
6.823 SPring15
Quiz 3 Review (L15-L19)

TA: Po-An Tsai, Hsin-Jung Yang

4/23/2015 6.823 Spring 2015 1

Quiz 3 is about multi-core system

• How they communicate

– NOC

• Underlining communication links

– Coherence

• Same memory location

– Sequential consistency

• Different memory location

4/23/2015 6.823 Spring 2015 2

NoC

• Network-on-chip is about how elements
(cores, cache banks, memory controller, I/O
controller etc.) communicate with each other

• Important when you have a large system

• How different nodes connect to each other
– Ring

– Mesh/Torus

– Tree

• Important properties
– Diameter

– Avg. distance

– Bisection bandwidth

– Links (overhead)

Topology

Flow control

• How messages are forwarded from src to dst

• Buffered/ Bufferless

– Wormhole is the most common one

– but there is head-of-line blocking problem

Router architecture

• Handout 10

4/23/2015 6.823 Spring 2015 6

Router architecture

4/23/2015 6.823 Spring 2015 7

Field Name Description

G Global state Either idle (I), routing (R), waiting for an
output VC (V), active (A), or waiting for
credits (C).

R Route After routing is completed for a packet, this
field holds the output port selected for the
packet.

O Output VC After virtual-channel allocation is completed
for a packet, this field holds the output
virtual channel of port R assigned to the
packet.

P Pointers Flit head and tail pointers into the input
buffer

Router architecture

• Handout 10

• Pipeline stages: RC->VA->SA->ST

4/23/2015 6.823 Spring 2015 8

Routing

• What is the path between src and dst

• Choose a path so that the message can arrive
faster

• Choose a path to ensure there is no
deadlock/livelock

Routing: Deadlock

The eight possible turns and cycles in a 2D mesh

Only four turns are allowed in the XY routing algorithm

Turn Model

DCG

• Coherence concerns reads/writes to a single memory
location

• Coherence Rules

– Write propagation: Writes eventually become visible to
all processors

• Write-invalidate protocol & write-update protocol

– Write serialization: Writes to the same location are
serialized (all processors see them in the same order)

• Snoopy-based protocol and directory-based protocol

Cache Coherence

4/23/2015 6.823 Spring 2015 13

• Modified (M): The cache has the exclusive copy of the
line with read and write permissions.

• Shared (S): The cache has a shared, read-only copy of
the line. Other caches may also have read-only copies.

• Invalid (I): Data is not present in this cache but can be
present in other caches.

MSI Coherence States

4/23/2015 6.823 Spring 2015 14

Snoopy-based Protocol

4/23/2015 6.823 Spring 2015 15

All caches observe (snoop) each other’s actions through
a shared bus

MSI Snoopy-based Protocol

4/23/2015 6.823 Spring 2015 16

MSI Snoopy-based Protocol

Example

4/23/2015 6.823 Spring 2015 17

Core 0

Cache 0

Core 1

Tag State Data

Cache 1

Tag State Data

Memory

Shared
Bus

LD 0xA

MSI Snoopy-based Protocol

Example

4/23/2015 6.823 Spring 2015 18

Core 0

Cache 0

Core 1

Tag State Data

Cache 1

Tag State Data

Memory

Shared
Bus

LD 0xA

BusRd 0xA

MSI Snoopy-based Protocol

Example

4/23/2015 6.823 Spring 2015 19

Core 0

Cache 0

Core 1

Tag State Data

0xA S 2

Cache 1

Tag State Data

Memory

Shared
Bus

LD 0xA

MSI Snoopy-based Protocol

Example

4/23/2015 6.823 Spring 2015 20

Core 0

Cache 0

Core 1

Tag State Data

0xA S 2

Cache 1

Tag State Data

Memory

Shared
Bus

ST 0xA

MSI Snoopy-based Protocol

Example

4/23/2015 6.823 Spring 2015 21

Core 0

Cache 0

Core 1

Tag State Data

0xA S 2

Cache 1

Tag State Data

Memory

Shared
Bus

ST 0xA

BusRdX 0xA

MSI Snoopy-based Protocol

Example

4/23/2015 6.823 Spring 2015 22

Core 0

Cache 0

Core 1

Tag State Data

0xA I 2

Cache 1

Tag State Data

0xA M 3

Memory

Shared
Bus

ST 0xA

MSI Snoopy-based Protocol

Example

4/23/2015 6.823 Spring 2015 23

Core 0

Cache 0

Core 1

Tag State Data

0xA I 2

Cache 1

Tag State Data

0xA M 3

Memory

Shared
Bus

ST 0xA

MSI Snoopy-based Protocol

Example

4/23/2015 6.823 Spring 2015 24

Core 0

Cache 0

Core 1

Tag State Data

0xA I 2

Cache 1

Tag State Data

0xA M 3

Memory

Shared
Bus

LD 0xA

MSI Snoopy-based Protocol

Example

4/23/2015 6.823 Spring 2015 25

Core 0

Cache 0

Core 1

Tag State Data

0xA I 2

Cache 1

Tag State Data

0xA M 3

Memory

Shared
Bus

LD 0xA

BusRd 0xA

MSI Snoopy-based Protocol

Example

4/23/2015 6.823 Spring 2015 26

Core 0

Cache 0

Core 1

Tag State Data

0xA I 2

Cache 1

Tag State Data

0xA S 3

Memory

Shared
Bus

LD 0xA

BusWB 0xA, 3

MSI Snoopy-based Protocol

Example

4/23/2015 6.823 Spring 2015 27

Core 0

Cache 0

Core 1

Tag State Data

0xA S 3

Cache 1

Tag State Data

0xA S 3

Memory

Shared
Bus

LD 0xA

• Better scalability: no need to broadcast

• Directory tracks possible sharers (in sharer set)

– Memory-based directories v.s. directory caches

– Full bit vectors, coarse-grain bit-vectors, limited pointers, or
bloom filters…

• Directory serves as the ordering point: can use un-
ordered network

Directory-based Protocol

4/23/2015 6.823 Spring 2015 28

• Better scalability: no need to broadcast

• Directory tracks possible sharers (in sharer set)

– Memory-based directories v.s. directory caches

– Full bit vectors, coarse-grain bit-vectors, limited pointers, or
bloom filters…

• Directory serves as the ordering point: can use un-
ordered network

Directory-based Protocol

4/23/2015 6.823 Spring 2015 29

• Cache State

– Modified (M), Shared (S), Invalid (I)

– Transient states (IS, IM, and SM):
The cache has sent an upgrade request to the directory and
is waiting for the response.

MSI Directory-based Protocol

4/23/2015 6.823 Spring 2015 30

• Directory State
For each memory address, the directory maintains its
coherence state and a sharer set:
– Coherence State:

• Uncached (Un): No cache has a valid copy.

• Shared (Sh): One or more caches are in the S state.

• Exclusive (Ex): One of the caches is in the M state.

• Transient states (ExSh, ExUn, and ShUn): The directory has
sent a request to one or multiple caches and is waiting for the cache
response(s).

– Sharer Set: Contains the IDs of the caches with shared or
exclusive permissions for that memory location.

MSI Directory-based Protocol

4/23/2015 6.823 Spring 2015 31

• Why?

– Modifying a shared variable must be atomic

– Can be used to implement locks

• Examples of synchronization primitives:

– Test-and-set:

Synchronization Primitives

4/23/2015 6.823 Spring 2015 32

TST is useful to implement locks.
M[Imm+rt] == 1: Someone holds the lock.
M[Imm+rt] == 0: Lock is free.

TST rs, Imm(rt):
 rs  Mem[Imm+rt]
 if (Mem[Imm+rt] == 0)
 Mem[Imm+rt]  1

• Examples of synchronization primitives:

– Test-and-set: TST rs, Imm(rt)

– Compare-and-Swap:

Synchronization Primitives

4/23/2015 6.823 Spring 2015 33

CAS can also be used to implement locks.
Please read Handout 14.

CAS old, new, Imm(base):
 if (old == Mem[Imm+base])
 Mem[Imm+base]  new
 else
 old  Mem[Imm+base]

• Examples of synchronization primitives:

– Test-and-set: TST rs, Imm(rt)

– Compare-and-Swap: CAS old, new, Imm(base)

– Load-reserve/Store-conditional (Most Efficient)

Synchronization Primitives

4/23/2015 6.823 Spring 2015 34

• Coherence:

– Concerns reads/writes to a single memory location

• Consistency:

– Concerns reads/writes to multiple memory locations

Consistency

4/23/2015 6.823 Spring 2015 35

Why Consistency Matters

4/23/2015 6.823 Spring 2015 36

• Sequential Consistency:

– Program order maintained

– Loads and stores are atomic

• Weaker (Relaxed) Consistency:

– Total Store Order, Partial Store Order, Relaxed Memory
Order…

– Use memory fences to enforce load/store ordering:
• Fenceww , Fencewr , Fencerw , Fencerr

Memory Consistency Models

4/23/2015 6.823 Spring 2015 37

The end

Good luck!! 

4/23/2015 6.823 Spring 2015 38

