Problem M10.1: Microprogramming and Bus-Based Architectures

Problem M10.1.A

Worksheet M10.1-1 shows one way to implement ADDm in microcode.

Note that to maintain "clean" behavior of your microcode, no registers in the register file should change their value during execution (unless they are written to). This does not refer to the registers in the datapath (IR, A, B, MA). Thus, using asterisks for the load signals (ldIR, ldA, ldB, and ldMA) is acceptable as long as the correctness of your microcode is not affected.

Problem M10.1.B

The question asked to jump to PC+4+offset. This ignores that the immediate value needs to be shifted left by 2 before it can be added to PC+4, to make sure we don't run into alignment problems. We did this because the data path given doesn't really have facilities for shifting.

Worksheet M10.1-2 shows one way to implement DBNEZ in microcode.

Problem M10.1.C

Worksheet M10.1-3 shows one way to implement RETZ in microcode.

Problem M10.1.D

Worksheet M10.1-4 shows one way to implement CALL in microcode.

Problem M10.1.E

Instruction	Cycles
SUB R3,R2,R1	3 + 3 = 6
SUBI R2,R1,#4	3 + 3 = 6
SW R1,0(R2)	3 + 5 = 8
BNEZ R1, label # (R1	== 0) $3+2=5$
BNEZ R1, label # (R1	1 = 0) $3 + 5 = 8$
BEQZ R1, label # (R1	== 0) $3+5=8$
BEQZ R1, label # (R1	3 = 0 (3 + 2 = 5)
J label	3 + 3 = 6
JR R1	3 + 2 = 5
JAL label	3 + 4 = 7
JALR R1	3 + 4 = 7

As discussed in Lecture 21, instruction execution includes the number of cycles needed to fetch the instruction. The lecture notes used 4 cycles for the fetch phase, while Worksheet 1 shows that this phase can actually be implemented in 3 cycles —either answer is fine. The above table uses 3 cycles for the fetch phase. Overall, SW, BNEZ (for a taken branch), and BEQZ (for a taken branch) take the most cycles to execute (8), while BNEZ (for a not-taken branch), BEQZ (for a not-taken branch) and JR take the fewest cycles (5).

Instruction Execution Times

Memory-to-Memory Add

Implementing RETZ Instruction

Implementing CALL Instruction

Implementing DBNEZ Instruction

State	PseudoCode	Ld	Reg	Reg	en	ld	ld	ALUOp	en	ld	Mem	en	Ex	en	μBr	Next State
		IR	Sel	W	Reg	Α	В		ALU	MA	W	Mem	Sel	Imm		
FETCH0:	MA <- PC; A <- PC	0	PC	0	1	1	*	*	0	1	*	0	*	0	Ν	*
	IR <- Mem	1	*	*	0	0	*	*	0	*	0	1	*	0	Ν	*
	PC <- A+4; dispatch	0	PC	1	1	*	*	INC_A_4	1	*	*	0	*	0	D	*
NOP0:	microbranch Back to FETCH0	0	*	*	0	*	*	*	0	*	*	0	*	0	J	FETCH
ADDm0:	MA <- R[rs]	0	rs	0	1	*	*	*	0	1	*	0	*	0	N	*
	A <- Mem	0	*	*	0	1	*	*	0	*	0	1	*	0	Ν	*
	MA <- R[rt]	0	rt	0	1	0	*	*	0	1	*	0	*	0	Ν	*
	B <- Mem	0	*	*	0	0	1	*	0	*	0	1	*	0	Ν	*
	MA <- R[rd]	*	rd	0	1	0	0	*	0	1	*	0	*	0	Ν	*
	Mem <- A+B; fetch	*	*	*	0	*	*	ADD	1	*	1	1	*	0	J	FETCH

Worksheet M10.1-1: Implementation of the ADDm instruction

State	PseudoCode	ld IR	Reg Sel	Reg W	en Reg	ld A	ld B	ALUOp	en ALU	Ld MA	Mem W	en Mem	Ex Sel	en Imm	μBr	Next State
FETCH0:	MA <- PC; A <- PC	*	PC	0	1	1	*	*	0	1	*	0	*	0	Ν	*
	IR <- Mem	1	*	*	0	0	*	*	0	*	0	1	*	0	Ν	*
	PC <- A+4; B <- A+4	0	PC	1	1	*	1	INC_A_4	1	*	*	0	*	0	D	*
NOP0:	microbranch back to FETCH0	*	*	*	0	*	*	*	0	*	*	0	*	0	J	FETCH0
DBNEZ:	A <- rs	0	rs	0	1	1	0	*	0	*	*	0	*	0	Ν	*
	rs <- A – 1 μB to FETCH0 if zero	0	rs	1	1	*	0	DEC_A_1	1	*	*	0	*	0	Z	FETCH0
	A <- sExt16(IR)	*	*	*	0	1	0	*	0	*	*	0	sExt16	1	Ν	*
	PC <- A+B jump to FETCH0	*	PC	1	1	*	*	ADD	1	*	*	0	*	0	J	FETCH0

Worksheet M10.1-2: Implementation of the DBNEZ Instruction

State	PseudoCode	Ld IR	Reg Sel	Reg W	en Reg	ld A	ld B	ALUOp	en ALU	Ld MA	Mem W	en Mem	Ex Sel	en Im m	μBr	Next State
FETCH0:	MA <- PC; A <- PC	*	PC	0	1	1	*	*	0	1	*	0	*	0	N	*
	IR <- Mem	1	*	*	0	0	*	*	0	*	0	1	*	0	Ν	*
	PC <- A+4; B <- A+4	0	PC	1	1	*	1	INC_A_4	1	*	*	0	*	0	D	*
NOP0:	microbranch back to FETCH0	*	*	*	0	*	*	*	0	*	*	0	*	0	J	FETCH0
retz0	A <- Reg[Rs]	0	Rs	0	1	1	*	*	0	*	*	0	*	0	Ν	*
retzl	A <- Reg[Rt] MA <- Reg[Rt] uBr to retz3 if zero	0	Rt	0	1	1	*	COPY_A	0	1	*	0	*	0	Z	retz3
retz2		*	*	*	0	*	*	*	0	*	*	0	*	0	J	FETCH0
retz3	PC <- MEM	0	PC	1	1	0	*	*	0	*	0	1	*	0	Ν	*
retz4	Reg[Rt] < A+4	*	Rt	1	1	*	*	INC_A_4	1	*	*	0	*	0	J	FETCH0

Worksheet M10.1-3: Implementation of the RETZ Instruction

State	PseudoCode	ld IR	Reg Sel	Reg W	en Reg	ld A	ld B	ALUOp	en ALU	Ld MA	Mem W	en Me m	Ex Sel	en Imm	μBr	Next State
FETCH0:	MA <- PC; A <- PC	*	PC	0	1	1	*	*	0	1	*	0	*	0	N	*
	IR <- Mem	1	*	*	0	0	*	*	0	*	0	1	*	0	Ν	*
	PC <- A+4; B <- A+4	0	PC	1	1	*	1	INC_A_4	1	*	*	0	*	0	D	*
NOP0:	microbranch back to FETCH0	*	*	*	0	*	*	*	0	*	*	0	*	0	J	FETCH0
CALL:	MA <- R[ra]; A <- R[ra]	0	ra	0	1	1	0	*	0	1	*	0	*	0	N	*
	Mem <- B	0	*	*	0	0	0	COPY_B	1	*	1	1	*	0	Ν	*
	R[ra] <- A - 4	0	ra	1	1	*	0	DEC_A_4	1	*	*	0	*	0	Ν	*
	A <- sExt16(IR)	*	*	*	0	1	0	*	0	*	*	0	sExt16	1	Ν	*
	PC <- A+B; jump to FETCH0	*	PC	1	1	*	*	ADD	1	*	*	0	*	0	J	FETCH0

Worksheet M10.1-4: Implementation of the CALL Instruction

Problem M10.1.F

In the given code, 'm' and 'n' are always nonnegative integers. Therefore, we don't have to worry about the cases where 'i' is larger than 'n' or 'j' is larger than 'm'. Also, for this problem, 0 raised to any power is just 0, while any nonzero value raised to the 0th power is 1. Note that the pseudo code that is given returns a value of 0 when 0 is raised to the 0th power. However, the actual pow() function in the standard C library returns a value of 1 for this case. We present the solution that implements the pseudo code given in the problem rather than C's pow() function.

#

```
# R5: temp, R6: j
```

```
#
```

		R3, R0, R0	; put 0 in result
			; if m is 0, end
			; put 1 in result
	BEQZ	R2, _END_I	; if n is 0, the loop is over; we set
			; i equal to n and count down to O-since
			; R2 does not have to be preserved, we
			; use it for i
	SUBI	R5, R1, #1	; temp = m - 1
	BEQZ	R5, END I	; if m is 1, the result will be 1,
			; so end the program
START I:			. 1 5
	ADD	R5, R0, R3	; temp = result
			; $j = m - 1$ (the number of times to
	0021	100, 111, 111	; execute the second loop)
START J:			
	חחב	R3, R3, R5	; result += temp
		R6, R6, #1	; j
	BNEZ	Ro, _START_J	; Re-execute loop until j reaches 0
_END_J:		50 50 11	
		R2, R2, #1	
	BNEZ	R2, _START_I	; Re-execute loop until i reaches 0
END T.			

```
_END_I:
```

To compute the number of instructions and cycles to execute this code, let us consider subsets of the code.

	Code	# of instructions	# of cycles
ADD	R3, R0, R0	2	$6 \times 1 + 8 \times 1 = 14 \ (m = 0)$
BEQZ	R1, _END_I		$6 \times 1 + 5 \times 1 = 11 \text{ (m > 0)}$
ADDI	R3, R0, #1	2 (if m > 0)	$6 \times 1 + 8 \times 1 = 14 \ (n = 0)$
BEQZ	R2, _END_I		$6 \times 1 + 5 \times 1 = 11 (n > 0)$
SUBI	R5, R1, #1	2 (if m > 0 and n > 0)	$6 \times 1 + 8 \times 1 = 14 (m = 1)$
BEQZ	R5, _END_I		$6 \times 1 + 5 \times 1 = 11 \ (m > 1)$
_START_I:			
ADD	R5, R0, R3	2n (if m > 1 and n > 0)	$(6\times2)\times n = 12n$
SUBI	R6, R1, #1		
_START_J:			
ADD	R3, R3, R5	3n(m-1)	$(6 \times 2 + 5 \times 1) \times n + (6 \times 2 + 8 \times 1) \times (m - 6 \times 1) \times (m -$
SUBI	R6, R6, #1	(if m > 1 and n > 0)	$2) \times n = 17n + 20n(m-2)$
BNEZ	R6, _START_J		, , , ,
_END_J:			
SUBI	R2, R2, #1	2n (if m > 1 and n > 0)	$(6+8) \times n - 3 = 14n - 3$
BNEZ	R2, _START_I		

m,n	Instructions	Cycles
0, 1	2	14
1,0	4	25
2, 2	20	116
3, 4	46	282
M, N (M = 0)	2	14
M, N (M > 0, N = 0)	4	25
M, N (M = 1, N > 0)	6	36
M, N (M > 1, N > 0)	3N(M-1)+4N+6	20N(M-2)+43N+30

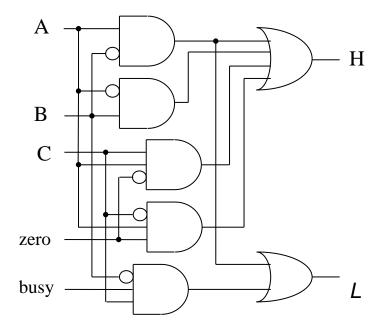
From the above table, we can complete the table given in the problem.

Problem M10.1.G

Microcontroller Jump Logic

One way to start designing the microcontroller jump logic is to write out a table of the input signals and the output bits. For clarity, the bits that encode the μ JumpTypes are labeled A, B and C, from left to right. The output bits are labeled H and L, also from left to right. So the table we need to implement is the following (where asterisks are for the input bits that we don't care about).

Input bits		Output bits				
Α	В	С	Zero	Busy	Н	L
0	0	0	*	*	0	0
0	0	1	*	0	0	0
0	0	1	*	1	0	1
0	1	0	*	*	1	0
1	0	0	*	*	1	1
1	1	0	0	*	0	0
1	1	0	1	*	1	0
1	1	1	0	*	1	0
1	1	1	1	*	0	0


Writing out boolean equations for the H and L output bits (by directly recognizing only the lines which have logical ones as output) we find

$$H = A\overline{B}\overline{C} + \overline{A}B\overline{C} + AB\overline{C} \cdot zero + ABC \cdot \overline{zero}$$
$$L = \overline{A}\overline{B}C \cdot busy + A\overline{B}\overline{C}$$

Also, we do not care about the output when the μ Jump type is 011 or 101, since those are invalid encodings. Thus we can simplify the equations to

$$H = A\overline{B} + \overline{AB} + A\overline{C} \cdot zero + AC \cdot \overline{zero}$$
$$L = \overline{BC} \cdot busy + A\overline{B}$$

Drawing this out as gates we get

Problem M10.2: VLIW Programming

Problem M10.2.A

To get 1 cycle per vector element performance, we need to use loop unrolling and software pipelining. The original loop is unrolled four times and software pipelined. Two registers (F3 and F7) are used for saving partial sums, which are summed at the end.

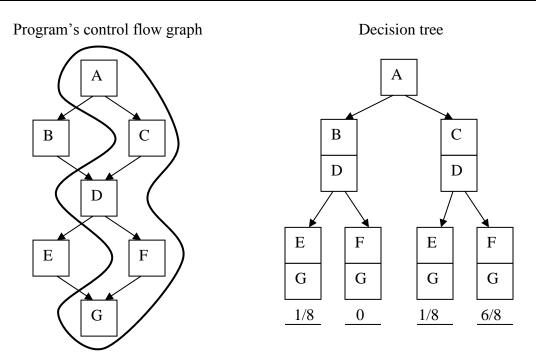
At the start of the program n may be any value. By making successive checks and providing fixup code, n can be guaranteed to be positive and a multiple of 4 by the prolog.

```
// R1 - points to X
// R2 - points to Y
// R5 - n
// F7 - result
    // clear partial sum registers
    MOVI2FP F3,R0
   MOVI2FP F7,R0
    // clear temporary registers used for multiply results
   MOVI2FP F2,R0
   MOVI2FP F6,R0
   MOVI2FP F10,R0
   MOVI2FP F14,R0
    // n must be greater than 0
    SGT R3,R5,R0
   BEQZ
         R3,end // if !(n>0) goto end
    // n must be greater than 0 \,
    ANDI R3,R5,#3
    BEQZ R3, prolog
    // (n>0) && ((n%4)!=0)
    SUB R5,R5,R3
L1:
   L.S F3,0(R1); L.S F4,0(R2); SUBI R3,R3,#1
   MUL.S F3,F3,F4; ADDI R1,R1,#4;
   ADD.S F7, F7, F3; ADDI R2, R2, #4; BNEZ R3, L1
   BEQZ R5, end
    //(n>=4) && ((n%4)==0)
prolog:
    L.S F0, 0(R1); L.S F1, 0(R2); SUBI R5,R5,#4
   L.S F4, 4(R1); L.S F5, 4(R2); ADDI R1,R1,#16
L.S F8,-8(R1); L.S F9, 8(R2); ADDI R2,R2,#16
    L.S F12,-4(R1); L.S F13,-4(R2); BEQZ R5,epilog
   L.S F0, 0(R1); L.S F1, 0(R2); MUL.S F2, F0, F1; SUBI R5,R5,#4
   L.S F4, 4(R1); L.S F5, 4(R2); MUL.S F6, F4, F5; ADDI R1,R1,#16
   L.S F8,-8(R1); L.S F9, 8(R2); MUL.S F10, F8, F9; ADDI R2,R2,#16
   L.S F12,-4(R1); L.S F13,-4(R2); MUL.S F14,F12,F13; BEQZ R5,epilog
```

loop: L.S F0, 0(R1); L.S F1, 0(R2); MUL.S F2, F0, F1; ADD.S F3,F3, F2; SUBI R5,R5,#4 L.S F4, 4(R1); L.S F5, 4(R2); MUL.S F6, F4, F5; ADD.S F7,F7, F6; ADDI R1,R1,#16 L.S F8,-8(R1); L.S F9, 8(R2); MUL.S F10, F8, F9; ADD.S F3,F3,F10; ADDI R2,R2,#16 L.S F12,-4(R1); L.S F13,-4(R2); MUL.S F14,F12,F13; ADD.S F7,F7,F14; BNEZ R5,loop

epilog:

MUL.S F2, F0, F1; ADD.S F3,F3, F2 MUL.S F6, F4, F5; ADD.S F7,F7, F6 MUL.S F10, F8, F9; ADD.S F3,F3,F10 MUL.S F14,F12,F13; ADD.S F7,F7,F14


ADD.S F3,F3, F2 ADD.S F7,F7, F6 ADD.S F3,F3,F10 ADD.S F7,F7,F14

ADD.S F7, F7, F3

end:

Problem M10.3: Trace Scheduling

Problem M10.3.A

Problem M10.3.B

ACF:	ld	r1, d	data				
		div	r3,	r6,	r7	;;	X <- V2/V3
		mul	r8,	r6,	r7	;;	Y <- V2*V3
D:		andi	r2,	r1,	3	;;	r2 <- r1%4
		bnez	r2,	G			
A:		andi	r2,	r1,	7	;;	r2 <- r1%8
		bnez	r2,	Ε			
В:		div	r3,	r4,	r5	;;	X <- V0/V1
Е:		mul	r8,	r4,	r5	;;	Y <- V0*V1
G:							

Problem M10.3.C

Assume that the load takes x cycles, divide takes y cycles, and multiply takes z cycles. Approximately how many cycles does the original code take? (ignore small constants) x+max(y,z)

Approximately how many cycles does the new code take in the best case? **max(x,y,z)**

Problem M10.4: VLIW machines

Problem M10.4.A

See Table M10.4-1 on the next page.

Problem M10.4.B

12 cycles, 2/12=0.17 flops per cycle

Problem M10.4.C

3 instructions, because there are 5 memory ops and 5 ALU ops, and we can only issue 2 of them per instruction. (OR 4 instructions, because the slowest operation has a 4-cycle latency.)

Here is the resulting code.

add r1, r1, 4	add r2, r2, 4	ld f1, 0(r1)	ld f2, 0(r2)		fmul f4, f2, f1
add r3, r3, 4	add r4, r4, -1	ld f3, -4(r3)	st f4, -8(r1)	fadd f5, f4, f3	
	bnez r4, loop		st f5, -12(r3)		

for a particular instruction, white background corresponds to first iteration of the loop, grey background to the second iteration, yellow background to third, and blue to fourth. Note, one does not need to write the code to get an answer, because it's just a question of how many instructions are needed to express all the operations.

Problem M10.4.D

2/3=0.67 flops per cycle, 4 iterations at a time.

ALU1	ALU2	MU1	MU2	FADD	FMUL
add r1, r1, 4	add r2, r2, 4	ld f1, 0(r1)	ld f2, 0(r2)		
add r3, r3, 4	add r4, r4, -1	ld f3, 0(r3)			
					fmul f4, f2, f1
			st f4, -4(r1)	fadd f5, f4, f3	
	bnez r4, loop	st f5, -4(r3)			

Table M10.4-1: VLIW Program

Problem M10.4.E

We would need 5 instructions to execute two iterations and we would get 4/5=0.8 flops/cycle.

Problem M10.4.F

Same as above - 0.8 flops/cycle. We are fully utilizing the memory units, so we can't execute more loops/cycle.

Problem M10.4.G

No. We need to unroll the loop once to have an even number of memory ops. Use of the rotating registers would not allow us to squeeze in more memory ops per iteration, so we'd still need 5 instructions.

Problem M10.4.H

This is actually rather tricky. The correct answer is 5, because without interlocks, we can use the registers just as values come in for them, using the execution units to "store" the loops. The intuitive answer is 100 though.

Problem M10.4.I

There are approximately 100 instructions required, because maximum latency will be 100 cycles.

Problem M10.5: VLIW & Vector Coding

Ben Bitdiddle has the following C loop, which takes the absolute value of elements within a vector.

for (i = 0; i < N; i++) {
 if (A[i] < 0)
 A[i] = -A[i];
}</pre>

Problem M10.5.A

```
; Initial Conditions:
  R1 = N
;
       R2 = \&A[0]
:
       SGT R3, R1, R0
       BEQZ R3, end
                                                               ; R3 = (N > 0) | special case N \leq 0

      | SUBI R1, R1, #1
      ; R4 = A[i] | N--

      | ADDI R2, R2, #4
      ; R5 = (A[i] < 0)</td>

loop: LW R4, 0(R2)
       SLT R5, R4, R0
                                                              ; R5 = (A[i] < 0) | R2 = \&A[i+1]
       BEQZ R5, next
                              ; skip if (A[i] \ge 0)
       SUB R4, R0, R4
                              ; A[i] = -A[i]
       SW R4, -4(R2)
                                                              ; store updated value of A[i]
                               next: BNEZ R1, loop
                               ; continue if N > 0
end:
Average Number of Cycles: \frac{1}{2} \times (6+4) = 5
; SOLUTION #2
```

SGT R3, R1, R0 BNEZ R3, end ; R3 = (N > 0) | special case N \leq 0 | SUBI R1, R1, #1 | ADDI R2, R2, #4 loop: LW R4, 0(R2) ; R4 = A[i] | N--SLT R5, R4, R0 ; R5 = (A[i] < 0) | R2 = &A[i+1] BNEZ R5, next | SUB R4, R0, R4 ; skip if (A[i]≥0) | A[i] = -A[i] SW R4, -4(R2) ; store updated value of A[i] next: BNEZ R1, loop ; continue if N > 0end:

Average Number of Cycles: $\frac{1}{2} \times (5+4) = 4.5$

NOTE: Although this solution minimizes code size and average number of cycles per element for this loop, it causes extra work because it subtracts regardless of whether it has to or not.

	SGT R3, R1, R0		
	BNEZ R3, end		; R3 = (N > 0) if $N \le 0$
loop:	LW R4, 0(R2)	SUBI R1, R1, #1	; R4 = A[i] N
	CMPLTZ PO, R4	ADDI R2, R2, #4	; PO = (A[i] <o) r2="&A[i+1]</td" =""></o)>
	(PO) SUB R4, R0, R4		; A[i] = -A[i]
	(PO) SW R4, -4(R2)	BNEZ R1, loop	; store updated value of A[i]
end:			; continue if $N > 0$

Average Number of Cycles: $\frac{1}{2} \times (4+4) = 4$ Cycles

Problem M10.5.C

<pre>; Initial Conditions: ; R1 = N ; R2 = &A[i]</pre>	
R3 = N > 0 R4 = A[i] R5 = N odd R6 = A[i+1]	
SGT R3, R1, R0 BEQZ R3, end BEQZ R5, loop CMPLTZ P0, R4 ADDI R2, R2, #4 (P0) SW R4, -4(R2)	ANDI R5, R1, #1 LW R4, 0(R2) SUBI R1, R1, #1 (P0) SUB R4, R0, R4 BEZ R1, end
loop: LW R4, 0(R2) CMPLTZ P0, R4 (P0) SUB R4, R0, R4 (P0) SW R4, 0(R2)	SUBI R1, R1, #2 LW R6, 4(R2) CMPLTZ P1, R6 (P1) SUB R6 R0, R6 (P1) SW R6 4(R2)
ADDI R2, R2, #8 end:	BNEZ R1, loop

Average Number of Cycles: 6 for 2 elements = 3 cycles per element

```
; Initial Conditions:
     R1 = N
;
     R2 = \&A[i]
:
     L.D F0, #0
     MTC1 VLR R1
                             # operate on all N elements
     CVM
     LV V1, R2
                             # load A
     SLTVS.D V1, F0
                            # setup the mask vector
     SUBSV.D V1, F0, V1
                            # negate appropriate elements
     SV R2, V1
                             # store back changes
```

Average Number of Cycles: $\approx (N/2 + N/2) / N \approx 1$ cycle per element (assuming chaining)

Note: Because there is only one ALU per lane, only the load and the SLT (Set-Less-Than) can be chained together, while the subtract and the store can be chained together. Execution time (per element) of the other instructions is negligible when N is large.

Problem M10.5.E

```
; assume m = known vector length
; Initial Conditions:
     R1 = N
;
     R2 = \&A[i]
;
      L.D F0, #0
      ANDI R3, R1, (m-1)
                             # get N%m - assume m is a power of 2
      MTC1 VLR R3
                               # operate on first N%m elements
      LV V1, R2
                              # load A
      SLTVS.D V1, F0
SUBSV.D V1, F0, V1
                            # setup the mask vector
# negate appropriate elements
# store back changes
      SV R2, V1
      SUB R1, R1, R3
                              # decrease i by N%m (i is divisible by m now)
                              # (we're counting i down)
      SLLI R3, R3, #2
      ADDI R2, R2, R3
                              # advance A pointer
      BEQZ R1, end
                              # i == 0 -> done
      ADDI R3, R0, m
      MTC1 VLR R3
                               # operate on all elements
loop:
      CVM
      LV V1, R2
                               # load A
      SLTVS.D V1, F0
                              # setup the mask vector
      SUBSV.D V1, F0, V1
                              # negate appropriate elements
      SV R2, V1
                              # store back changes
      ADDI R2, R2, (m*4)
                              # advance A pointer
      SUBI R1, R1, m
BNEZ R1, loop
                              # decrease i by m
                              # done?
end:
      CVM
```

Problem M10.6: Predication and VLIW

Problem M10.6.A

```
l.s f1, 0(r1) ; f1 = *r1
seq.s r5, f10, f1 ; r5 = (f10==f1)
cmpnez p1, r5 ; p1 = (r5!=0)
(p1) add.s f2, f1, f11 ; if (p1) f2 = f1+f11
(!p1) add.s f2, f1, f12 ; if(!p1) f2 = f1+f12
s.s f2, 0(r2) ; *r2 = f2
```

Problem M10.6.B

See the next page (Table M10.6-2).

Label	integer op	floating point add	memory op	branch
loop:			l.s f1,0(r1)	
			l.s f3,4(r1)	
	addi r1, r1, #8	cmpnez p1, f1		
		cmpnez p3, f3		
		(p1) add.s f2, f1, f1		
		(p3) add.s f4, f3, f3		
			(p1) s.s f2, -8(r1)	
			(p3) s.s f4, -4(r1)	bneq r1, r2, loop

Table M10.6-1

label	integer op	floating point add	memory op	branch
			l.s f1,0(r1)	
			l.s f3,4(r1)	
	addi r1, r1, #8	cmpnez p1, f1		
		cmpnez p3, f3		beq r1, r2, epilog
loop:		(p1) add.s f2, f1, f1	l.s f1,0(r1)	
		(p3) add.s f4, f3, f3	l.s f3,4(r1)	
	addi r1, r1, #8	cmpnez p1, f1	(p1) s.s f2, -8(r1)	
		cmpnez p3, f3	(p3) s.s f4, -12(r1)	bneq r1, r2,loop
epilog:		(p1) add.s f2, f1, f1		
		(p3) add.s f4, f3, f3		
			(p1) s.s f2, -8(r1)	
			(p3) s.s f2, -4(r1)	

Table M10.6-2

Problem M10.7: Vector Machines

Problem M10.7.A

Consider the implementation of the C-code on the vector machine that executes in a minimum number of cycles. Assuming the following initial values, insert vector instructions to complete the implementation.

0	R1 poi R2 poi R3 poi R4 cor	nts to nts to	B[0] C[0]	lue 328		
loop	MTC1			31		328 mod 32 set VLR to remainder
тоор	• LV	V1.	R1		#	load A
	LV					load B
	LV					load C
				V1	#	A * B
	ADDV	V5,	V3,	V4	#	C + A
	sv	V4,	R1		#	store A
	sv	V5,	R3		#	store C
	SLL	R7,	R5,	2		
				R7	#	increment A ptr
				R7		increment B ptr
				R7		increment C ptr
				R5		update loop counter
	LI				#	reset VLR to max
	MTC1					
	BGTZ	R4,	loop	<u>)</u>		

Problem M10.7.B

The following **supplementary information** explains the diagram.

Scalar instructions execute in 5 cycles: fetch (**F**), decode (**D**), execute (**X**), memory (**M**), and writeback (**W**). A vector instruction is also fetched (**F**) and decoded (**D**). Then, it stalls (—) until its required vector functional unit is available. With no chaining, a dependent vector instruction stalls until the previous instruction finishes writing back ALL of its elements. A vector instruction is pipelined across all the lanes in parallel. For each element, the operands are read (**R**) from the vector register file, the operation executes on the load/store unit (**M**) or the ALU (**X**) or the MUL (**Y**), and the result is written back (**W**) to the vector register file. Assume that there is no structural conflict on the writeback port. A stalled vector instruction does not block a scalar instruction from executing.

 LV_1 and LV_2 refer to the first and second LV instructions in the loop.

																					cy	c l	e																				
instr.	1	2	-							1	0 1	1	12	13	14	15	16	17	18	8 19	20	0 2	1	22	23	24	25	5 20	6 2	27	28	29	30	31	32	33	34	35	36	37	38	39	4(
LV_1	\mathbb{F}	D	R	M1	\mathbf{M}^2	2M.	3 M 4	4 W	r																																		
LV_1				R	M	l M2	2M3	3 M 4	4 W	7																																	
LV_1					R	_	1 M2	_	_	_																																	
LV_1						R	\mathbf{M}	1 M2	2M	3M	[4 W	V																															
LV_2		\mathbb{F}	D				- R	M	1M	2 M	[3M	[4]	W																														
LV_2								R	М	1 M	[2M	[3]	/14	W																													
LV_2									R	M	[1M	[2]N	/13	M4	\mathbf{W}																												
LV_2										ŀ	R M	[1]	/12	M3	M4	W																											
LV ₃			F	D							– R	R N	/ 1	M2	M3	M4	W																										
LV ₃													R	M1	M2	М3	M4	W																									
LV ₃														R	M1	М2	M	3M	4 W	7																							
LV ₃	1														R	M1	M2	2M.	3M	4 W	7																						
MULV				F	D								_	_		_	R	Y	Y2	2 W	7																						
MULV																		R	Y	l Y	2 W	V																					
MULV																			R	Y	1 Y	2 V	N																				
MULV																				R	Y	1 Y	2	W																			
ADDV					F	D							_	_	_	_		_	_				_	_	R	X1	W	7															
ADDV																										R	X	I W	V														
ADDV																											R	X	1 \	N													
ADDV																												R	X	(1	W												
SV ₁						F	D		-				_	_				_					_	_	R	M1	IM.	2M	3N	14	W												t
SV ₁																										R	M	1M	2N	131	M4	w											
SV ₁																											R	М	1N	121	М3	M4	w										t
SV ₁	1																											R	R IN	11	М2	М3	M4	w									1
SV ₂							F	D	_				_	_	_			_					_	_	_		_	_		_	_	R	M	M	2М.	3M4	4 W						1
SV ₂																																	R	M	M	2M.	3M 4	w					1
SV ₂																			+	+									+					-	-	-	2M3	-	w				+
SV ₂																																			-		1M2	-		-			1
014											-																		+														+
											-																		+														+
											-																		+														+
										+				_					+	+	+	-	+	_			-		+						1								+
						1	-	1			+							+	+	-	-	+	+				-	-	+					-	-	-		-	-	-			+

Problem M10.7.C

																				(cyc	cle																					
instr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	<u>5</u> 1'	7 1	18	19	20	21	22	23	3 2	4	25	26	27	28	3 29	30) 31	1 3	32	33	34	35	36	37	38	39	40
LV_1	F	D	R	M1	M2	2M3	M 4	W																																			
LV_1				R	M1	I M2	M3	M 4	W																																		
LV_1					R	M1	M2	M3	M 4	W																																	
LV_1						R	M1	M2	M3	M 4	W																																
LV_2		F	D				R	M1	M2	M3	M4	\mathbf{W}																															
LV_2								R	M1	M2	M3	M 4	W																														
LV_2									R	M1	M2	M3	M4	W																													
LV_2										R	M1	М2	M3	M 4	W																												
LV ₃			F	D							R	M1	М2	М3	M 4	I W	7																										
LV ₃												R	M1	М2	M3	3M	4 W	V																									
LV ₃													R	M1	M2	2M	3M	4	W																								
	1													R	M1	IM	2M	3N	14	w																							
MULV				F	D							R	Y1	Y2	w																												
MULV													R	Y1	Y2	W	7																										
MULV															Y1	-	_	V																									
MULV																-	1 Y	_	W																								
ADDV					F	D										-	X		-																								
ADDV																	R	X	X1	w																							
ADDV]	R	X1	w																						
ADDV																			-		X1	w																					
SV ₁						F	D					_	_	_	R	М	1M	2N	131	M 4	W																						
SV ₁																R	М	11	121	М3	M4	w																					
SV_1																						M4	w																				
SV_1																						M3			v																		_
SV1	l						F	D					_	_			_		-					-	[4 V	v	_			-		-			+								
SV ₁							-	-										+						-	13M	-	w					-											
SV ₂ SV ₂																	-							-	[2M	_		w			-	-		+	+								
$\frac{SV_2}{SV_2}$					-	-		-	-															-	11M				w		+	-	-										
542				1	2	3	4	5	6	7	8	9	10	11	12	13	3 14	4 1	15	16	17	18					113			-	-	-	-	+	+								-
		_		-	-		•	-		, ·		-	10					-			11	10		+	-	+	-			-	-	-	-	-	+								
		_				-				-	-						+	+	+					-	-	+	_			-	-	-	-	+	+					-			-
		_									-					-	-	-	-	_				-	_	-	_		-	-	-	-	-	-	-								
							-											+	-					-	-	-				-		-	-	-	-								
						-				-					-	-	+	+	+	_			-	-	-	+	_		-	-	+	-	-	+	+					-	-		
							-										-	-	_	_				-	_					-	-	-	-	-	_								

Problem M10.7.D

What is the performance (flops/cycle) of the program with chaining?

2*32/19

Problem M10.7.E

Would loop unrolling of the assembly code improve performance without chaining? Explain. (You may rearrange the instructions when performing loop unrolling.)

Yes. We can overlap some of the vector memory instructions from different loops.

Problem M10.8: Vector Machines

Problem M10.8.A

The following **supplementary information** explains the diagram:

Scalar instructions execute in 5 cycles: fetch (**F**), decode (**D**), execute (**X**), memory (**M**), and writeback (**W**). A vector instruction is also fetched (**F**) and decoded (**D**). Then, it stalls (—) until its required vector functional unit is available. With no chaining, a dependent vector instruction stalls until the previous instruction finishes writing back all of its elements. A vector instruction is pipelined across all the lanes in parallel. For each element, the operands are read (**R**) from the vector register file, the operation executes on the load/store unit (**M**) or the ALU (**X**), and the result is written back (**W**) to the vector register file. A stalled vector instruction does not block a scalar instruction from executing.

 LV_1 and LV_2 refer to the first and second LV instructions in the loop.

																				cy	cle	è																		
instr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20) 21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
LV_1	F	D	R			-	M 4																																	
LV_1				R			M3																																	
LV_1					R	M1	M2	M3	M4	\mathbf{W}																														
LV_1						R	M1	M2	M3	M 4	W																													
LV_2		F	D	—	—		R	M1	M2	M3	M 4	W																												
LV_2								R	M1	M2	M3	M 4	W																											
LV_2									R	M1	M2	M 3	M 4	\mathbf{W}																										
LV_2										R	M1	M2	M3	M4	\mathbf{W}																									
ADDV			F	D				—	—	—					—	R	X1	W																						
ADDV																	R	X1	W	r																				
ADDV																		R	X 1	W	7																			
ADDV																			R	X	l W																			
SUBVS				F	D			<u> </u>		—	—	—	—	—	—	_	-	_	_	_		R	X1	W																
SUBVS																							R	X1	W															
SUBVS																								R	X1	W														
SUBVS																									R	X1	W													
SV					F	D		<u> </u>		<u> </u>		<u> </u>	_	_	_		<u> </u>	<u> </u>	<u> </u>	_	-	_	R	M1	M2	М3	M4	ŀ												
SV																													R	M1	M2	М3	M 4	L						
SV																														R	M1	M2	2M3	3M 4	ŀ					
SV																															R	M1	M2	2M3	M 4	ļ				
ADDI						F	D	Х	\mathbf{M}	\mathbf{W}																														
ADDI							F	D	Х	\mathbf{M}	\mathbf{W}																													
ADDI								F	D	Х	\mathbf{M}	\mathbf{W}																												
SUBI									F	D	Х	\mathbf{M}	W																											
BNEZ										F	D	Х	\mathbf{M}	W																										
LV_1											F	D		<u> </u>	<u> </u>	_	_	_	-			_	_	_	_	<u> </u>	_	_	_		_	R	M1	M2	2М3	M4	W			
LV_1																																	R	M1	M2	М3	M4	W		
LV_1																																		R	M1	M2	M3	M 4	W	
LV_1																																			R	M1	M2	M3]	M4	w

Vector processor			er of cycles ve vector in	between structions		Total cycles
configuration	LV_1, LV_2	LV ₂ , ADDV	ADDV, SUBVS	SUBVS, SV	SV, LV_1	per vector loop iter.
8 lanes, no chaining	4	9	6	6	4	29
8 lanes, chaining	4	5	4	2	4	19
16 lanes, chaining	2	5	2	2	2	13
32 lanes, chaining	1	5	2	2	1	11

Note, with 8 lanes and chaining, the SUBVS can not issue 2 cycles after the ADDV because there is only one ALU per lane. Also, since chaining is done through the register file, 2 cycles are required between the ADDV and SUBVS and between the SUBVS and SV even with 32 lanes (if bypassing was provided, only 1 cycle would be necessary).

Problem M10.8.C

Instr. Number		In	struct	tion
I1	LV	V1,	R1	
I2	LV	V2,	R2	
16	ADDI	R1,	R1,	128
I7	ADDI	R2,	R2,	128
I10	LV	V5,	R1	
I11	LV	V6,	R2	
13	ADDV	V3,	V1,	V2
14	SUBVS	V4,	V3,	R4
15	SV	R3,	V4	
I12	ADDV	V7,	V5,	V6
I13	SUBVS	V8,	V7,	R4
18	ADDI	R3,	R3,	128
I14	SV	R3,	V8	
I15	ADDI	R1,	R1,	128
I16	ADDI	R2,	R2,	128
I17	ADDI	R3,	R3,	128
I9	SUBI			
I18	SUBI	R5,	R5,	32
I19	BNEZ	R5,	100]	0

This is only one possible solution. Scheduling the second iteration's LV's (I10 and I11) before the first iteration's SV (I5) allows the LV's to execute while the load/store unit would otherwise be idle. Interleaving instructions from the two iterations (for example, if I12 were placed between I3 and I4) could hide the functional unit latency seen with no chaining. However, doing so would delay the first SV (I5), and hence, increase the overall latency. This tension makes the optimal solution very tricky to find. Note that to preserve the instruction dependencies, I6 and I7 must execute before I10 and I11, and I8 must execute after I5 and before I14.

Problem M10.9: Vectorizing memcpy and strcpy

Problem M10.9.A

Because there is only one load/store unit, SV instruction should wait at least till the last element of the LV instruction is issued. Since there is only one lane, each SV and LV instruction takes 32 cycles to issue. In steady state, it takes 32 (LV) + 10 (dead time) + 32 (SV) + 10 (dead time) cycles per 32 elements, and 2.62 cycles per element. All scalar instructions can be overlapped with SV.

Problem M10.9.B

We can vectorize strcpy using SEQSV and CLZM. The algorithm is as follows. First, we load 32 elements. Second, we use SEQSV to check whether each element has `\0' or not. Third, we use CLZM to count the number of the elements before the first `\0' in the vector and set the vector length to that number. Then, we do a vector store. If no element has `\0' (i.e. the number is 32), we go back to the first step and load the next 32 elements. If a vector has `\0', strcpy ends. As discussed in the function definition, our strcpy copies one word at a time, and assumes that the string is word-aligned with the terminating character of 32-bit `\0'.

```
R5,R1,R0
                          ; store destination address in R5
    ADD
    ADD
            R4,R2,R0
                          ; store source address in R4
            R6,R0,#32
    ADDI
            VLR,R6
                          ; set vector length to 32
    MTC1
    CVM
    MOVI2FP F0,R0
loop:
            V1,R4
    LV
    ADDI
            R4,R4,#128
                          ; bump source pointer
    SEQSV
            F0,V1
                          ; setup the mask register
            R6,VM
                          ; number elements before '\0'
    CLZM
            VLR,R6
    MTC1
    SV
            R5,V1
    ADDI
            R5,R5,#128
                          ; bump destination pointer
            R7,R6,#32
    SUBI
                          ;
                          ; if no element has \0' goto loop
            R7,loop
    BEQZ
            R6,R6,#2
                          ; move destination pointer to
    SLLI
    SUBI
            R5,R5,#128
                          ; the end of the string
                          ; copy '\0'
            R5,R5,R6
    ADD
```

Problem M10.9.C

Without vector chaining, stropy takes more cycles per element than memopy since it has one additional vector instruction, SEQSV. It takes 32+10 (LV) + 32 (SEQSV) + 1 (CLZM) + 1 (MTC1) + 32 (SV) + 10 (dead time) = 118 cycles per 32 elements or 3.69 cycles per element.

With vector chaining, the first element of V1 can be bypassed to SEQSV instruction after 10 cycles. Store can be executed only after we get the value of VLR, that is, after SEQSV, CLZM, and MTC1. Therefore, it takes 10 (LV) + 32 (SEQSV) + 1 (CLZM) + 1 (MTC1) + 32 (SV) + 10 (dead time) = 86 cycles per 32 elements or 2.69 cycles per element.

In memcpy, both vector instructions (SV and LV) use the same functional unit. Therefore, the execution of two instructions cannot be overlapped even with vector chaining. Copying each element takes 2.62 cycles as in M10.9.A. With vector chaining, the performance of strcpy is comparable to that of memcpy.

Problem M10.10: Performance of Vector Machines

Problem M10.10.A

With 8 lanes, a 2-cycle dead time and	d no vector chaining,	, we get the following	pipeline diagram.

								Сус	cle														
	1	2	3	4	5	6	7	8	9	1	1	1	1	1	1	1	1	1	1	2	2	2	2
										0	1	2	3	4	5	6	7	8	9	0	1	2	3
Ι	F	D	R	Х	Х	W																	
1				1	2																		
Ι				R	Х	Х	W																
1					1	2																	
I					R	Х	X2	W															
1						1	371	1/2	***														
I						R	X1	X2	W														
1		F	D	D	D	D			R	Х	Х	W											
I 2		Г	D	D	D	D			ĸ	л 1	2 2	w											
I										R	X	Х	W										
2										ĸ	1	2	**										
I											R	X	Х	W									
2												1	2										
Ι												R	Х	Х	W								
2													1	2									
Ι			F	D	D	D	D	D	D	D	D	D	D	D	D	R	Х		Х	W			
3																	1	2	3				
Ι																	R	Х	Х	Х	W		
3									<u> </u>									1	2	3			
I																		R	X	X	X	W	
3																			1	2	3		
I																			R	X	X	X	W
3																				1	2	3	

Since each vector has 32 elements, and there are 8 lanes, the vector register file needs to be read 4 times for each instruction. Although I2 does not need the results of I1, both instructions use the vector add unit, so I2 must wait until after I1 completes its last read, plus an additional 2 cycles for dead time before beginning its first read. And because there is no chaining, I3, which is dependent on I2, needs to wait until I2 has finished its last write back before beginning its first read.

The execution time is 18 cycles (from cycle 6 to cycle 23, inclusive).

Problem M10.10.B

							Cycle										
	1	2	3	4	5	6	7	8	9	1	1	1	1	1	1	1	1
										0	1	2	3	4	5	6	7
Ι	F	D	R	Х	Х	W											
1				1	2												
Ι				R	X	Х	W										
1					1	2											
Ι					R	X	X2	W									
1						1											
Ι						R	X1	X2	W								
1		-		-	-	-											
I		F	D	D	D	D			X	W							
2									2								
I								R	X	X	W						
2									1	2	**						
I									R	X	X	W					
2										1	2	37	***				
I										R	X	X	W				
2			Г	D	D	D	D		D	D	1	2	X7	XX 7			
I			F	D	D	D	D	D	D	R	X	X	X	W			
3		-								-	1 D	2	3	V	***		
I											R	X	X	X 3	W		
3												1 D	2		v	337	
I												R	X	X 2	X 2	W	
3													1 D	2	3	v	337
I													R	X	X	X	W
3														1	2	3	

With 8 lanes, no dead time and flexible chaining, we get the following pipeline diagram.

With no dead time, I2 can issue its first read after the last read of I1. And with flexible chaining, I3 can begin its first read in the same cycle as the first write of I2.

The execution time is 12 cycles (from cycle 6 to cycle 17, inclusive).

Problem M10.10.C

								Cycle					
	1	2	3	4	5	6	7	8	9	1	1	1	1
										0	1	2	3
Ι	F	D	R	Х	Х	W							
1				1	2								
Ι				R	Х	Х	W						
1					1	2							
Ι		F	D	D	R	Х							
2						1							
Ι						R	X1	X2	W				
2													
Ι			F	D	D	D	D	R	Х	Х	Х	W	
3									1	2	3		
Ι									R	Х	Х	Х	W
3										1	2	3	

With 16 lanes, no dead time and flexible chaining, we get the following pipeline diagram.

Since each vector has 32 elements, and there are 16 lanes, the vector register file needs to be read 2 times for each instruction.

The execution time is 8 cycles (from cycle 6 to cycle 13, inclusive).