- Commit (write-back to architectural state, i.e., regfile \& memory, is in-order

Temporary storage needed to hold results before commit (shadow registers and store buffers)

Extensions for Precise Exceptions

	Inst\#	use	exec	op	p1	src1	p2	src2		dest	data	cause
ptr_{2} next to commit												
next					-							
available					$\underline{ }$		\cdots		,			

- add <pd, dest, data, cause> fields in the instruction template
- commit instructions to reg file and memory in program order \Rightarrow buffers can be maintained circularly
- on exception, clear reorder buffer by resetting $\operatorname{ptr}_{1}=\mathrm{ptr}_{2}$ (stores must wait for commit before updating memory)

Rollback and Renaming

Register File (now holds only committed state)

Reorder buffer

Register file does not contain renaming tags any more. How does the decode stage find the tag of a source register?

Rollback and Renaming

Register File (now holds only committed state)

Reorder buffer

Register file does not contain renaming tags any more.
How does the decode stage find the tag of a source register? Search the "dest" field in the reorder buffer

Renaming Table

Renaming table is a cache to speed up register name lookup.
It needs to be cleared after each exception taken.
When else are valid bits cleared?

Renaming Table

Renaming table is a cache to speed up register name lookup.
It needs to be cleared after each exception taken.
When else are valid bits cleared?
Control transfers

Physical Register Files

- Reorder buffers are space inefficient - a data value may be stored in multiple places in the reorder buffer
- idea - keep all data values in a physical register file
- Tag represents the name of the data value and name of the physical register that holds it
- Reorder buffer contains only tags

Thus, 64 data values may be replaced by 8-bit tags for a 256 element physical register file

More on this in later lectures ...

Branch Penalty

How many instructions need to be killed on a misprediction?

Modern processors may have > 10 pipeline stages between nextPC calculation and branch resolution!

Next fetch started

Branch Penalty

How many instructions need to be killed on a misprediction?

Modern processors may have > 10 pipeline stages between nextPC calculation and branch resolution!

