
Last updated:

2/20/2015

 1

Problem M1.1: Self Modifying Code on the EDSACjr

This problem gives us a flavor of EDSAC-style programming and its limitations. Please read

Handout #1 (EDSACjr) and Lecture 2 before answering the following questions (You may find

local labels in Handout #1 useful for writing self-modifying code.)

Problem M1.1.A Writing Macros For Indirection

With only absolute addressing instructions provided by the EDSACjr, writing self-modifying

code becomes unavoidable for almost all non-trivial applications. It would be a disaster, for both

you and us, if you put everything in a single program. As a starting point, therefore, you are

expected to write macros using the EDSACjr instructions given in Table H1-1 (in Handout #1)

to emulate indirect addressing instructions described in Table M1.1-1. Using macros may

increase the total number of instructions that need to be executed because certain instruction

level optimizations cannot be fully exploited. However, the code size on paper can be reduced

dramatically when macros are appropriately used. This makes programming and debugging

much easier.

Please use following global variables in your macros.

_orig_accum: CLEAR ; temp. storage for accum

_store_op: STORE 0 ; STORE template

_bge_op: BGE 0 ; BGE template

_blt_op: BLT 0 ; BLT template

_add_op: ADD 0 ; ADD template

These global variables are located somewhere in main memory and can be accessed using their

labels. The _orig_accum location will be used to temporarily store the accumulator’s value.

The other locations will be used as “templates” for generating instructions.

Opcode Description

ADDind n Accum  Accum + M[M[n]]

STOREind n M[M[n]]  Accum

BGEind n If Accum  0 then PC  M[n]

BLTind n If Accum  0 then PC  M[n]

Table M1.1-1: Indirection Instructions

Last updated:

2/20/2015

 2

Problem M1.1.B Subroutine Calling Conventions

A possible subroutine calling convention for the EDSACjr is to place the arguments right after

the subroutine call and pass the return address in the accumulator. The subroutine can then get its

arguments by offset to the return address.

Describe how you would implement this calling convention for the special case of one argument

and one return value using the EDSACjr instruction set. What do you need to do to the

subroutine for your convention to work? What do you have to do around the calling point? How

is your result returned? You may assume that your subroutines are in set places in memory and

that subroutines cannot call other subroutines. You are allowed to use the original EDSACjr

instruction set shown in Handout #1 (Table H1-1), as well as the indirection instructions listed in

Table M1.1-1.

To illustrate your implementation of this convention, write a program for the EDSACjr to

iteratively compute fib(n), where n is a non-negative integer. fib(n) returns the nth

Fibonacci number (fib(0)=0, fib(1)=1, fib(2)=1, fib(3)=2…). Make fib a

subroutine. (The C code is given below.) In few sentences, explain how could your convention

be generalized for subroutines with an arbitrary number of arguments and return values?

The following program defines the iterative subroutine fib in C.

int fib(int n) {

 int i, x, y, z;

 x=0, y=1;

 if(n<2)

 return n;

 else{

 for(i=0; i<n-1; i++){

 z=x+y;

 x=y;

 y=z;

 }

 return z;

 }

}

Last updated:

2/20/2015

 3

Problem M1.1.C Subroutine Calling Other Subroutines

The following program defines a recursive version of the subroutine fib in C.

int fib_recursive (int n){

 if(n<2)

 return n;

 else{

 return(fib(n-1) + fib(n-2));

 }

}

In a few sentences, explain what happens if the subroutine calling convention you implemented

in Problem M1.1.B is used for fib_recursive .

Last updated:

2/20/2015

4

Problem M1.2: CISC and RISC: Comparing ISAs

This problem requires the knowledge of Handout #2 (CISC ISA—x86jr), Handout #3 (RISC

ISA—MIPS32), and Lectures 2 and 3. Please read these materials before answering the

following questions.

Problem M1.2.A CISC

Let us begin by considering the following C code.

int b; //a global variable

void multiplyByB(int a){

 int i, result;

 for(i = 0; i<b; i++){

 result=result+a;

 }

}

Using gcc and objdump on a Pentium III, we see that the above loop compiles to the following

x86 instruction sequence. (On entry to this code, register %ecx contains i, register %edx contains

result and register %eax contains a. b is stored in memory at location 0x08047580.) A brief

explanation of each instruction in the code is given in Handout #2.

xor %edx,%edx

xor %ecx,%ecx

 loop: cmp 0x08047580,%ecx

 jl L1

 jmp done

 L1: add %eax,%edx

 inc %ecx

 jmp loop

 done: ...

How many bytes is the program? For the above x86 assembly code, how many bytes of

instructions need to be fetched if b = 10? Assuming 32-bit data values, how many bytes of data

memory need to be fetched? Stored?

Problem M1.2.B RISC

Translate each of the x86 instructions in the following table into one or more MIPS32

instructions in Handout #3. Place the L1 and loop labels where appropriate. You should use the

minimum number of instructions needed. Assume that upon entry R2 contains a and R3 contains

i. R1 should be loaded with the value of b from memory location 0x08047580, while R4 should

Last updated:

2/20/2015

5

receive result. If needed, use R5 to hold the condition value and R6, R7, etc., for temporaries.

You should not need to use any floating point registers or instructions in your code.

x86 instruction label MIPS32 instruction sequence
xor %edx,%edx

xor %ecx,%ecx

cmp 0x08049580,%ecx

jl L1

jmp done

add %eax,%edx

inc %ecx

jmp loop

... done: ...

How many bytes is the MIPS32 program using your direct translation? How many bytes of

MIPS32 instructions need to be fetched for b = 10 using your direct translation? How many

bytes of data memory need to be fetched? Stored?

Problem M1.2.C Optimization

To get more practice with MIPS32, optimize the code from part B so that it can be expressed in

fewer instructions. Your solution should contain commented assembly code, a paragraph which

explains your optimizations and a short analysis of the savings you obtained.

Last updated:

2/20/2015

6

Problem M1.3: Addressing Modes on MIPS ISA

Ben Bitdiddle is suspicious of the benefits of complex addressing modes. So he has decided to

investigate it by incrementally removing the addressing modes from our MIPS ISA. Then he will

write programs on the “crippled” MIPS ISAs to see what the programming on these ISAs is like.

Problem M1.3.A Displacement addressing mode

As a first step, Ben has discontinued supporting the displacement (base+offset) addressing mode,

that is, our MIPS ISA only supports register indirect addressing (without the offset).

Can you still write the same program as before? If so, please translate the following load

instruction into an instruction sequence in the new ISA. If not, explain why.

LW R1, 16(R2) 

Problem M1.3.B Register indirect addressing

Now he wants to take a bolder step by completely eliminating the register indirect addressing.

The new load and store instructions will have the following format.

LW R1, imm16 ; R1 <- M[imm16]

SW R1, imm16 ; M[imm16] <- R1

6 5 5 16

Opcode Rs Offset

Can you still write the same program as before? If so, please translate the following load

instruction into an instruction sequence in the new ISA. If not, explain why. (Don’t worry about

branches and jumps for this question.)

LW R1, 16(R2) 

Last updated:

2/20/2015

7

Problem M1.3.C Subroutine

Ben is wondering whether we can implement a subroutine using only absolute addressing. He

changes the original ISA such that all the branches and jumps take a 16-bit absolute address (the

2 lower orders bits are 0 for word accesses), and that jr and jalr are not supported any longer.

With the new ISA he decides to rewrite a piece of subroutine code from his old project. Here is

the original C code he has written.

int b; //a global variable

void multiplyByB(int a){

 int i, result;

 for(i=0; i<b; i++){

 result=result+a;

 }

}

The C code above is translated into the following instruction sequence on our original MIPS ISA.

Assume that upon entry, R1 and R2 contain b and a, respectively. R3 is used for i and R4 for

result. By a calling convention, the 16-bit word-aligned return address is passed in R31.

Subroutine: xor R4, R4, R4 ; result = 0

xor R3, R3, R3 ; i = 0

loop: slt R5, R3, R1

bnez R5, L1 ; if (i < b) goto L1

return: jr R31 ; return to the caller

L1: add R4, R4, R2 ; result += a

addi R3, R3, #1 ; i++

j loop

If you can, please rewrite the assembly code so that the subroutine returns without using a jr

instruction (which is a register indirect jump). If you cannot, explain why.

Last updated:

2/20/2015

8

Problem M1.4: Fully-Bypassed Simple 5-Stage Pipeline

We have reproduced the fully bypassed 5-stage MIPS processor pipeline from Lecture 5 in

Figure M1.4-A. In this problem, we ask you to write equations to generate correct bypass and

stall signals. Feel free to use any symbol introduced in the lecture.

Problem M1.4.A Stall

Do we still need to stall this pipeline? If so, explain why. (1) Write down the correct equation for

the stall condition and (2) give an example instruction sequence which causes a stall.

Problem M1.4.B Bypass Signal

In Lecture 5, we gave you an example of bypass signal (ASrc) from EX stage to ID stage. In the

fully bypassed pipeline, however, the mux control signals become more complex, because we

have more inputs to the muxes in the ID stage.

Write down the bypass condition for each bypass path in Mux 1. Please indicate the priority of

the signals; that is, if all bypass conditions are met, indicate which signals have the highest and

the lowest priorities.

Bypass EX->ID ASrc = (rsD=wsE).we-bypassE.re1D (given in Lecture 5)

Bypass MEM->ID =

Bypass WB->ID =

Priority:

Problem M1.4.C Partial Bypassing

While bypassing gives us a performance benefit, it may introduce extra logic in critical paths and

may force us to lower the clock frequency. Suppose we can afford to have only one bypass in the

datapath. How would you justify your choice? Argue in favor of one bypass path over another.

Last updated:

2/20/2015

9

Figure M1.4-A: Fully-Bypassed MIPS Pipeline

ASrc
IR IR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4

Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdat
a

addr

wdata

rdata
Data
Memory

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

Last updated:

2/20/2015

10

Problem M1.5: Basic Pipelining

Unlike the Harvard-style (separate instruction and data memories) architectures, machines using

the Princeton-style have a shared instruction and data memory. In order to reduce the memory

cost, Ben Bitdiddle has proposed the following two-stage Princeton-style MIPS pipeline to

replace a single-cycle Harvard-style pipeline from our lectures.

Every instruction takes exactly two cycles to execute (i.e., instruction fetch and execute) and

there is no overlap between two sequential instructions; that is, fetching an instruction occurs in

the cycle following the previous instruction’s execution (no pipelining).

Assume that the new pipeline does not contain a branch delay slot. Also, don’t worry about self-

modifying code for now.

IR

0x4

clk

RegDst

PCSrc1 RegWrite

BSrc zero?

WBSrc

31

PCSrc2

ExtSelOpCode

0x4
Add

rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

addr

wdata

rdata
Data

Memory

z

ALU

Add

OpSel

ALU
Control

clk

Add

we

MemWrite

clk

PC

PCen

IRen AddrSrc

clk

Figure M1.5-A: Two-stage pipeline, Princeton-style

Last updated:

2/20/2015

11

Problem M1.5.A Mux Control Signals (1)

Please complete the following control signals. You are allowed to use any internal signals (e.g.,

OpCode, PC, IR, zero?, rd1, data, etc.) but not other control signals (ExtSel, IRSrc, PCSrc, etc.).

Example syntax: PCEn = (OpCode == ALUOp) or ((ALU.zero?) and (not (PC == 17)))

You may also use the variable S which indicates the pipeline’s operation phase at a given time.

S := I-Fetch | Execute (toggles every cycle)

PCEn =

IREn =

AddrSrc = Case _____________

____________ => PC

____________ => ALU

Last updated:

2/20/2015

12

Problem M1.5.B Modified pipeline

After having implemented his proposed architecture, Ben has observed that a lot of datapath is

not in use because only one phase (either I-Fetch or Execute) is active at any given time. So he

has decided to fetch the next instruction during the Execute phase of the previous instruction.

Figure M1.5-B: Modified Two-stage Princeton-style MIPS Pipeline

Do we need to stall this pipeline? If so, for each cause (1) write down the cause in one sentence

and (2) give an example instruction sequence. If not, explain why. (Remember there is no delay

slot.)

Last updated:

2/20/2015

13

Problem M1.5.C Mux Control Signals (2)

Please complete the following control signals in the modified pipeline. As before, you are

allowed to use any internal signals (e.g., OpCode, PC, IR, zero?, rd1, data, etc.) but not other

control signals (ExtSel, IRSrc, PCSrc, etc.)

PCEnable =

AddrSrc = Case _____________

____________ => PC

____________ => ALU

IRSrc = Case _____________

____________ => nop

____________ => Mem

Last updated:

2/20/2015

14

Problem M1.5.D

Now we are ready to put Ben’s machine to the test. We would like to see a cycle-by-cycle

animation of Ben’s two-stage pipelined, Princeton-style MIPS machine when executing the

instruction sequence below. In the following table, each row represents a snapshot of some

control signals and the content of some special registers for a particular cycle. Ben has already

finished the first two rows. Complete the remaining entries in the table. Use * for “don’t care”.

Label Address Instruction
I1 100 ADD

I2 104 LW

I3 108 J I7

I4 112 LW

I5 116 ADD

I6 120 SUB

I7 312 ADD

I8 316 ADD

Time PC “IR” PCenable PCSrc1 AddrSrc IRSrc

t0 I1:100 - 1 pc+4 PC Mem

t1 I2:104 I1 1 Pc+4 PC Mem

t2

t3

t4

t5

t6

Last updated:

2/20/2015

15

Problem M1.5.E Self-Modifying Code

Suppose we allow self-modifying code to execute, i.e., store instructions can write to the portion

of memory that contains executable code. Does the two-stage Princeton pipeline need to be

modified to support such self-modifying code? If so, please indicate how. You may use the

diagram below to draw modifications to the datapath. If you think no modifications are required,

explain why.

Last updated:

2/20/2015

16

Problem M1.5.F

To solve a chip layout problem Ben decides to reroute the input of the WB mux to come from

after the AddrSrc MUX rather than ahead of the AddrSrc MUX. (The new path is shown with a

bold line, the old in a dotted line.) The rest of the design is unaltered.

How does this break the design? Provide a code sequence to illustrate the problem and explain in

one sentence what goes wrong.

Problem M1.5.G Architecture Comparison

Give one advantage of the Princeton architecture over the Harvard architecture.

Give one advantage of the Harvard architecture over the Princeton architecture.

Last updated:

2/20/2015

17

Problem M1.6: A 5-Stage Pipeline with an Additional Adder

In this problem we consider a new datapath to improve the performance of the fully-bypassed 5-

stage 32-bit MIPS processor datapath given in Lecture 5 (reproduced in Figure M1.4-A). In the

new datapath the ALU in the Execute stage is replaced by a simple adder and the original ALU is

moved from the Execute stage to the Memory stage (See Figure M1.6-A). The adder in the 3
rd

stage (formerly Execute) is used only for address calculations involving load/store instructions.

For all other instructions, the data is simply forwarded to the 4
th

 stage.

The ALU will now run in parallel with the data memory in the 4
th

 stage of the pipeline (formerly

Mem). During a load/store instruction, the ALU is inactive, while the data memory is inactive

during the ALU instructions. In this problem we will ignore jump and branch instructions.

Problem M1.6.A Elimination of a hazard

What hazard is the new datapath trying to eliminate? Give an example sequence of MIPS

instructions (five or fewer instructions) that would cause a hazard in the original datapath but not

in the new datapath.

Problem M1.6.B New hazard

Give an example sequence of MIPS instructions (five or fewer instructions) that would cause a

pipeline bubble in the new datapath, but not in the original datapath.

Problem M1.6.C Comparison

List the advantages and disadvantages of the new datapath. Which datapath would you

recommend? Justify your choice.

Last updated:

2/20/2015

18

Figure M1.6-A: 5-Stage Pipeline with an Additional Adder

P
C

A

Y

R

M
D

1

addr
inst

Inst

Memory

Imm
Ext

add

rd1

GPRs

rs1

rs2

ws
wd rd2

we

wdat
a

addr

wdata

rdata
Data
Memory

we

A
2

ALU

B
2

B

M
D

2

Writeback to
register file

ALU execution and
memory access

Address
calculation

Instruction decode and
register read

Instruction
fetch

WB EX/MEM AC ID IF

IR

Last updated:

2/20/2015

19

Problem M1.6.D Stall Logic

Write the stall condition (in the style of Lecture 5) for the new hazard arising from the

modification to the data path. Please make use of the following signal names when writing your

stall equations.

Cdest

ws = Case opcode

ALU rd

ALUi, LW rt

JAL, JALR R31

we = Case opcode

ALU, ALUi, LW (ws 0)

 JAL, JALR on

... off

Cre
re1 = Case opcode

ALU, ALUi, LW,
SW, BZ,

JR, JALR on

J, JAL off

re2 = Case opcode

ALU, SW on

... off

Problem M1.6.E Datapath Improvement

Consider a MIPS ISA that only supports register indirect addressing, i.e., it has no displacement

(base+offset) addressing mode. Assuming the new machine only has to support this ISA, how

can the datapath be improved? Draw the new datapath showing your design. (You do not have to

show everything, only the important features like pipeline registers, major components, major

connections, etc.) Compare the hazards in this new datapath with the hazards in the datapath

shown in Figure M1.6-A and the original datapath in Lecture 5 (Figure M1.4-A). Justify the new

datapath.

Problem M1.6.F Displacement Addressing Synthesizing

If the MIPS ISA did not have displacement addressing, what would programmers do? Could you

still write the same programs as before? Explain.

Problem M1.6.G Jumps and Branches

Now we will consider jumps and branches for the pipeline shown in part A of this problem.

Assume that the branch target calculation is performed in the Instruction Decode stage. In what

pipeline stages can you put the logic to determine whether a conditional branch is taken (don’t

worry about duplicating logic)? What are the advantages and disadvantages of the different

choices? For each choice, consider the number of cycles for the branch delay, any additional

stall conditions and any potential changes in the clock period.

Last updated:

2/20/2015

20

Problem M1.7: Dual ALU Pipeline

In this problem we consider further improvements to the fully bypassed 5-stage MIPS processor

pipeline presented in Lecture 5 and Problem M1.6. In this new pipeline we essentially replace

the Adder in stage 3 (Figure M1.6-A) by a proper ALU with the goal of eliminating all hazards

(Please see Figure M1.7-A).

The Dual ALU Pipeline has two ALUs: ALU1 is in the 3
rd

 pipeline stage (EX1) and ALU2 is in

the 4
th

 pipeline stage (EX2/MEM). A memory instruction always uses ALU1 to compute its

address. An ALU instruction uses either ALU1 or ALU2, but never both. If an ALU instruction’s

operands are available (either from the register file or the bypass network) by the end of the ID

stage, the instruction uses ALU1, otherwise, the instruction uses ALU2.

In this problem, assume that the control logic is optimized to stall only when necessary. You may

ignore branch and jump instructions in this problem.

Figure M1.8-A: Dual ALU Pipeline

A

Y

R M
D

1

addr
inst

Inst
Memory

Imm
Ext

rd1

GPRs

rs1

rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data

Memory

we

A
2

ALU
2 B

2

B

M
D

2

Writeback to
register file

ALU2 execution
and memory access

ALU1 execution
and address
calculation

Instruction decode and
register read

Instruction
fetch

WB EX2/MEM EX1 ID IF

IR
 ALU

1

P
C

Last updated:

2/20/2015

21

Problem M1.7.A ALU Usage

For the following instruction sequence, indicate which ALU each add instruction uses. Assume

that the pipeline is initially idle (for example, it has been executing nothing but nop instructions).

Registers involved in inter-instruction dependencies are highlighted in bold for your

convenience.

 ALU1 or ALU2?
add r1, r2, r3
lw r4, 0(r1)
add r5, r4, r6
add r7, r5, r8
add r1, r2, r3
lw r4, 0(r1)
add r5, r1, r6

Problem M1.7.B Control Signal

Fill in the equation for the control logic signal alu2ID. This signal is computed during the ID

stage. It should be true if the instruction will use ALU2, or false otherwise. Like other control

logic signals, alu2 travels down the pipeline with an instruction as alu2EX1 and alu2EX2/MEM,

you may use these signals in your equation if needed. In the equation, “+” means logical OR and

“∙” means logical AND.

alu2ID = (((OPID = ALU) + (OPID = ALUi))

 ∙((rsID = wsEX1) + (rtID = wsEX1)∙re2ID)

 ∙(wsEX1  0)
 ∙()
)

Last updated:

2/20/2015

22

Problem M1.7.C Instruction Sequences Causing Stalls

Indicate whether each of the following instruction sequences causes a stall in the pipeline.

Consider each sequence separately and assume that the pipeline is initially idle (for example, it

has been executing nothing but nop instructions). Registers involved in inter-instruction

dependencies are highlighted in bold for your convenience.

 Stall? (yes/no)
add r1, r2, r3

lw r4, 0(r1)

lw r1, 0(r2)

add r3, r1, r4

lw r5, 0(r1)

lw r1, 0(r2)

lw r3, 0(r1)

lw r1, 0(r2)

sw r1, 0(r3)

lw r1, 0(r2)

add r3, r1, r4

sw r5, 0(r3)

lw r1, 0(r2)

add r3, r1, r4

Problem M1.7.D Stall Equation

Give the stall equation for the new pipeline. It should be optimized so that the pipeline only stalls

when necessary to resolve data hazards. You may use the alu2 logic signals from Question

M1.8.B if needed.

stallID =

Last updated:

2/20/2015

23

Problem M1.8: Processor Design (Short Yes/No Questions)

The following statements describe two variants of a processor which are otherwise identical. In

each case, circle "Yes" if the variants might generate different results from the same compiled

program, circle "No" otherwise. You must also briefly explain your reasoning. Ignore differences

in the time that each machine takes to execute the program.

Problem M1.8.A Interlock vs. Bypassing

Pipelined processor A uses interlocks to resolve data hazards, while pipelined processor B has

full bypassing.

Yes / No

Problem M1.8.B Delay Slot

Pipelined processor A uses branch delay slots to resolve control hazards, while pipelined

processor B kills instructions following a taken branch.

Yes / No

Problem M1.8.C Structural Hazard

Pipelined processor A has a single memory port used to fetch instructions and data, while

pipelined processor B has no structural hazards.

Yes / No

