
6.823 SPring15
Quiz 4 Review (L20-L24)

TA: Po-An Tsai, Hsin-Jung Yang

5/12/2015 6.823 Spring 2015 1

Transactional memory

• Atomicity (all or nothing)
 –At commit, all memory writes take effect at once
 –On abort, none of the writes appear to take effect

• Isolation
 –No other code can observe writes before commit

• Serializability
 –Transactions seem to commit in a single serial order
 –The exact order is not guaranteed

Data Management Policy

1. Eager versioning (undo-log based)
 Update memory location directly
 Maintain undo info in a log
 Fast commits
 Slow aborts

2. Lazy versioning (write-buffer based)
 Buffer data until commit in a write buffer
 Update actual memory locations at commit
 Fast aborts
 Slow commits

Conflict Detection

• 1. Pessimistic detection

 Check for conflicts during loads or stores

• 2. Optimistic detection

 Detect conflicts when a transaction
 attempts to commit

Reliability

• What happens if a bit flip

– DUE : Detected Unrecoverable Error

– SDC : Silent Data Corruption

• What structures are important

– ACE : Architecturally Correct Execution

– AVF : Architectural Vulnerability Factor

DUE and SDC

ACE and AVF

• Do the questions to make sure you
understand how to calculate or argue for them

VLIW: Very Long Instruction Word

5/12/2015 6.823 Spring 2015 8

• Software (compiler) packs independent instructions
into a large instruction

• Deterministic latency for all operations
– Latency measured in ‘instructions’

• Hardware does not perform dependency checks
– Software adds explict NOP instructions

Loop Execution

5/12/2015 6.823 Spring 2015 9

• How to get denser packing?

– Loop unrolling

– Software pipelining

Loop Unrolling

5/12/2015 6.823 Spring 2015 10

• Unroll the inner loop to perform M iterations at once

– To get more independent instructions

• Need to handle the case where the total iteration is not a
multiple of M

Software Pipelining

5/12/2015 6.823 Spring 2015 11

• Execute different iterations in parallel

Predicated Execution

5/12/2015 6.823 Spring 2015 12

• Eliminate hard to predict branches with predicated
execution

• Example: (p1) ADD r1, r2, r3

– Execute (commit) add if the predicate register p1 is true

Vector Machine

5/12/2015 6.823 Spring 2015 13

• Single Instruction
Multiple Data (SIMD)
– Data level parallelism

(DLP)

– Single instruction for
multiple loop iterations

– Vector Length Register
(VLR)

– Conditional execution
using the vector mask
(VM) register

The basic structure of a vector architecture

Vector Arithmetic Execution

• Use deep pipeline (=> fast clock)
to execute element operations

• Simplifies control of deep pipeline
because elements in vector are
independent (=> no hazards!)

Multiple Lanes

Vector Instruction Parallelism

• Can overlap the execution of multiple vector instructions

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

6 SIMD instructions executing on 8 lanes
with 32-element vector registers

• Allow a vector operation to start as soon as the
individual elements of its vector source operand
become available

Vector Chaining

5/12/2015 6.823 Spring 2015 17

• GPU consists of many multithreaded SIMD processors

• Terminology
– Thread: a CUDA thread, which is associated with each data

element

– Warp: a traditional tread that contains SIMD instructions executed
on a SIMD processor. Each SIMD instruction operates with
multiple (CUDA) threads (ex: 32 threads/warp).

– Programming abstractions:

• Thread block: A group of threads (ex: 512 threads) mapped to
a SIMD processor to execute a vectorized loop.

• Grid: A grid has multiple thread blocks that can be mapped to
different SIMD processors and execute independently.

Graphical Processing Units (GPU)

5/12/2015 6.823 Spring 2015 18

Multithreaded SIMD Processor

5/12/2015 6.823 Spring 2015 19

4 warps

2 lanes

Multithreaded SIMD Processor

5/12/2015 6.823 Spring 2015 20

Example:
• 16 physical lanes
• 10s of warps with 32

threads per warp
• Warp scheduler issues

an SIMD instruction
(for a specific warp)
when its elements
(threads in the warp)
are all ready

GPU vs Vector Machine

5/12/2015 6.823 Spring 2015 21

• Similarities:

– Works well with data-level parallel problems

– Mask registers

– Multiple lanes

– Large register files

• Differences:

– GPU uses multithreading to hide memory latency

– GPU has many functional units, as opposed to a few deeply
pipelined units like a vector processor

The end

Good luck!! 

5/12/2015 6.823 Spring 2015 22

