
6.823 SPring15
Quiz 2 Review (L09-L14)

TA: Po-An Tsai, Hsin-Jung Yang

4/2/2015 6.823 Spring 2015 1

Lecture 9-14 are all about ILP

• Instruction-level parallelism (ILP)

– Execute as many instructions as possible at the
same time to maximize throughput and hide long
latency by memory/ALU

• Why this is not easy?

– Dependencies between instructions

4/2/2015 6.823 Spring 2015 2

Dependency

• Data dependency

– RAW WAR WAW

• Control dependency

– Branch jump

• Structural dependency

– Only one ALU

4/2/2015 6.823 Spring 2015 3

Ways to Solve Dependency

• For false dependency

– Indirection

• For true dependency

– Stall

– Bypass

– Speculate => best if you speculate mostly correctly

4/2/2015 6.823 Spring 2015 4

Ways to Solve Dependency

• Data dependency
– RAW WAR WAW
=> Scoreboard (L9) ROB, Register renaming (L10), Store queue(L13)

• Control dependency

– Branch jump
=> Branch prediction (L11)

• Structural dependency

– Only one ALU
=> Superscalar (L9)

4/2/2015 6.823 Spring 2015 5

Speculation

• We speculate a lot!

– Branch

– No exceptions

– Addresses for load/store are not the same

• How to manage old and new values?

– Greedy/lazy (L12)

4/2/2015 6.823 Spring 2015 6

Mis-speculation

• Recovery according to your policy(L12)

– Snapshot

– Rollback

4/2/2015 6.823 Spring 2015 7

Hide Long Latency

• A cache miss takes 100 cycles

• A divide takes 20 cycles

– Execute following instructions, but hold them until
those long-latency instruction finish.

• Use Little’s law to calculate how many
instruction in flight

4/2/2015 6.823 Spring 2015 8

Hide Long Latency

• A cache miss takes 100 cycles

• A divide takes 20 cycles

– Switch to another independent thread until they
finish (L14)

• Use Little’s law to calculate how many threads
needed

4/2/2015 6.823 Spring 2015 9

Example OoO Pipeline

4/2/2015 6.823 Spring 2015 10

Branch Prediction

4/2/2015 6.823 Spring 2015 11

Branch Prediction

• Speculate what the next instruction is

– Static

– 1 bit predictor

– 2 bit predictor

– Global history (a history register and lots of
predictor)

– Local history (many history registers and lots of
predictor)

– Combined local and global history

4/2/2015 6.823 Spring 2015 12

Branch Prediction

• Data management

4/2/2015 6.823 Spring 2015 13

Branch Target Buffer

• Store the next PC of branch/jmp instructions
seen last time

• Get address earlier than predictor

4/2/2015 6.823 Spring 2015 14

Combine BTB and

Predictor(BHT)

4/2/2015 6.823 Spring 2015 15

Out-of-Order Execution

4/2/2015 6.823 Spring 2015 16

Out-of-order Execute In-order Fetch/Decode In-order Commit

When can we execute an instruction out-of-order?
Need to consider data dependency
(register dependency, memory dependency)

• Register Dependency

Output-dependence

r3  (r1) op (r2) Write-after-Write
r3  (r6) op (r7) (WAW) hazard

Anti-dependence

r3  (r1) op (r2) Write-after-Read
r1  (r4) op (r5) (WAR) hazard

Data-dependence

r3  (r1) op (r2) Read-after-Write
r5  (r3) op (r4) (RAW) hazard

Data Dependency

4/2/2015 6.823 Spring 2015 17

• Register Dependency

Output-dependence

r3  (r1) op (r2) Write-after-Write
r3  (r6) op (r7) (WAW) hazard

Anti-dependence

r3  (r1) op (r2) Write-after-Read
r1  (r4) op (r5) (WAR) hazard

Data-dependence

r3  (r1) op (r2) Read-after-Write
r5  (r3) op (r4) (RAW) hazard

Data Dependency

4/2/2015 6.823 Spring 2015 18

• Memory Dependency

 When is the load dependent on the store?

 When (r2 + 4) == (r4 + 8)

 Do we know this issue when the instruction
 is decoded? No

Data Dependency

4/2/2015 6.823 Spring 2015 19

st r1, 4(r2)

ld r3, 8(r4)

• Memory Dependency

 Solution:

 (1) Stall: can execute load before store only if the
 addresses are known to be different

 (2) Address speculation: guess r2+4 != r4+8 and
 execute load before store

Data Dependency

4/2/2015 6.823 Spring 2015 20

st r1, 4(r2)

ld r3, 8(r4)

Speculative Load Buffer

• Speculative Load Buffer

Data Dependency

4/2/2015 6.823 Spring 2015 21

On load execute: mark entry valid, instruction number and tag
On load commit: clear valid bit
On load abort: clear valid bit
On store execute: if tag matches and the instruction is younger
than the store -> Abort!

Speculative Data Management

4/2/2015 6.823 Spring 2015 22

• When do we do speculation?
– Branch prediction

– Assume no exceptions/interrupts

– Assume no memory dependency

– …

• How do we manage speculative data?
– Greedy (or Eager) Update

• Update the value in place

• Maintain a log of old values to use for recovery

– Lazy Update
• Buffer the new value and leave the old value in place

• Replace the old value only at ‘commit’ time

Speculative Data Management

4/2/2015 6.823 Spring 2015 23

• Type of speculative data

– Branch prediction
• history registers, prediction counters (see P.13)

– Register values
• Lazy update: store new values in the ROB and update registers

during commit

• Hybrid: store both new and old values in the unified physical
register file

– Store values to memory
• Laze update: store new values in the speculative store buffer and

write to non-speculative store buffer/cache/memory during
commit

Speculative Data Management

4/2/2015 6.823 Spring 2015 24

• Register Value Management

– Approach 1: store new values in the ROB and update
registers during commit

Space
Inefficient

Speculative Data Management

4/2/2015 6.823 Spring 2015 25

• Register Value Management

– Approach 2: keep all data values in a physical register file

Reorder buffer
contains only tags

Out-of-Order Execution

4/2/2015 6.823 Spring 2015 26

Pre-Issue Check:

– The ROB is checked for available slots

– The free list is checked for free rename registers (if
necessary)

– For store instructions, the non-speculative store buffer is
checked for available slots

Out-of-Order Execution

4/2/2015 6.823 Spring 2015 27

ROB Insert:

– The instruction is inserted into the ROB only if all the checks
in the previous cycle (Pre-Issue check) pass

– The destination register is renamed

Out-of-Order Execution

4/2/2015 6.823 Spring 2015 28

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

ld r1, 0(r3)

add r3, r1, #4

sub r6, r7, r6

add r3, r3, r6

ld r6, 0(r1)

Free List
P0
P1
P3
P2
P4

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

x ld r1

R5
P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

Rename
Table

P0

P8 P0 P7 p

Out-of-Order Execution

4/2/2015 6.823 Spring 2015 29

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

x ld p P7 r1 P0
x add P0 r3 P1
x sub p P6 p P5 r6 P3

ld r1, 0(r3)

add r3, r1, #4

sub r6, r7, r6

add r3, r3, r6

ld r6, 0(r1)

Free List
P0
P1
P3
P2
P4

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

R5
P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

Rename
Table

P0

P8
P7

P1

P5

P3

P1

P2

x add P1 P3 r3 P2
x ld P0 r6 P4 P3

P4

Ready to execute

Out-of-Order Execution

4/2/2015 6.823 Spring 2015 30

Reg File Read:
– Operand values are read from the unified physical register file

Execute:
– Integer and floating point operations are sent to the

appropriate functional units

– Stores enter the speculative store buffer

– Loads read from the store buffer or cache/memory

Out-of-Order Execution

4/2/2015 6.823 Spring 2015 31

Reg File Write:

– The output from the functional units/memory is written
into the unified register file and the ROB is notified.

Out-of-Order Execution

4/2/2015 6.823 Spring 2015 32

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

x ld p P7 r1 P0
x add P0 r3 P1
x sub p P6 p P5 r6 P3

x ld p P7 r1 P0

ld r1, 0(r3)

add r3, r1, #4

sub r6, r7, r6

add r3, r3, r6

ld r6, 0(r1)

Free List
P0
P1
P3
P2
P4

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

R5
P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

Rename
Table

P0

P8
P7

P1

P5

P3

P1

P2

x add P1 P3 r3 P2
x ld P0 r6 P4 P3

P4

Execute
p

p

p <R1>

x

Out-of-Order Execution

4/2/2015 6.823 Spring 2015 33

Commit:
– Instructions are committed in-order

– Free the previously mapped physical register

– Data is written to cache/memory/non-speculative store
buffer when a store is committed

– The ROB entry is freed after commit

Out-of-Order Execution

4/2/2015 6.823 Spring 2015 34

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

x ld p P7 r1 P0
x add P0 r3 P1
x sub p P6 p P5 r6 P3

x ld p P7 r1 P0

ld r1, 0(r3)

add r3, r1, #4

sub r6, r7, r6

add r3, r3, r6

ld r6, 0(r1)

Free List
P0
P1
P3
P2
P4

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

R5
P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

Rename
Table

P0

P8
P7

P1

P5

P3

P1

P2

x add P1 P3 r3 P2
x ld P0 r6 P4 P3

P4

Commit
p

p

p <R1>

P8

x

Multithreading

4/2/2015 6.823 Spring 2015 35

Scheduling Policy

4/2/2015 6.823 Spring 2015 36

Simultaneous Multithreading

(SMT)

• Share OOO structures between threads

4/2/2015 6.823 Spring 2015 37

The end

Good luck!! 

4/2/2015 6.823 Spring 2015 38

