4/2

3/2015

6.823 SPring15
Quiz 3 Review (L15-L19)

TA: Po-An Tsai, Hsin-Jung Yang

6.823 Spring 2015

Quiz 3 is about multi-core system

* How they communicate
— NOC

* Underlining communication links

— Coherence

e Same memory location

— Sequential consistency

e Different memory location

NoC

* Network-on-chip is about how elements
(cores, cache banks, memory controller, I/O
controller etc.) communicate with each other

* Important when you have a large system

Topology

 How different nodes connect to each other
— Ring
— Mesh/Torus
— Tree

* Important properties
— Diameter
— Avg. distance
— Bisection bandwidth
— Links (overhead)

Flow control

* How messages are forwarded from src to dst

o Buffered/ Bufferless

— Wormhole is the most common one
— but there is head-of-line blocking problem

Router architecture

e Handout 10

| Ve
Router allocator
\
| Switch
allocator

-
-

[RIOIP|C|

|
E;%

Input unit Output unit

J
i

G]R|OJP|C|

y
y
i

—h
v

Input unit Switch Output unit

4/23/2015 6.823 Spring 2015

Router architecture
Field [Name |Descripton

Global state Either idle (I), routing (R), waiting for an
output VC (V), active (A), or waiting for
credits (C).

Route After routing is completed for a packet, this
field holds the output port selected for the
packet.

Output VC After virtual-channel allocation is completed
for a packet, this field holds the output
virtual channel of port R assigned to the
packet.

Pointers Flit head and tail pointers into the input
buffer

4/23/2015 6.823 Spring 2015 7

Router architecture

e Handout 10

* Pipeline stages: RC->VA->SA->ST

1 2 3 4 5 6 7

Cycle

Head flit RC|VA|SA|ST

Body flit 1 SA | ST

Body flit 2 SA | ST
Tail flit SA | ST

4/23/2015 6.823 Spring 2015

Routing

 What is the path between src and dst

* Choose a path so that the message can arrive
faster

* Choose a path to ensure there is no
deadlock/livelock

Routing: Deadlock

1 1
|: 3 packet 3 [:: 1
A
packet 4 packet 2
‘ j
b 0.7
—+ N L i
- packet 1

1 1

Turn Model

111
I I

The eight possible turns and cycles in a 2D mesh

Only four turns are allowed in the XY routing algorithm

O S D RN

Cache Coherence

e Coherence concerns reads/writes to a single memory
location

e Coherence Rules

— Write propagation: Writes eventually become visible to
all processors

* Write-invalidate protocol & write-update protocol

— Write serialization: Writes to the same location are
serialized (all processors see them in the same order)

* Snoopy-based protocol and directory-based protocol

4/23/2015 6.823 Spring 2015 13

MSI Coherence States

* Modified (M): The cache has the exclusive copy of the
line with read and write permissions.

e Shared (S): The cache has a shared, read-only copy of
the line. Other caches may also have read-only copies.

* Invalid (l): Data is not present in this cache but can be
present in other caches.

Snoopy-based Protocol

Shared
Bus
A
Snoopy| _ .
Py = 7| cache|T Physical
Memory
~_ |Snoopy B
I:)2 - *| cache
P {E}Snoopy{_:__ DMA DISKS
3 Cache
‘\lf

All caches observe (snoop) each other’s actions through
a shared bus

4/23/2015 6.823 Spring 2015

MSI Snoopy-based Protocol

PrRd /--O PrWr / --
—> Processor-initiated transitions

\l \B\ust /
| BysWB
\
<’ \ BusRdX
AN \ / BusWB
|

1BusRdX / --

\I\‘i
'// y Per / -

-7 BusRd / --

PrWr /
BusRdx \PrRd /

4/23/2015 6.823 Spring 2015

Bus-initiated transitions

Processor Read (PrRd)
Processor Write (PrWr)
Bus Read (BusRd)

Bus Read Exclusive
(BusRdX)

Bus Writeback (BusWB)

16

MSI Snoopy-based Protocol
Example

< % > Shared

| | Bus

Cache O Cache 1

LEL State Data Tag State Data

LD OxA

4/23/2015 6.823 Spring 2015 17

4/23/2015

MSI Snoopy-based Protocol
Example

BusRd OxA 5% . Shared

Cache O Cache 1

LEL State Data Tag State Data

LD OxA

6.823 Spring 2015

Bus

18

MSI Snoopy-based Protocol

Example
< % > Shared
| | Bus
Cache O Cache 1
LEL State Data Tag State Data
OxA S 2
LD OxA

4/23/2015 6.823 Spring 2015 19

MSI Snoopy-based Protocol
Example

< % > Shared

| | Bus

Cache O Cache 1

LEL State Data Tag State Data

4/23/2015 6.823 Spring 2015 20

MSI Snoopy-based Protocol

Example
!i;! BusRdX OxA
< > Shared
| | Bus
Cache O Cache 1
LEL State Data Tag State Data
4/23/2015 6.823 Spring 2015 21

MSI Snoopy-based Protocol
Example

< % > Shared

| | Bus

Cache O Cache 1

LEL State Data Tag State Data

4/23/2015 6.823 Spring 2015 22

MSI Snoopy-based Protocol
Example

< % > Shared

| | Bus

Cache O Cache 1

LEL State Data Tag State Data

4/23/2015 6.823 Spring 2015 23

MSI Snoopy-based Protocol
Example

< % > Shared

| | Bus

Cache O Cache 1

LEL State Data Tag State Data

4/23/2015 6.823 Spring 2015 24

MSI Snoopy-based Protocol
Example

BusRd OxA !i;! . Shared

| | Bus

<

Cache O Cache 1

LEL State Data Tag State Data

4/23/2015 6.823 Spring 2015 25

MSI Snoopy-based Protocol
Example

‘i;‘ BusWB 0xA, 3
> Shared

| | Bus

<

Cache O Cache 1

LEL State Data Tag State Data

4/23/2015 6.823 Spring 2015 26

MSI Snoopy-based Protocol
Example

< % > Shared

| | Bus

Cache O Cache 1

LEL State Data Tag State Data

4/23/2015 6.823 Spring 2015 27

Directory-based Protocol

* Better scalability: no need to broadcast
* Directory tracks possible sharers (in sharer set)

— Memory-based directories v.s. directory caches

— Full bit vectors, coarse-grain bit-vectors, limited pointers, or
bloom filters...

* Directory serves as the ordering point: can use un-
ordered network

4/23/2015 6.823 Spring 2015 28

Directory-based Protocol

* Better scalability: no need to broadcast
* Directory tracks possible sharers (in sharer set)

— Memory-based directories v.s. directory caches

— Full bit vectors, coarse-grain bit-vectors, limited pointers, or
bloom filters...

* Directory serves as the ordering point: can use un-
ordered network

4/23/2015 6.823 Spring 2015 29

MSI Directory-based Protocol

* Cache State
— Modified (M), Shared (S), Invalid ()

— Transient states (1S, I2M, and S2>M):
The cache has sent an upgrade request to the directory and
is waiting for the response.

4/23/2015 6.823 Spring 2015 30

MSI Directory-based Protocol

* Directory State
For each memory address, the directory maintains its
coherence state and a sharer set:

— Coherence State:

Uncached (Un): No cache has a valid copy.
Shared (Sh): One or more caches are in the S state.
Exclusive (Ex): One of the caches is in the M state.

Transient states (Ex->Sh, Ex=>Un, and Sh=>Un): The directory has
sent a request to one or multiple caches and is waiting for the cache
response(s).

— Sharer Set: Contains the IDs of the caches with shared or
exclusive permissions for that memory location.

4/23/2015

6.823 Spring 2015 31

Synchronization Primitives

* Why?
— Modifying a shared variable must be atomic
— Can be used to implement locks

 Examples of synchronization primitives:

— Test-and-set: TSTrs, Imm(rt):
rs € Mem[Imm-+rt]
if (Mem[Imm+rt] == 0)
Mem[lmm+rt] €< 1

TST is useful to implement locks.
M[Imm+rt] == 1: Someone holds the lock.
M[Imm-+rt] == 0: Lock is free.

4/23/2015 6.823 Spring 2015

Synchronization Primitives

 Examples of synchronization primitives:
— Test-and-set: TST rs, Imm(rt)

— Compare-and-Swap: CAS old, new, Imm(base):
if (old == Mem[Imm+base])
Mem[Imm+base] € new
else
old € Mem[Imm+base]

CAS can also be used to implement locks.
Please read Handout 14.

4/23/2015 6.823 Spring 2015

33

Synchronization Primitives

e Examples of synchronization primitives:
— Test-and-set: TST rs, Imm(rt)
— Compare-and-Swap: CAS old, new, Imm(base)

— Load-reserve/Store-conditional (Most Efficient)

Load-reserve R, (a):

R « M[a];

Store-conditional (a), R:

<flag, adr> « <1, a>; if <flag, adr> == <1, a>

then cancel other procs’

4/23/2015

reservation on a;

M[a] « <R>;

status « succeed;
else status « fail;

6.823 Spring 2015

34

Consistency

* Coherence:
— Concerns reads/writes to a single memory location
* Consistency:

— Concerns reads/writes to multiple memory locations

4/23/2015 6.823 Spring 2015

35

Why Consistency Matters

Initial memory contents

a: 0

flag: O

Processor 1 Processor 2
Store (a), 10; L: Load r1, (flag);
Store (flag), 1; if , == 0 goto L;

Load r2, (a);

e What value does r2 hold after both
processors finish running this code?

It depends on the order in which processor 2
observes processor 1’s stores!

10 if Store (flag) > Store (a); 0 or 10 otherwise

4/23/2015 6.823 Spring 2015

36

Memory Consistency Models

* Sequential Consistency:
— Program order maintained
— Loads and stores are atomic

 Weaker (Relaxed) Consistency:

— Total Store Order, Partial Store Order, Relaxed Memory

Order...
— Use memory fences to enforce load/store ordering:
* Fence,,, Fence,,, Fence,,, Fence,

4/23/2015 6.823 Spring 2015

37

4/23/2015

The end

Good luck!! ©

6.823 Spring 2015

38

