
http://www.csg.csail.mit.edu/6.823

1

Joel Emer
Computer Science and Artificial Intelligence Lab

M.I.T.

Beyond Sequential Consistency:

Relaxed Memory Models

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

CC and False Sharing
Performance Issue - 1

state blk addr data0 data1 ... dataN

A cache block contains more than one word and
cache-coherence is done at the block-level and
not word-level

Suppose P1 writes wordi and P2 writes wordk and
both words have the same block address.

What can happen?

L24-2

The block may be invalidated
(ping pong) many times
unnecessarily because the
addresses are in same block.

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

CC and Synchronization
Performance Issue - 2

Cache-coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex
location (non-atomically) and executing a swap only if it is
found to be zero.

cache

Processor 1
R  1

L: swap (mutex), R;
if <R> then goto L;

<critical section>
M[mutex]  0;

Processor 2
R  1

L: swap (mutex), R;
if <R> then goto L;

<critical section>
M[mutex]  0;

Processor 3
R  1

L: swap (mutex), R;
if <R> then goto L;

<critical section>
M[mutex]  0;

CPU-Memory Bus

mutex=1cache cache

L24-3

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

CC and Bus Occupancy
Performance Issue - 3

In general, an atomic read-modify-write
instruction requires two memory (bus) operations
without intervening memory operations by other
processors

In a multiprocessor setting, bus needs to be
locked for the entire duration of the atomic read
and write operation

expensive for simple buses
very expensive for split-transaction buses

modern processors use
load-reserve
store-conditional

L24-4

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

Load-reserve & Store-conditional

If the snooper sees a store transaction to the address
in the reserve register, the reserve bit is set to 0

• Several processors may reserve ‘a’ simultaneously
• These instructions are like ordinary loads and stores
with respect to the bus traffic

Special register(s) to hold reservation flag and
address, and the outcome of store-conditional

Load-reserve R, (a):
<flag, adr>  <1, a>;
R M[a];

Store-conditional (a), R:
if <flag, adr> == <1, a>
then cancel other procs’

reservation on a;
M[a] <R>;
status succeed;

else status fail;

L24-5

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

Performance:
Load-reserve & Store-conditional

The total number of memory (bus) transactions
is not necessarily reduced, but splitting an
atomic instruction into load-reserve & store-
conditional:

• increases bus utilization (and reduces
processor stall time), especially in split-
transaction buses

• reduces cache ping-pong effect because
processors trying to acquire a semaphore do
not have to perform stores each time

L24-6

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-7

Sequential Consistency

• In-order instruction execution

• Atomic loads and stores

SC is easy to understand but architects and compiler
writers want to violate it for performance

Processor 1 Processor 2

Store (a), 10; L: Load r1, (flag);

Store (flag), 1; if r1 == 0 goto L;

Load r2, (a);

initially flag = 0

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-8

Memory Model Issues

Architectural optimizations that are correct
for uniprocessors, often violate sequential
consistency and result in a new memory
model for multiprocessors

Sanchez & Emer

Consistency Models

May 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-9

• Sequential Consistency
– All reads and write in order

• Relaxed Consistency (one or more of the following)
– Loads may be reordered after loads

• e.g., PA-RISC, Power, Alpha

– Loads may be reordered after stores

• e.g., PA-RISC, Power, Alpha

– Stores may be reordered after stores

• e.g., PA-RISC, Power, Alpha, PSO

– Stores may be reordered after loads

• e.g., PA-RISC, Power, Alpha, PSO, TSO

– Other more esoteric characteristics

• e.g., Alpha

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-10

Committed Store Buffers

CPU

Cache

Main Memory

CPU

Cache

• CPU can continue execution
while earlier committed
stores are still propagating
through memory system
– Processor can commit other

instructions (including loads and
stores) while first store is
committing to memory

– Committed store buffer can be
combined with speculative store
buffer in an out-of-order CPU

• Local loads can bypass
values from buffered stores
to same address

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-11

• Suppose Loads can go ahead of Stores
waiting in the store buffer: Yes !

Process 1 Process 2

Store (flag1),1; Store (flag2),1;

Load r1, (flag2); Load r2, (flag1);

Example 1: Store Buffers

Initially, all memory
locations contain zeros

Question: Is it possible that r1=0 and r2=0?
• Sequential consistency: No

Total Store Order (TSO):
Sun SPARC, IBM 370

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-12

Process 1 Process 2

Store (flag1), 1; Store (flag2), 1;

Load r3, (flag1); Load r4, (flag2);

Load r1, (flag2); Load r2, (flag1);

Example 2: Store-Load Bypassing

• Suppose Store-Load bypassing is permitted
in the store buffer
– No effect in Sparc’s TSO model, still not SC
– In IBM 370, a load cannot return a written value

until it is visible to other processors => implicity
adds a memory fence, looks like SC

Question: Do extra Loads have any effect?
• Sequential consistency: No

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-13

Interleaved Memory System

CPU

Even

Cache

Memory

(Even

Addresses)

Odd

Cache

Memory

(Odd

Addresses)

• Achieve greater throughput
by spreading memory
addresses across two or more
parallel memory subsystems
– In snooping system, can have

two or more snoops in progress
at same time (e.g., Sun UE10K
system has four interleaved
snooping busses)

– Greater bandwidth from main
memory system as two memory
modules can be accessed in
parallel

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-14

• With non-FIFO store buffers: Yes

Process 1 Process 2

Store (a), 1; Load r1, (flag);

Store (flag), 1; Load r2, (a);

Example 3: Non-FIFO Store buffers

Sparc’s PSO memory model

Question: Is it possible that r1=1 but r2=0?
• Sequential consistency: No

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-15

• Assuming stores are ordered: Yes because
Loads can be reordered

Example 4: Non-Blocking Caches

Alpha, Sparc’s RMO, PowerPC’s WO

Question: Is it possible that r1=1 but r2=0?
• Sequential consistency: No

Process 1 Process 2

Store (a), 1; Load r1, (flag);

Store (flag), 1; Load r2, (a);

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-16

Initially both r1 and r2 contain 1.

Process 1 Process 2

Store (flag1), r1; Store (flag2), r2;

Load r1, (flag2); Load r2, (flag1);

• Register renaming: Yes because it removes
anti-dependencies

Example 5: Register Renaming

Question: Is it possible that r1=0 but r2=0?
• Sequential consistency: No

Register
renaming
will
eliminate
this edge

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-17

• With speculative loads: Yes even if the
stores are ordered

Process 1 Process 2

Store (a), 1; L: Load r1, (flag);

Store (flag), 1; if r1 == 0 goto L;

Load r2, (a);

Example 6: Speculative Execution

Question: Is it possible that r1=1 but r2=0?
• Sequential consistency: No

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-18

Initially both r1 and r3 contain 1.

Process 1 Process 2

Store (flag1), r1; Store (flag2), r3;

Load r2, (flag2); Load r4, (flag1);

Example 7: Address Speculation

Question: Is it possible that r2=0 but r4=0?
• Sequential consistency: No
• Address speculation: Yes because it
removes the dependencies between the
stores and loads

Address
speculati
on will
eliminate
this edge

Flag1 and flag2 are registers
pointing at memory locations

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-19

• Even if Loads on a processor are ordered,
the different ordering of stores can be
observed if the Store operation is not
atomic.

Process 1 Process 2 Process 3 Process 4

Store (a),1; Store (a),2; Load r1, (a); Load r3, (a);

Load r2, (a); Load r4, (a);

Example 8: Store Atomicity

Question: Is it possible that r1=1 and r2=2
but r3=2 and r4=1 ?

• Sequential consistency: No

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-20

Example 9: Causality

Process 1 Process 2 Process 3

Store (flag1),1; Load r1, (flag1); Load r2, (flag2);

Store (flag2),1; Load r3, (flag1);

Question: Is it possible that r1=1 and r2=1
but r3=0 ?

• Sequential consistency: No

• With load/load reordering: Yes

Alpha

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-21

Weaker Memory Models &
Memory Fence Instructions

• Architectures with weaker memory models
provide memory fence instructions to
prevent otherwise permitted reorderings
of loads and stores

Fencewr

Store (a1), r2;

Load r1, (a2);

Fencerr; Fencerw; Fenceww;

The Load and Store can be

reordered if a1 =/= a2.

Insertion of Fencewr will

disallow this reordering

Similarly:

SUN’s Sparc: MEMBAR;
MEMBARRR; MEMBARRW; MEMBARWR; MEMBARWW

PowerPC: Sync; EIEIO

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-22

Enforcing Ordering using Fences

Processor 1 Processor 2

Store (a),10; L: Load r1, (flag);

Store (flag),1; if r1 == 0 goto L;

Load r2, (a);

Processor 1 Processor 2

Store (a),10; L: Load r1, (flag);

Fenceww; if r1 == 0 goto L;

Store (flag),1; Fencerr;
Load r2, (a);

Weak ordering

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-23

Weaker (Relaxed) Memory Models

• Hard to understand and remember

• Unstable - Modèle de l’année

• Abandon weaker memory models in favor
of implementing SC.

Alpha, Sparc
PowerPC, ...

Write-
buffers

Store is globally
performed

TSO, PSO,
RMO, ...

RMO=WO? SMP, DSM

Sanchez & Emer

Implementing SC

1. The memory operations of each individual
processor appear to all processors in the
order the requests are made to the memory.

– Provided by cache coherence, which ensures that all
processors observe the same order of loads and stores to
an address

2. Any execution is the same as if the
operations of all the processors were
executed in some sequential order

– Provided by enforcing a dependence between each
memory operation and the following one.

May 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-24

Sanchez & Emer

SC Data Dependence

• Stall

– Use in-order execution with blocking cache

• Cache coherence plus allowing a processor to have
only one request in flight at a time will provide SC

• Change architecture  Relaxed memory models

– Use OOO and non-blocking caches

• Cache coherence and allowing multiple requests
(different addresses) concurrently gives high
performance, then add fence operations to force
ordering when needed

• Speculate…

May 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-25

Sanchez & Emer

Sequential Consistency Speculation

• Local load-store ordering uses standard OOO mechanism

• Globally non-speculative stores

– Stores execute at commit -> stores are in-order!

• Globally speculative loads

– Guess at issue that the memory location used by a load will not
change between issue and commit of the instruction

• this is equivalent to loads happening in-order at commit

– Check at commit by remembering all loads addresses starting
at issue and watching for writes to that location.

– Data Management for rollback relies on the basic out-of-order
speculative data management used for uni-processor rollback
and instruction re-execution.

May 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-26

Sanchez & Emer

SC Speculative Behavior

May 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-27

CPU A CPU B

ST A

1: ST A

2: LD A

3: LD A

4: ST A

ST A

ST A

ST A

ST A

ST A

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-28

Properly Synchronized Programs

• Very few programmers do programming that
relies on SC; instead higher-level
synchronization primitives are used
– locks, semaphores, monitors, atomic transactions

• A “properly synchronized program” is one
where each shared writable variable is
protected (say, by a lock) so that there is no
race in updating the variable.
– There is still race to get the lock

– There is no way to check if a program is properly
synchronized

• For properly synchronized programs,
instruction reordering does not matter as
long as updated values are committed
before leaving a locked region.

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-29

Release Consistency

• Only care about inter-processor memory ordering
at thread synchronization points, not in between

• Can treat all synchronization instructions as the
only ordering points

…

Acquire(lock) // All following loads get most recent written values

… Read and write shared data ..

Release(lock) // All preceding writes are globally visible before

// lock is freed.

…

Sanchez & EmerMay 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-30

Takeaway

• SC is too low level a programming model. High-
level programming should be based on critical
sections & locks, atomic transactions, monitors, ...

• High-level parallel programming should be
oblivious of memory model issues.
– Programmer should not be affected by changes in the

memory model

• ISA definition for Load, Store, Memory Fence,
synchronization instructions should
– Be precise

– Permit maximum flexibility in hardware implementation

– Permit efficient implementation of high-level parallel
constructs.

Sanchez & Emer

ONLINE SUBJECT EVALUATIONS

Now open at:

http://web.mit.edu/subjectevaluation

• You have until Monday, May 19 at 9 AM

• Please evaluate all subjects in your list

• Don’t forget your TAs

• Write comments

Your feedback is read and valued!

May 7, 2014 http://www.csg.csail.mit.edu/6.823

L24-31

http://www.csg.csail.mit.edu/6.823

32

One more to go!

Thanks for listening

- Quiz 4 is on Wednesday May 14th

