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Problem M1.1: Self Modifying Code on the EDSACjr 

 
This problem gives us a flavor of EDSAC-style programming and its limitations. Please read 

Handout #1 (EDSACjr) and Lecture 2 before answering the following questions (You may find 

local labels in Handout #1 useful for writing self-modifying code.) 

 

 

Problem M1.1.A Writing Macros For Indirection 

 

With only absolute addressing instructions provided by the EDSACjr, writing self-modifying 

code becomes unavoidable for almost all non-trivial applications. It would be a disaster, for both 

you and us, if you put everything in a single program. As a starting point, therefore, you are 

expected to write macros using the EDSACjr instructions given in Table H1-1 (in Handout #1) 

to emulate indirect addressing instructions described in Table M1.1-1. Using macros may 

increase the total number of instructions that need to be executed because certain instruction 

level optimizations cannot be fully exploited. However, the code size on paper can be reduced 

dramatically when macros are appropriately used. This makes programming and debugging 

much easier.  

 

Please use following global variables in your macros.  

 
_orig_accum: CLEAR  ; temp. storage for accum 

_store_op: STORE 0  ; STORE template 

_bge_op:  BGE 0  ; BGE template 

_blt_op:  BLT 0  ; BLT template 

_add_op:  ADD 0  ; ADD template 

 

These global variables are located somewhere in main memory and can be accessed using their 

labels.  The _orig_accum  location will be used to temporarily store the accumulator’s value.  

The other locations will be used as “templates” for generating instructions.   

 

Opcode Description 

ADDind  n Accum  Accum + M[M[n]] 

STOREind  n M[M[n]]  Accum 

BGEind  n If  Accum  0  then  PC  M[n] 

BLTind  n If  Accum  0  then  PC  M[n] 

 

Table M1.1-1:  Indirection Instructions 
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Problem M1.1.B Subroutine Calling Conventions 

 

A possible subroutine calling convention for the EDSACjr is to place the arguments right after 

the subroutine call and pass the return address in the accumulator. The subroutine can then get its 

arguments by offset to the return address.   

 

Describe how you would implement this calling convention for the special case of one argument 

and one return value using the EDSACjr instruction set. What do you need to do to the 

subroutine for your convention to work? What do you have to do around the calling point? How 

is your result returned? You may assume that your subroutines are in set places in memory and 

that subroutines cannot call other subroutines. You are allowed to use the original EDSACjr 

instruction set shown in Handout #1 (Table H1-1), as well as the indirection instructions listed in 

Table M1.1-1. 

 

To illustrate your implementation of this convention, write a program for the EDSACjr to 

iteratively compute fib(n),  where n is a non-negative integer. fib(n) returns the nth 

Fibonacci number (fib(0)=0, fib(1)=1, fib(2)=1, fib(3)=2…). Make fib  a 

subroutine. (The C code is given below.) In few sentences, explain how could your convention 

be generalized for subroutines with an arbitrary number of arguments and return values? 

 

The following program defines the iterative subroutine fib  in C. 

 
int fib(int n) { 

  int i, x, y, z; 

  x=0, y=1; 

  if(n<2) 

    return n; 

  else{ 

    for(i=0; i<n-1; i++){ 

      z=x+y; 

      x=y; 

      y=z; 

    } 

    return z; 

  } 

} 
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Problem M1.1.C Subroutine Calling Other Subroutines 

 

The following program defines a recursive version of the subroutine fib  in C. 

 
int fib_recursive (int n){ 

  if(n<2) 

    return n; 

  else{ 

    return(fib(n-1) + fib(n-2)); 

  } 

} 

 

In a few sentences, explain what happens if the subroutine calling convention you implemented 

in Problem M1.1.B is used for fib_recursive .  
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Problem M1.2: CISC and RISC: Comparing ISAs 

 
This problem requires the knowledge of Handout #2 (CISC ISA—x86jr), Handout #3 (RISC 

ISA—MIPS32), and Lectures 2 and 3. Please read these materials before answering the 

following questions. 

  

 

Problem M1.2.A CISC 

 

Let us begin by considering the following C code. 

 
int b;  //a global variable 

 

void multiplyByB(int a){ 

  int i, result; 

  for(i = 0; i<b; i++){ 

    result=result+a; 

  } 

} 

 

Using gcc and objdump on a Pentium III, we see that the above loop compiles to the following 

x86 instruction sequence. (On entry to this code, register %ecx contains i, register %edx contains 

result and register %eax contains a. b is stored in memory at location 0x08047580.) A brief 

explanation of each instruction in the code is given in Handout #2. 

 
xor    %edx,%edx 

xor    %ecx,%ecx 

 loop:      cmp    0x08047580,%ecx 

   jl     L1  

   jmp    done  

 L1:  add    %eax,%edx 

   inc    %ecx 

   jmp    loop  

 done:    ... 

 

 

How many bytes is the program? For the above x86 assembly code, how many bytes of 

instructions need to be fetched if b = 10? Assuming 32-bit data values, how many bytes of data 

memory need to be fetched? Stored? 

 

 

Problem M1.2.B RISC 

 

Translate each of the x86 instructions in the following table into one or more MIPS32 

instructions in Handout #3. Place the L1 and loop labels where appropriate. You should use the 

minimum number of instructions needed. Assume that upon entry R2 contains a and R3 contains 

i. R1 should be loaded with the value of b from memory location 0x08047580, while R4 should 
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receive result. If needed, use R5 to hold the condition value and R6, R7, etc., for temporaries. 

You should not need to use any floating point registers or instructions in your code. 

 

x86 instruction label MIPS32 instruction sequence 
xor    %edx,%edx 

          

  

 

 

xor    %ecx,%ecx 

          

  

 

 

cmp    0x08049580,%ecx   

 

 

jl     L1  

 

  

 

 

jmp    done   

 

 

add    %eax,%edx   

 

 

inc    %ecx 

 

  

 

 

jmp    loop   

 

 

... done: ... 

 

How many bytes is the MIPS32 program using your direct translation? How many bytes of 

MIPS32 instructions need to be fetched for b = 10 using your direct translation? How many 

bytes of data memory need to be fetched? Stored?  

 

 

Problem M1.2.C Optimization 

 

To get more practice with MIPS32, optimize the code from part B so that it can be expressed in 

fewer instructions. Your solution should contain commented assembly code, a paragraph which 

explains your optimizations and a short analysis of the savings you obtained. 
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Problem M1.3: Addressing Modes on MIPS ISA 

 

Ben Bitdiddle is suspicious of the benefits of complex addressing modes. So he has decided to 

investigate it by incrementally removing the addressing modes from our MIPS ISA. Then he will 

write programs on the “crippled” MIPS ISAs to see what the programming on these ISAs is like. 

 

Problem M1.3.A Displacement addressing mode 

 

As a first step, Ben has discontinued supporting the displacement (base+offset) addressing mode, 

that is, our MIPS ISA only supports register indirect addressing (without the offset).    

 

Can you still write the same program as before? If so, please translate the following load 

instruction into an instruction sequence in the new ISA. If not, explain why. 

 

LW R1, 16(R2)       

 

 

 

 

Problem M1.3.B Register indirect addressing 

 

Now he wants to take a bolder step by completely eliminating the register indirect addressing.  

The new load and store instructions will have the following format. 

 
LW R1, imm16   ; R1 <- M[imm16] 

SW R1, imm16   ; M[imm16] <- R1  

 

6 5 5 16 

Opcode Rs  Offset 

 

Can you still write the same program as before? If so, please translate the following load 

instruction into an instruction sequence in the new ISA. If not, explain why. (Don’t worry about 

branches and jumps for this question.) 
 

LW R1, 16(R2)       
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Problem M1.3.C Subroutine 

  

Ben is wondering whether we can implement a subroutine using only absolute addressing. He 

changes the original ISA such that all the branches and jumps take a 16-bit absolute address (the 

2 lower orders bits are 0 for word accesses), and that jr and jalr are not supported any longer. 

 

With the new ISA he decides to rewrite a piece of subroutine code from his old project. Here is 

the original C code he has written. 

 
int b;  //a global variable 

 

void multiplyByB(int a){ 

  int i, result; 

  for(i=0; i<b; i++){ 

    result=result+a; 

  } 

} 

 

The C code above is translated into the following instruction sequence on our original MIPS ISA. 

Assume that upon entry, R1 and R2 contain b and a, respectively. R3 is used for i and R4 for 

result. By a calling convention, the 16-bit word-aligned return address is passed in R31. 

 
Subroutine: xor  R4, R4, R4 ; result = 0 

xor  R3, R3, R3 ; i = 0 

loop:  slt  R5, R3, R1  

bnez R5, L1  ; if (i < b) goto L1 

return: jr   R31  ; return to the caller 

L1:  add  R4, R4, R2 ; result += a 

addi R3, R3, #1 ; i++ 

j    loop 

 

If you can, please rewrite the assembly code so that the subroutine returns without using a jr 

instruction (which is a register indirect jump). If you cannot, explain why.   
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Problem M1.4: Fully-Bypassed Simple 5-Stage Pipeline 

 
We have reproduced the fully bypassed 5-stage MIPS processor pipeline from Lecture 5 in 

Figure M1.4-A. In this problem, we ask you to write equations to generate correct bypass and 

stall signals. Feel free to use any symbol introduced in the lecture. 

 

Problem M1.4.A Stall 

 

Do we still need to stall this pipeline? If so, explain why. (1) Write down the correct equation for 

the stall condition and (2) give an example instruction sequence which causes a stall. 

 

Problem M1.4.B Bypass Signal 

 
In Lecture 5, we gave you an example of bypass signal (ASrc) from EX stage to ID stage. In the 

fully bypassed pipeline, however, the mux control signals become more complex, because we 

have more inputs to the muxes in the ID stage. 

 

Write down the bypass condition for each bypass path in Mux 1. Please indicate the priority of 

the signals; that is, if all bypass conditions are met, indicate which signals have the highest and 

the lowest priorities. 

 

Bypass EX->ID ASrc = (rsD=wsE).we-bypassE.re1D  (given in Lecture 5) 

 

Bypass MEM->ID  = 

 

Bypass WB->ID  = 

 

 

Priority:   

 

Problem M1.4.C Partial Bypassing 

 
While bypassing gives us a performance benefit, it may introduce extra logic in critical paths and 

may force us to lower the clock frequency. Suppose we can afford to have only one bypass in the 

datapath. How would you justify your choice? Argue in favor of one bypass path over another.
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Figure M1.4-A: Fully-Bypassed MIPS Pipeline 
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Problem M1.5: Basic Pipelining 
 

Unlike the Harvard-style (separate instruction and data memories) architectures, machines using 

the Princeton-style have a shared instruction and data memory. In order to reduce the memory 

cost, Ben Bitdiddle has proposed the following two-stage Princeton-style MIPS pipeline to 

replace a single-cycle Harvard-style pipeline from our lectures. 

 

Every instruction takes exactly two cycles to execute (i.e., instruction fetch and execute) and 

there is no overlap between two sequential instructions; that is, fetching an instruction occurs in 

the cycle following the previous instruction’s execution (no pipelining). 

 

Assume that the new pipeline does not contain a branch delay slot.  Also, don’t worry about self-

modifying code for now.   

IR
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Figure M1.5-A: Two-stage pipeline, Princeton-style 
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Problem M1.5.A Mux Control Signals (1) 

Please complete the following control signals.  You are allowed to use any internal signals (e.g., 

OpCode, PC, IR, zero?, rd1, data, etc.) but not other control signals (ExtSel, IRSrc, PCSrc, etc.). 

 

Example syntax:  PCEn = (OpCode == ALUOp) or ((ALU.zero?) and (not (PC == 17)))   

You may also use the variable S which indicates the pipeline’s operation phase at a given time.   

 

S := I-Fetch | Execute  (toggles every cycle) 

 

 

 

PCEn =  
 

 

 

IREn =  
 

 

 

 

AddrSrc = Case _____________ 

 

____________  => PC 

 

____________  => ALU 
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Problem M1.5.B Modified pipeline 

 

After having implemented his proposed architecture, Ben has observed that a lot of datapath is 

not in use because only one phase (either I-Fetch or Execute) is active at any given time. So he 

has decided to fetch the next instruction during the Execute phase of the previous instruction. 

  

 

 

 

Figure M1.5-B: Modified Two-stage Princeton-style MIPS Pipeline 

 

Do we need to stall this pipeline? If so, for each cause (1) write down the cause in one sentence 

and (2) give an example instruction sequence. If not, explain why.  (Remember there is no delay 

slot.) 
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Problem M1.5.C Mux Control Signals (2) 

 

Please complete the following control signals in the modified pipeline.  As before, you are 

allowed to use any internal signals (e.g., OpCode, PC, IR, zero?, rd1, data, etc.) but not other 

control signals (ExtSel, IRSrc, PCSrc, etc.) 

 

PCEnable =  
 

 

 

 

 

 

AddrSrc = Case _____________ 

 

____________  => PC 

 

____________  => ALU 
 

 

IRSrc = Case _____________ 

 

____________  => nop 

 

____________  => Mem 
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Problem M1.5.D  

Now we are ready to put Ben’s machine to the test. We would like to see a cycle-by-cycle 

animation of Ben’s two-stage pipelined, Princeton-style MIPS machine when executing the 

instruction sequence below. In the following table, each row represents a snapshot of some 

control signals and the content of some special registers for a particular cycle. Ben has already 

finished the first two rows. Complete the remaining entries in the table. Use * for “don’t care”. 

 
Label Address Instruction 
I1 100 ADD 

I2 104 LW 

I3 108 J I7 

I4 112 LW 

I5 116 ADD 

I6 120 SUB 

I7 312 ADD 

I8 316 ADD 

 

 

 
 

 

 
 

 

 

Time PC “IR” PCenable PCSrc1 AddrSrc IRSrc 

t0 I1:100 - 1 pc+4 PC Mem 

t1 I2:104 I1 1 Pc+4 PC Mem 

t2       

t3       

t4       

t5       

t6       
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Problem M1.5.E Self-Modifying Code 

 

Suppose we allow self-modifying code to execute, i.e., store instructions can write to the portion 

of memory that contains executable code. Does the two-stage Princeton pipeline need to be 

modified to support such self-modifying code? If so, please indicate how.  You may use the 

diagram below to draw modifications to the datapath. If you think no modifications are required, 

explain why. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Last updated: 

2/20/2015 

 

 

16 

Problem M1.5.F  

 

To solve a chip layout problem Ben decides to reroute the input of the WB mux to come from 

after the AddrSrc MUX rather than ahead of the AddrSrc MUX. (The new path is shown with a 

bold line, the old in a dotted line.) The rest of the design is unaltered. 

 

 
 

How does this break the design? Provide a code sequence to illustrate the problem and explain in 

one sentence what goes wrong. 

 

 

 

 

 

 

 

Problem M1.5.G Architecture Comparison 

 

Give one advantage of the Princeton architecture over the Harvard architecture. 

 

 

 

Give one advantage of the Harvard architecture over the Princeton architecture. 
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Problem M1.6:  A 5-Stage Pipeline with an Additional Adder 

 

In this problem we consider a new datapath to improve the performance of the fully-bypassed 5-

stage 32-bit MIPS processor datapath given in Lecture 5 (reproduced in Figure M1.4-A). In the 

new datapath the ALU in the Execute stage is replaced by a simple adder and the original ALU is 

moved from the Execute stage to the Memory stage (See Figure M1.6-A). The adder in the 3
rd

 

stage (formerly Execute) is used only for address calculations involving load/store instructions.  

For all other instructions, the data is simply forwarded to the 4
th

 stage. 

 

The ALU will now run in parallel with the data memory in the 4
th

 stage of the pipeline (formerly 

Mem). During a load/store instruction, the ALU is inactive, while the data memory is inactive 

during the ALU instructions. In this problem we will ignore jump and branch instructions. 

 

 

Problem M1.6.A Elimination of a hazard 

 

What hazard is the new datapath trying to eliminate? Give an example sequence of MIPS 

instructions (five or fewer instructions) that would cause a hazard in the original datapath but not 

in the new datapath. 

 

 

Problem M1.6.B New hazard           

 

Give an example sequence of MIPS instructions (five or fewer instructions) that would cause a 

pipeline bubble in the new datapath, but not in the original datapath.   

 

 

Problem M1.6.C Comparison           

 

List the advantages and disadvantages of the new datapath. Which datapath would you 

recommend? Justify your choice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Last updated: 

2/20/2015 

 

 

18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure M1.6-A: 5-Stage Pipeline with an Additional Adder 
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Problem M1.6.D Stall Logic 

Write the stall condition (in the style of Lecture 5) for the new hazard arising from the 

modification to the data path. Please make use of the following signal names when writing your 

stall equations. 

 
Cdest 

ws = Case opcode 

ALU  rd 

ALUi, LW rt 

JAL, JALR R31 
 

we = Case opcode 

ALU, ALUi, LW (ws 0) 

 JAL, JALR  on 

...   off 

Cre 
re1 = Case opcode 

ALU, ALUi, LW,  
SW, BZ,  

JR, JALR  on 

J, JAL  off 
 

re2 = Case opcode 

ALU, SW on 

...  off 

 

Problem M1.6.E Datapath Improvement 

Consider a MIPS ISA that only supports register indirect addressing, i.e., it has no displacement 

(base+offset) addressing mode. Assuming the new machine only has to support this ISA, how 

can the datapath be improved? Draw the new datapath showing your design. (You do not have to 

show everything, only the important features like pipeline registers, major components, major 

connections, etc.) Compare the hazards in this new datapath with the hazards in the datapath 

shown in Figure M1.6-A and the original datapath in Lecture 5 (Figure M1.4-A). Justify the new 

datapath. 

 

Problem M1.6.F Displacement Addressing Synthesizing 

If the MIPS ISA did not have displacement addressing, what would programmers do? Could you 

still write the same programs as before? Explain. 

 

Problem M1.6.G Jumps and Branches 

Now we will consider jumps and branches for the pipeline shown in part A of this problem.  

Assume that the branch target calculation is performed in the Instruction Decode stage.  In what 

pipeline stages can you put the logic to determine whether a conditional branch is taken (don’t 

worry about duplicating logic)? What are the advantages and disadvantages of the different 

choices?  For each choice, consider the number of cycles for the branch delay, any additional 

stall conditions and any potential changes in the clock period. 
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Problem M1.7: Dual ALU Pipeline 
 

In this problem we consider further improvements to the fully bypassed 5-stage MIPS processor 

pipeline presented in Lecture 5 and Problem M1.6. In this new pipeline we essentially replace 

the Adder in stage 3 (Figure M1.6-A) by a proper ALU with the goal of eliminating all hazards 

(Please see Figure M1.7-A).  

 

The Dual ALU Pipeline has two ALUs: ALU1 is in the 3
rd

 pipeline stage (EX1) and ALU2 is in 

the 4
th

 pipeline stage (EX2/MEM). A memory instruction always uses ALU1 to compute its 

address. An ALU instruction uses either ALU1 or ALU2, but never both. If an ALU instruction’s 

operands are available (either from the register file or the bypass network) by the end of the ID 

stage, the instruction uses ALU1, otherwise, the instruction uses ALU2. 

 

In this problem, assume that the control logic is optimized to stall only when necessary. You may 

ignore branch and jump instructions in this problem. 

 

 

 
Figure M1.8-A: Dual ALU Pipeline 
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Problem M1.7.A ALU Usage 

 
For the following instruction sequence, indicate which ALU each add instruction uses. Assume 

that the pipeline is initially idle (for example, it has been executing nothing but nop instructions).  

Registers involved in inter-instruction dependencies are highlighted in bold for your 

convenience. 

 

  ALU1 or ALU2? 
add r1, r2, r3  
lw  r4, 0(r1)  
add r5, r4, r6  
add r7, r5, r8  
add r1, r2, r3  
lw  r4, 0(r1)  
add r5, r1, r6  

 

 

Problem M1.7.B Control Signal 

 

Fill in the equation for the control logic signal alu2ID. This signal is computed during the ID 

stage. It should be true if the instruction will use ALU2, or false otherwise. Like other control 

logic signals, alu2 travels down the pipeline with an instruction as alu2EX1 and alu2EX2/MEM, 

you may use these signals in your equation if needed. In the equation, “+” means logical OR and 

“∙” means logical AND. 

 

alu2ID = ( ((OPID = ALU) + (OPID = ALUi))  

         ∙((rsID = wsEX1) + (rtID = wsEX1)∙re2ID)  

         ∙(wsEX1  0) 
         ∙(                         ) 
         ) 
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Problem M1.7.C Instruction Sequences Causing Stalls 

 

Indicate whether each of the following instruction sequences causes a stall in the pipeline.  

Consider each sequence separately and assume that the pipeline is initially idle (for example, it 

has been executing nothing but nop instructions). Registers involved in inter-instruction 

dependencies are highlighted in bold for your convenience. 

 

  Stall? (yes/no) 
add r1, r2, r3 

lw  r4, 0(r1) 
 

lw  r1, 0(r2) 

add r3, r1, r4 

lw  r5, 0(r1) 

 

lw  r1, 0(r2) 

lw  r3, 0(r1) 
 

lw  r1, 0(r2) 

sw  r1, 0(r3) 
 

lw  r1, 0(r2) 

add r3, r1, r4 

sw  r5, 0(r3) 

 

lw  r1, 0(r2) 

add r3, r1, r4 
 

 

 

Problem M1.7.D Stall Equation 

 

Give the stall equation for the new pipeline. It should be optimized so that the pipeline only stalls 

when necessary to resolve data hazards. You may use the alu2 logic signals from Question 

M1.8.B if needed. 

 

stallID =  
 



Last updated: 

2/20/2015 

 

 

23 

Problem M1.8: Processor Design (Short Yes/No Questions) 
 

The following statements describe two variants of a processor which are otherwise identical. In 

each case, circle "Yes" if the variants might generate different results from the same compiled 

program, circle "No" otherwise. You must also briefly explain your reasoning. Ignore differences 

in the time that each machine takes to execute the program. 

 

Problem M1.8.A Interlock vs. Bypassing 

 

Pipelined processor A uses interlocks to resolve data hazards, while pipelined processor B has 

full bypassing. 

 

Yes  /  No 

 

Problem M1.8.B Delay Slot 

 

Pipelined processor A uses branch delay slots to resolve control hazards, while pipelined 

processor B kills instructions following a taken branch. 

 

Yes  /  No 

 

Problem M1.8.C Structural Hazard 

 

Pipelined processor A has a single memory port used to fetch instructions and data, while 

pipelined processor B has no structural hazards. 

 

Yes  /  No 

  

 


