
 1

 6.823 Computer System Architecture

. Module #1 Solutions

Last Updated:

2/20/2015

http:/csg.csail.mit.edu/6.823/

Problem M1.1: Self Modifying Code on the EDSACjr

Problem M1.1.A Writing Macros For Indirection

One way to implement ADDind n is as follows:

.macro ADDind(n)

 STORE orig_accum ; Save original accum

 CLEAR ; accum <- 0

 ADD n ; accum <- M[n]

 ADD _add_op ; accum <- ADD M[n]

 STORE _L1 ; M[_L1] <- ADD M[n]

 CLEAR ; accum <- 0

_L1: CLEAR ; This will be replaced by

 ; ADD M[n] and will have

 ; the effect: accum <- M[M[n]]

 ADD _orig_accum ; accum <- M[M[n]] + original accum

.end macro

The first thing we do is save the original accumulator value. This is necessary since the instructions we are going to

use within the macro are going to destroy the value in the accumulator. Next, we load the contents of M[n] into the

accumulator. We assume that M[n] is a legal address and fits in 11 bits.

After getting the value of M[n] into the accumulator, we add it to the ADD template at _add_op. Since the

template has 0 for its operand, the resulting number will have the ADD opcode with the value of M[n] in the

operand field, and thus will be equivalently an ADD M[n]. By storing the contents of the accumulator into the

address _L1, we replace the CLEAR with what is equivalently an ADD M[n] instruction. Then we clear the

accumulator so that when the instruction at _L1 is executed, accum will get M[M[n]]. Finally, we add the original

accumulator value to get the desired result, M[M[n]] plus the original content of the accumulator.

STOREind n can be implemented in a very similar manner.

.macro STOREind(n)

 STORE _orig_accum ; Save original accum

 CLEAR ; accum <- 0

 ADD n ; accum <- M[n]

 ADD _store_op ; accum <- STORE M[n]

 STORE _L1 ; M[_L1] <- STORE M[n]

 CLEAR ; accum <- 0

 ADD _orig_accum ; accum <- original accum

_L1: CLEAR ; This will be replaced by

 ; STORE M[n], and will have the

 ; effect: M[M[n]]<- orig. accum

.end macro

After getting the value of M[n] into the accumulator, we add it to the STORE template at _store_op. Since the

template has 0 for its operand, the resulting number will have the STORE opcode with the value of M[n] in the

 2

operand field, and thus will be equivalently a STORE M[n] instruction. As before, we store this into _L1 and then

restore the accumulator value to its original value. When the PC reaches _L1, it then stores the original value of the

accumulator into M[M[n]].

BGEind and BLTind are very similar to STOREind. BGEind is shown below. BLTind is the same except that

we use _blt_op instead of _bge_op.

.macro BGEind(n)

 STORE _orig_accum ; Save original accum

 CLEAR ; accum <- 0

 ADD n ; accum <- M[n]

 ADD _bge_op ; acuum <- BGE M[n]

 STORE _L1 ; M[_L1] <- BGE M[n]

 CLEAR ; accum <- 0

 ADD _orig_accum ; accum <- original accum

_L1: CLEAR ; This is replaced by BGE M[n]

.end macro

Problem M1.1.B Subroutine Calling Conventions

We implement the following contract between the caller and the callee:

1. The caller places the argument in the address slot between the function-calling jump instruction and the

return address. Just before jumping to the subroutine, the caller loads the return address into the

accumulator.

2. In the beginning of a subroutine, the callee receives the return address in the accumulator. The argument

can be accessed by reading the memory location preceding the return address. The code below shows pass-

by-value as we create a local copy of the argument. Since the subroutine receives the address of the

argument, it’s easy to eliminate the dereferencing and deal only with the address in a pass-by-reference

manner.

3. When the computation is done, the callee puts the return value in the accumulator and then jumps to the

return address.

A call looks like

 ; preceding code sequence

 clear

 add _THREE ; accum <- 3

 bge _here ; skip over pointer

_hereptr .fill _here ; hereptr = &here

_here add _hereptr ; accum <- here+3 = return addr

 bge _sub ; jump to subroutine

 ; The following address location is

 ; reserved for argument passing and

 ; should never be executed as code:

_argument .fill 6 ; argument slot

 ; rest of program

(note that without an explicit program counter, a little work is required to establish the return address).

The subroutine begins:

_sub store _return ; save the return address

 sub _ONE ; accum <- &argument = return address-1

 store _arg ; M[_arg] <- &argument = return address-1

 3

 clear

 ADDind _arg ; accum <- *(&arg0)

 store _arg ; M[_arg] <- arg

And ends (with the return value in the accumulator):

 BGEind _return

The subroutine uses some local storage:
_arg clear ; local copy of argument

_return clear ; reserved for return address

We need the following global constants:
_ONE or 1 ; recall that OR’s opcode is 00000

_THREE or 3 ; so positive constants are easy to form

The following program uses this convention to compute fib(n) as specified in the problem set. It uses the indirection

macros, templates, and storage from part M1.1.A.

;; The Caller Code Section

;; ; preceding code sequence

_caller clear

 add _THREE ; accum <- 3

 bge _here

_hereptr .fill _here

_here add _hereptr ; accum <- here+3 = return addr

 bge _fib ; jump to subroutine

;; The following address location is reserved for

;; argument passing and should never be executed as code

arg0 .fill 4 ; arg 0 slot. N=4 in this example

_rtpnt end

;; The fib Subroutine Code Section

; function call prelude

_fib store _return ; save the return address

 sub _ONE

 store _n ; M[_n] <- &arg0 = return address-1

 clear

 ADDind _n ; accum <- *(&arg0)

 store _n ; M[_n] <- arg0

; fib body

 clear

 store _x ; x=0

 add _ONE

 store _y ; y=1

 clear ; if(n<2)

 add _n

 sub _TWO

 blt _retn

 clear

 store _i ; for (i = 0;

 4

_forloop clear ; i < n-1;

 add _n

 sub _ONE

 sub _i

 sub _ONE

 blt _done

_compute clear

 add _x

 add _y

 store _z ; z = x+y

 clear

 add _y

 store _x ; x = y

 clear

 add _z

 store _y ; y = z

_next clear ; i++)

 add _i

 add _ONE

 store _i

 bge _forloop

_retn clear

 add _n

 BGEind _return ; return n

_done clear

 add _z

 BGEind _return ; return z

;; Global constants (remember that OR's opcode is 00000)

_ONE or 1

_TWO or 2

_THREE or 3

_FOUR or 4

These memory locations are private to the subroutine

_return clear ; return address

_n clear ; n

_x clear

_y clear

_z clear

_i clear ; index

_result clear ; fib

Now we can see how powerful this indirection addressing mode is! It makes programming much simpler.

The 1 argument-1 result convention could be extended to variable number of arguments and results by

1. Leaving as many argument slots in the caller code between the subroutine call instruction and the

return address. This works as long as both the caller and callee agree on how many arguments are

being passed.

2. Multiple results can be returned as a pointer to a vector (or a list) of the results. This implies an

indirection, and so, yet another chance for self-modifying code.

 5

Problem M1.1.C Subroutine Calling Other Subroutines

The subroutine calling convention implemented in Problem M1.1.B stores the return address in a fixed memory

location (_return). When fib_recursive is first called, the return address is stored there. However, this

original return address will be overwritten when fib_recursive makes its first recursive call. Therefore, your

program can never return to the original caller!

6

Problem M1.2: CISC, RISC, and Stack: Comparing ISAs

Problem M1.2.A CISC

How many bytes is the program? 19

How many bytes of instructions need to be fetched if b = 10?

(2+2) + 10*(13) + (6+2+2) = 144

Assuming 32-bit data values, how many bytes of data memory need to be fetched? Stored?

Fetched: the compare instruction accesses memory, and brings in a 4 byte word b+1 times: 4 * 11 = 44

Stored: 0

Problem M1.2.B RISC

Many translations will be appropriate, here’s one. We ignore MIPS32’s branch-delay slot in this solution since it

hadn’t been discussed in lecture. Remember that you need to construct a 32-bit address from 16-bit immediate

values.

x86 instruction label MIPS32 instruction sequence

xor %edx,%edx

 xor r4, r4, r4

xor %ecx,%ecx

 xor r3, r3, r3

cmp 0x8047580,%ecx loop

lui r6, 0x0804

lw r1, 0x7580 (r6)

slt r5, r3, r1

jl L1

 bnez r5, L1

jmp done j done

add %eax,%edx L1 add r4, r4, r2

inc %ecx

 addi r3, r3, #1

jmp loop j loop

... done: ...

How many bytes is the MIPS32 program using your direct translation?

10*4 = 40

How many bytes of MIPS32 instructions need to be fetched for b = 10 using your direct translation.

There are 2 instructions in the prelude and 7 that are part of the loop (we don’t need to fetch the ‘j done’ until the

11th iteration). There are 5 instructions in the 11th iteration. All instructions are 4 bytes. 4(2+10*7+5) = 308.

7

Note: You can also place the label ‘loop’ in two other locations assuming r6 and r1 hold the same values for the

remaining of the program after being loaded. One location is in front of the lw instruction, and we reduce the

number of fetched byte to 268. The other is in front of the slt instruction, and we further decrease the number of

fetched bytes to 228.

How many bytes of data memory need to be fetched? Stored?

Fetched: 11 * 4 = 44 (or 4 if you place the label ‘loop’ in front of the slt instruction)

Stored: 0

Problem M1.2.C Optimization

There are two ideas that we have for optimization.

1) We count down to zero instead of up for the number of iterations. By doing this, we can eliminate the slt

instruction prior to the branch instruction.

2) Hold b value in a register if you haven’t done it already.

 xor r4, r4, r4

 lui r6, 0x0804

 lw r1, 0x9580(r6)

 jmp dec

loop: add r4, r4, r2

dec: addiu r1, r1, #-1

 bgez r1, loop

done:

This modification brings the dynamic code size down to 144 bytes, the static code size down to 28 and memory

traffic down to 4 bytes.

8

Problem M1.3: Addressing Modes on MIPS ISA

Problem M1.3.A Displacement addressing mode

The answer is yes.

LW R1, 16(R2) ADDI R3, R2, #16

LW R1, 0(R3)

 (R3 is a temporary register.)

Problem M1.3.B Register indirect addressing

The answer is yes once again.

LW R1, 16(R2)

lw_template: LW R1, 0 ; it is placed in data region

 ...

LW_start: LW R3, lw_template

 ADDI R4, R2, #16

 ADD R3, R3, R4 ; R3 <- “LW R1, addr”

 SW R3, _L1 ; write the LW instruction

 _L1: NOP ; to be replaced by “LW ..”

(R3 and R4 are temporary registers.)

9

Problem M1.3.C Subroutine

Yes, you can rewrite the code as follows.

Subroutine: lw R6, ret_inst ; r6 = “j 0”

add R6, R6, R31 ; R6 = “j return_addr”

sw R6, return ; replacing nop with “j return_addr”

xor R4, R4, R4 ; result = 0

xor R3, R3, R3 ; i = 0

loop: slt R5, R3, R1

bnez R5, L1 ; if (i < b) goto L1

return: nop ; will be replaced by “j return_addr”

L1: add R4, R4, R2 ; result += a

addi R3, R3, #1 ; i++

j loop

ret_inst: j 0 ; jump instruction template

10

Problem M1.4: Fully-Bypassed Simple 5-Stage Pipeline

Problem M1.4.A Stall

We still need the logic for stalls, because we cannot prevent load-use hazard. If a load instruction is followed by an

instruction which takes the loaded value as a source operand, we cannot avoid stalling for a cycle. The following

instruction sequence illustrates this hazard.

LW R1, 0(R2) # R1 <- M[R2]

ADD R3, R5, R1 # R1 is a source operand of ADD (data dependency)

 # The correct value of R1 is not available when

 # ADD is in ID stage. So it has to stall for a cycle.

Problem M1.4.B Bypass Signal

Here are the bypass conditions.

Bypass EX->ID ASrc = (rsD=wsE).we-bypassE.re1D

Bypass MEM->ID = (rsD=wsM).weM.re1D

Bypass WB->ID = (rsD=wsW).weW.re1D

Priority: Bypass EX->ID > Bypass MEM->ID > Bypass WB->ID

(In order to execute a given program correctly, the value from the latest producer must be taken if multiple bypass

paths are active.)

Problem M1.4.C Partial Bypassing

It is an open question and there is no single correct answer. Here are a couple of issues to consider as a guideline.

First, you may consider the penalty for not having all the bypass paths. If we don’t have the bypass path EX→ID,

we have to stall for three cycles for the hazard to be resolved. Likewise, not having MEM→ID results in a stall of

two cycles, and not having WB→ID, in one. Therefore, you can conclude that the bypass path between EX→ID is

the most beneficial.

Secondly, the best bypass path depends on the access patterns of data. The EX→ID bypass path is effective if a

producer instruction is followed by a consumer, except load-use cases (See solution for M1.4.A). On the other hand,

the MEM→ID bypass path works best if there are many load-use cases or many (producer, consumer) pairs have an

independent instruction between them. Likewise, the WB→ID bypass path helps when many (producer, consumer)

pairs are separated by exactly two independent instructions.

11

Problem M1.5: Basic Pipelining

Problem M1.5.A Mux Control Signals (1)

PCEn = (S==Execute)

IREn = (S==I-Fetch)

AddrSrc = Case S

I-Fetch => PC

Execute => ALU

Problem M1.5.B Modified pipeline

A stall can occur in 2 different cases.

1. A structural hazard in the shared memory.

LD R1, 16(R2)

Any instruction following this LD instruction should be stalled.

2. The other is caused by a control hazard, because we don’t have a delay slot.

J 200

Any instruction following this J instruction should be flushed.

Problem M1.5.C Mux Control Signals (2)

PCEnable = not ((opcode == LW) or (opcode == SW))

AddrSrc = Case opcode

not (LW or SW) => PC

(LW or SW) => ALU

12

IRSrc = Case opcode

LW or SW or Jump or Brtaken => nop

Else => Mem

Problem M1.5.D

Time PC “IR” PCenable PCSrc1 AddrSrc IRSrc

t0 I1:100 - 1 pc+4 PC Mem

t1 I2:104 I1 1 Pc+4 PC Mem

t2 I3:108 I2 0 * ALU Nop

t3 I3:108 - 1 pc+4 PC Mem

t4 I4:112 I3 1 jabs PC Nop

t5 I7:312 - 1 pc+4 PC Mem

t6 I8:316 I7 1 pc+4 PC Mem

Problem M1.5.E Self-Modifying Code

The answer is no. The hazard is resolved by the datapath itself because (1) memory accesses are

serialized by the stall logic at the shared memory and (2) memory write takes only one cycle.

Problem M1.5.F

Due to this rerouting we will now have to stall even if it is an ALU instruction.

Problem M1.5.G Architecture Comparison

The Princeton architecture is cheaper than the Harvard architecture, but the Harvard architecture

is faster than the Princeton architecture.

13

Problem M1.6: A 5-Stage Pipeline with an Additional Adder

Problem M1.6.A Elimination of a hazard

The new datapath is trying to eliminate the hazard that occurs when a load instruction is immediately followed by an

ALU instruction that requires the value that was loaded. In the original datapath, a pipeline interlock (stall) is needed

for this type of an instruction sequence, an example of which is shown below. In Ben’s datapath, this load-use

interlock is not required because the data from the load instruction can be immediately forwarded to the ALU.

LW R1, 0(R3)

ADDI R1, R1, #5

Problem M1.6.B New Hazard

The new hazard occurs when the result of an ALU operation is needed to calculate the address of a load or store

instruction.

ADDI R1, R1, #5

LW R3, 3(R1)

Problem M1.6.C Comparison

Now an address-generation interlock is needed for the LW instruction in the sequence in M1.6.B. Note that this new

hazard affects both load and store instructions, while the original hazard only affected load instructions. This is a

disadvantage of the modified pipeline. Also, the new datapath requires more hardware (another adder) than the

original datapath. However, the load-use hazard illustrated in Problem M1.6.A has been eliminated. If we examine

the behavior of typical programs, we will see that the percentage of load instructions resulting in the load-use

interlock from Problem M1.6.A is higher than the percentage of all loads and stores resulting in the address-

generation interlock from Problem M1.6.B. This is because many address calculations are based on values that

change infrequently (e.g. the stack pointer does not change while a procedure is being executed). If a base address

register has not been recently changed, then there will be no address-generation interlock. By contrast, when a load

is issued, the load value is usually required within a few cycles, so a load-use interlock is much more likely.

Whether performance is better on the original pipeline or on the modified pipeline will depend on the specific

program.

Problem M1.6.D Stall Logic

The stall equation for only the new hazard is given below. The op signal is used to determine the instruction opcode.

Stall = ((opID = LW) + (opID = SW)).(rsID = wsAC).((opAC = ALU) + (opAC = ALUi)).(wsAC 0)

14

Problem M1.6.E Datapath Improvement

If we eliminated the displacement addressing mode from the MIPS ISA and only supported register indirect

addressing, then we would no longer need to compute an effective address for loads and stores. We could improve

the datapath by eliminating the AC (effective address calculation) stage from Ben’s modified pipeline, resulting in

the following stages

IF ID EX/MEM WB

Instruction fetch Instruction decode

and register fetch

Execution of ALU

operations or memory

access

Write-back to register

file

A diagram showing the new pipeline is given below.

This new datapath does not have either of the hazards from Ben’s original or modified pipelines. Thus, bubbles

would not need to be inserted into the pipeline regardless of the instruction sequence, improving instruction

throughput. As a side note, the latency of a single instruction has also been reduced since there are now only 4 stages

instead of 5. Although this does not improve performance in the steady state, a fewer number of stages does help

because fewer pipeline registers and bypass paths are required. However, this instruction set is limited in that it only

supports register indirect addressing. This means that displacement addressing would have to be synthesized from

simpler instructions (see Problem M1.6.F).

15

Problem M1.6.F Displacement Addressing Synthesizing

Programmers could synthesize a displacement load/store instruction using the ADDi instruction, a scratch register,

and the register indirect load/store instruction. For example, to synthesize the following instruction with

displacement addressing

LW R1, 4(R2)

we could use the following equivalent instruction sequence, where R3 is a temporary register

ADDI R3, R2, #4

LW R1, (R3)

The same programs could be written as before using this technique. However, using this limited ISA may increase

the number of instructions in the program as compared to the original ISA.

Problem M1.6.G Jumps and Branches

If Ben uses the ALU to resolve conditional branches in both his original pipeline and his modified pipeline shown in

Problem M1.6.A, then there will be an additional cycle of branch delay in the new datapath because the ALU is now

one stage later in the pipeline. If we don’t worry about duplicating logic, then we can put a comparator in any stage

of the pipeline (except Instruction Fetch, as the register file has not yet been read in this stage) in order to resolve

conditional branches. The table shown below compares each possible placement of the comparator.

Comparator

In Stage

Number

of Branch

Delay

Cycles

Additional Stall Condition Change in Clock Period

WB 4 None

Will remain unchanged since comparator is simpler

than ALU operation so it cannot be the critical

path.

EX/MEM 3 None

Will remain unchanged since comparator is simpler

than ALU operation so it cannot be the critical

path.

AC 2

1 cycle stall when the

ALU output or result of a

load is used for the branch

Will remain unchanged since comparator is simpler

than ALU operation so it cannot be the critical

path.

ID 1

2 cycle stall when the

ALU output or result of a

load is used for the branch

Will likely increase the clock period since it now

could be on the critical path (fetch register value +

compare)

Obviously placing the comparator in the Write-Back stage makes no sense since this doesn’t provide an advantage

over placing the comparator in the Execute/Memory stage, and in fact, it increases the number of branch delay

cycles by 1. Placing the comparator in the Address Calculation stage instead of the Execute/Memory stage reduces

the number of branch delay cycles by 1, but introduces a potential stall condition. Since the branch delay affects all

branches, while the stall condition would only affect some of the branches, placing the comparator in the Address

Calculation stage is to be preferred over the Execute/Memory stage. Finally, the comparator could be placed in the

Instruction Decode stage. If this doesn’t lengthen the critical path, then this would be the best placement, as the

number of branch delay cycles is reduced to 1. However, if it does lengthen the critical path—and it likely will—

then the increased cycle time would probably not be worth the reduction in the branch delay, as now all instructions

will run more slowly.

16

Problem M1.7: Dual ALU Pipeline

Problem M1.7.A ALU Usage

 ALU1 or ALU2?
add r1, r2, r3 ALU1
lw r4, 0(r1)
add r5, r4, r6 ALU2
add r7, r5, r8 ALU2
add r1, r2, r3 ALU1
lw r4, 0(r1)
add r5, r1, r6 ALU1

The following timeline shows the execution of the instructions, with the stage where each

instruction produces its result highlighted in bold, and the bypassing between instructions shown

by arrows.

add1 IF ID EX1 EX2 WB
lw1 IF ID EX1 MEM WB
add2 IF ID EX1 EX2 WB
add3 IF ID EX1 EX2 WB
add4 IF ID EX1 EX2 WB
lw2 IF ID EX1 MEM WB
add5 IF ID EX1 EX2 WB

The pipeline is initially idle, so the first add reads its operands from the register file in ID and

uses ALU1. The second add uses the result of the lw which is not available by the end of ID;

therefore the add uses ALU2, and the load data is bypassed to it at the end of EX1. The third add

uses the result of the second, so its data is not available by the end of ID; it also uses ALU2,

allowing the data to be bypassed to it at the end of EX1. The fourth add has no dependencies on

the previous instructions; it reads its operands from the register file in ID and uses ALU1. The

fifth add uses the result of the fourth add. This value is bypassed to it at the end of ID from

EX2/MEM, and it uses ALU1.

17

Problem M1.7.B Control Signal

alu2ID = (((OPID = ALU) + (OPID = ALUi))

 ∙((rsID = wsEX1) + (rtID = wsEX1)∙re2ID)

 ∙(wsEX1 0)

 ∙((OPEX1 = LW) + alu2EX1)
)

An ALU instruction uses ALU2 if its operands are not available by the end of ID. This occurs if

the ALU instruction (in ID) uses the result of its immediately preceding instruction (in EX1) as a

source, but the instruction will not produce its result until EX2/MEM. The two classes of

instructions which do not produce a result until EX2/MEM are LW instructions and ALU

instructions which use ALU2.

Note that the feedback dependence of alu2ID on alu2EX1 means that a sequence of ALU

instructions following a LW will continue to use ALU2 as long as each instruction uses the result

of its predecessor.

Problem M1.7.C Instruction Sequences Causing Stalls

 Stall? Explanation
add r1, r2, r3

lw r4, 0(r1)
No

The add (in EX1) uses ALU1 and bypasses

its result to the LW (in ID).

lw r1, 0(r2)

add r3, r1, r4

lw r5, 0(r1)
No

The first LW (in EX2/MEM) bypasses its

result to the add (in EX1) which will use

ALU2, and also to the second LW (in ID).

lw r1, 0(r2)

lw r3, 0(r1) Yes
The result of the first LW (in EX1) is not

available in time for the second LW (in

ID), so the second LW must stall.
lw r1, 0(r2)

sw r1, 0(r3) No
The LW (in EX2/MEM) bypasses its result

to the SW (in EX1) in time for it to store

the data in EX2/MEM.
lw r1, 0(r2)

add r3, r1, r4

sw r5, 0(r3)
Yes

The LW (in EX2/MEM) bypasses its result

to the add (in EX1) which will use ALU2.

But, the result of the add (in EX1) is not

available in time for the SW (in ID), so the

SW must stall.
lw r1, 0(r2)

add r3, r1, r4
No

The LW (in EX2/MEM) bypasses its result

to the add (in EX1) which will use ALU2.

18

Note that the base address operand for both LW and SW must be available by the end of ID, but

the data operand for SW must only be available by the end of EX1.

Problem M1.7.D Stall Equation

stallID = (((OPID = LW) + (OPID = SW))

 ∙(rsID = wsEX1)

 ∙(wsEX1 0)
 ∙((OPEX1 = LW) + alu2EX1)

)

Since all instruction results are produced by the end of EX2/MEM, the operands for an

instruction are always available by the end of EX1 even if it uses the result of its immediately

preceding instruction as a source.

The only stall condition is when the base address operand for a memory instruction is not

available by the end of ID. This occurs if the memory instruction (in ID) uses the result of its

immediately preceding instruction (in EX1) as its base address, but the instruction will not

produce its result until EX2/MEM. The two classes of instructions which do not produce a result

until EX2/MEM are LW instructions and ALU instructions which use ALU2.

Note that ALU instructions never need to stall the pipeline. They either use ALU1 if their

operands will be available by the end of ID, or ALU2 if their operands will be available by the

end of EX1.

19

Problem M1.8: Processor Design (Short Yes/No Questions)

Problem M1.8.A Interlock vs. Bypassing

No. Data dependencies are preserved with either interlocks or bypassing, so the processors

always generate the same results. Bypassing improves performance by eliminating stalls.

Problem M1.8.B Delay Slot

Yes. The instruction following a taken branch is executed on processor A, but killed on

processor B so the processors can generate different results.

Problem M1.8.C Structural Hazard

No. Both processors retrieve the same data values. There is only a performance difference

because processor A must stall an instruction fetch to allow a load instruction to access memory.

