
http://www.csg.csail.mit.edu/6.823

Joel Emer
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Branch Prediction

Sanchez & Emer

Branch Prediction Championship

March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-2

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-3

Commit: Instruction irrevocably updates
architectural state (aka “graduation” or
“completion”).

Execute: Instructions and operands sent to
execution units .
When execution completes, all results and
exception flags are available.

Decode: Instructions placed in appropriate
issue (aka “dispatch”) stage buffer

Fetch: Instruction bits retrieved
from cache.

Phases of Instruction Execution

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Result
Buffer

PC

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-4

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Modern processors may have
> 10 pipeline stages between
next PC calculation and branch
resolution !

Control Flow Penalty

How much work is lost if
pipeline doesn’t follow
correct instruction flow?

~ Loop length x pipeline width

Loose loop

Branch
executed

Next fetch
started

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-5

Average Run-Length between
Branches

Average dynamic instruction mix from SPEC92:
 SPECint92 SPECfp92

 ALU 39 % 13 %
 FPU Add 20 %
 FPU Mult 13 %
 load 26 % 23 %
 store 9 % 9 %
 branch 16 % 8 %
 other 10 % 12 %

SPECint92: compress, eqntott, espresso, gcc , li
SPECfp92: doduc, ear, hydro2d, mdijdp2, su2cor

What is the averagerun length between branches

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-6

Instruction Taken known? Target known?

J

JR

BEQZ/BNEZ

MIPS Branches and Jumps

Each instruction fetch depends on one or two pieces
of information from the preceding instruction:

 1) Is the preceding instruction a taken branch?

 2) If so, what is the target address?

After Reg. Fetch* After Inst. Decode

After Inst. Decode After Inst. Decode

After Inst. Decode After Reg. Fetch

*Assuming zero detect on register read

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-7

Realistic Branch Penalties

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-III instruction fetch pipeline stages
(in-order issue, 4-way superscalar, 750MHz, 2000)

Branch
Target
Address
Known

Branch
Direction &
Jump
Register
Target
Known

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-8

Reducing Control Flow Penalty

Software solutions
• Eliminate branches - loop unrolling
 Increases the run length
• Reduce resolution time - instruction scheduling
 Compute the branch condition as early
 as possible (of limited value)

Hardware solutions
• Find something else to do architecturally

• delay slots - replace pipeline bubbles with
useful work (requires software cooperation)

• Speculate - branch prediction
Speculative execution of instructions beyond
the branch

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-9

Branch Prediction

Motivation:
Branch penalties limit performance of deeply pipelined
processors

Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:

Prediction structures:
• Branch history tables, branch target buffers, etc.

Mispredict recovery mechanisms:

• Keep result computation separate from commit
• Kill instructions following branch in pipeline
• Restore state to state following branch

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-10

Static Branch Prediction

Overall probability a branch is taken is ~60-70% but:

ISA can attach preferred direction semantics to branches,
e.g., Motorola MC88110

bne0 (preferred taken) beq0 (not taken)

ISA can allow arbitrary choice of statically predicted direction,
e.g., HP PA-RISC, Intel IA-64
 typically reported as ~80% accurate

JZ

JZ
backward

90%
forward

50%

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-11

Dynamic Prediction

Input

Truth/Feedback

Prediction
Predictor

Operations

• Predict

• Update Prediction as a feedback control process

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-12

Predictor Primitive
Emer & Gloy, 1997

• Indexed table holding values

• Operations
– Predict

– Update

• Algebraic notation

 Prediction = P[Width, Depth](Index; Update)

Index

Prediction

Update

Depth

Width

P

U I

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-13

Dynamic Branch Prediction
learning based on past behavior

Temporal correlation
The way a branch resolves may be a good
predictor of the way it will resolve at the next
execution

Spatial correlation

Several branches may resolve in a highly
correlated manner (a preferred path of
execution)

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-14

One-bit Predictor

PC

Taken

Prediction

A21064(PC; T) = P[1, 2K](PC; T)

P

U

I

1 bit

What happens on loop branches?

At best, mispredicts twice for every use of loop.

Simple temporal prediction

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-15

Branch Prediction Bits

• Assume 2 BP bits per instruction
• Use saturating counter

O
n
 ¬

ta
k
e
n

 O

n
 ta

k
e
n

1 1 Strongly taken

1 0 Weakly taken

0 1 Weakly ¬taken

0 0 Strongly ¬taken

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-16

Two-bit Predictor
Smith, 1981

PC

+/- Adder

Taken
Prediction

Counter[W,D](I; T) = P[W, D](I; if T then P+1 else P-1)

A21164(PC; T) = MSB(Counter[2, 2K](PC; T))

P

U

I

2 bits

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-17

Branch History Table

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

0 0 Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset

Instruction

k

BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-18

Exploiting Spatial Correlation
Yeh and Patt, 1992

History register, H, records the direction of the last
N branches executed by the processor

if (x[i] < 7) then

 y += 1;

if (x[i] < 5) then

 c -= 4;

If first condition false, second condition also false

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-19

History Register

PC

Concatenate

Taken
History

History(PC, T) = P(PC; P || T)

P

U

I

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-20

Global History

GHist(;T) = MSB(Counter(History(0, T); T))

Ind-Ghist(PC;T) = MSB(Counter(PC || Hist(GHist(;T);T)))

Taken

0

Concat

Global History

+/-

Prediction

Can we take advantage of a pattern at a particular PC?

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-21

Local History

PC

Concat

Local History

+/-

Prediction

Taken

LHist(PC, T) = MSB(Counter(History(PC; T); T))

Can we take advantage of the global pattern at a particular PC?

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-22

Two-level Predictor

0

Concat

Global
 History

+/-

Prediction

Taken

2Level(PC, T) = MSB(Counter(History(0; T)||PC; T))

Concat

PC

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-23

Two-Level Branch Predictor

Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

0 0

k Fetch PC

Shift in
Taken/¬Taken
results of each
branch

2-bit global branch
history shift register

Taken/¬Taken?

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-24

Choosing Predictors

LHist

GHist

Chooser

Chooser = MSB(P(PC; P + (A==T) - (B==T))
or

Chooser = MSB(P(GHist(PC; T); P + (A==T) - (B==T))

Prediction

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-25

Tournament Branch Predictor
(Alpha 21264)

• Choice predictor learns whether best to use local or global
branch history in predicting next branch

• Global history is speculatively updated but restored on
mispredict

• Claim 90-100% success on range of applications

Local history
table

(1,024x10b)

PC

Local
prediction

(1,024x3b)

Global Prediction
(4,096x2b)

Choice Prediction
(4,096x2b)

Global History (12b) Prediction

Sanchez & Emer

TAGE predictor
Seznec & Michaud, 2006

March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-26

TAGE_TREE[L1, L2, L3](PC; T) =
 TAGE[L3](PC,
 TAGE[L2](PC,
 TAGE[L1](PC, Bimodal(PC;T)
 ;T) ;T ;T)

TAGE[L3]

Final
Prediction

TAGE[L2] TAGE[L1] BiModal

PC

Use

me?

My

Guess

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-27

TAGE component

Counter

Prediction

Useful

Tag

Use

me?

My

Guess

PC

Next
Predictor

GHist

Sanchez & Emer

TAGE predictor component

March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-28

TAGE[L](PC, NEXT; T) =

idx = hash(PC, GHIST[L](;T))
tag = hash(PC, GHIST[L](;T))

TAGE.U = SA(idx, tag; ((TAGE == T) && (NEXT != T))?1:SA)
TAGE.Counter = SA(idx, tag; T?SA+1:SA-1)

use_me = TAGE.U && isStrong(TAGE.Counter)
TAGE = use_me?MSB(TAGE.Counter):NEXT

Notes:
 SA is a ‘set associative’ structure
 SA allocation occurs on mispredict (not shown)
 TAGE.U cleared on global counter saturation

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-29

Limitations of branch predictors

Only predicts branch direction. Therefore, cannot redirect
fetch stream until after branch target is determined.

UltraSPARC-III fetch pipeline

Correctly

predicted

taken branch
penalty

Jump Register
penalty

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-30

Branch Target Buffer (untagged)

BP bits are stored with the predicted target address.

IF stage: If (BP=taken) then nPC=target else nPC=PC+4
later: check prediction, if wrong then kill the instruction
 and update BTB & BPb else update BPb

IMEM

PC

Branch
Target
Buffer
(BTB)
(2k entries) k

BPb predicted

target BP

 target

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-31

Address Collisions

What will be fetched after the instruction at 1028?
 BTB prediction =
 Correct target =

Assume a
128-entry
BTB

BPb target

take 236

1028 Add

132 Jump 100

Instruction
Memory

236
1032

kill PC=236 and fetch PC=1032

 Is this a common occurrence?
 Can we avoid these bubbles?

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-32

BTB is only for Control Instructions

BTB contains useful information for branch and
jump instructions only
 Do not update it for other instructions

For all other instructions the next PC is (PC)+4 !

How to achieve this effect without decoding the
instruction?

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-33

Branch Target Buffer (tagged)

• Keep both the branch PC and target PC in the BTB
• PC+4 is fetched if match fails
• Only taken branches and jumps held in BTB
• Next PC determined before branch fetched and decoded

2k-entry direct-mapped BTB
(can also be associative)

I-Cache PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-34

Consulting BTB Before Decoding

1028 Add

132 Jump 100

BPb target

take 236

entry PC

132

• The match for PC=1028 fails and 1028+4 is fetched
 eliminates false predictions after ALU instructions

• BTB contains entries only for control transfer instructions
 more room to store branch targets

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-35

Combining BTB and BHT

• BTB entries are considerably more expensive than BHT,
but can redirect fetches at earlier stage in pipeline and
can accelerate indirect branches (JR)

• BHT can hold many more entries and is more accurate

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

BTB

BHT BHT in later
pipeline stage
corrects when
BTB misses a
predicted
taken branch

BTB/BHT only updated after branch resolves in E stage

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-36

Line Prediction
(Alpha 21[234]64)

• Line Predictor predicts line to fetch each cycle (tight loop)
– Untagged BTB structure – Why?

– 21464 was to predict 2 lines per cycle

• Icache fetches block, and predictors improve target prediction

• PC Calc checks accuracy of line prediction(s)

• For superscalar useful to predict next cache line(s) to fetch

Line
Predictor

Instr
Cache

Branch
Predictor

Return
Stack

Indirect
Branch

Predictor

Decode &
PC Calc

Mispredict

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-37

Uses of Jump Register (JR)

• Switch statements (jump to address of matching case)

• Dynamic function call (jump to run-time function address)

• Subroutine returns (jump to return address)

How well does BTB work for each of these cases?

BTB works well if same case used repeatedly

BTB works well if same function usually called, (e.g., in
C++ programming, when objects have same type in
virtual function call)

BTB works well if usually return to the same place

 Often one function called from many distinct call sites!

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-38

Subroutine Return Stack

Small structure to accelerate JR for subroutine
returns, typically much more accurate than BTBs.

&fb()

&fc()

Push call address when
function call executed

Pop return address
when subroutine
return decoded

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

&fd()
k entries
(typically k=8-16)

Sanchez & Emer March 17, 2014 http://www.csg.csail.mit.edu/6.823

L12-39

Overview of branch prediction

P
C

Need next PC
immediately

Decode
Reg
Read

Execute

Instr type,
PC relative

targets
available

Simple
conditions,

register targets
available

Complex
conditions
available

BTB

BP,
JMP,
Ret

Loose loop Loose loop Loose loop Tight loop

Must speculation check always be correct? No…

Best predictors
reflect program

behavior

http://www.csg.csail.mit.edu/6.823

Thank you !

