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Problem M1.1: Self Modifying Code on the EDSACjr 

 

Problem M1.1.A Writing Macros For Indirection 
 

One way to implement ADDind n is as follows: 

 
.macro ADDind(n) 

 STORE  orig_accum ; Save original accum 

 CLEAR    ; accum <- 0 

 ADD  n  ; accum <- M[n] 

 ADD  _add_op ; accum <- ADD M[n] 

 STORE  _L1  ; M[_L1] <- ADD M[n] 

 CLEAR    ; accum <- 0 

_L1: CLEAR    ; This will be replaced by  

     ; ADD M[n] and will have  

     ; the effect: accum <- M[M[n]] 

 ADD  _orig_accum ; accum <- M[M[n]] + original accum 

.end macro 

 

The first thing we do is save the original accumulator value. This is necessary since the instructions we are going to 

use within the macro are going to destroy the value in the accumulator. Next, we load the contents of M[n] into the 

accumulator. We assume that M[n] is a legal address and fits in 11 bits.   

 

After getting the value of M[n] into the accumulator, we add it to the ADD template at _add_op. Since the 

template has 0 for its operand, the resulting number will have the ADD opcode with the value of M[n] in the 

operand field, and thus will be equivalently an ADD M[n]. By storing the contents of the accumulator into the 

address _L1, we replace the CLEAR with what is equivalently an ADD M[n] instruction. Then we clear the 

accumulator so that when the instruction at _L1 is executed, accum will get M[M[n]]. Finally, we add the original 

accumulator value to get the desired result, M[M[n]] plus the original content of the accumulator. 

 

STOREind n can be implemented in a very similar manner. 
 

.macro STOREind(n) 

 STORE  _orig_accum ; Save original accum 

 CLEAR    ; accum <- 0 

 ADD  n  ; accum <- M[n] 

 ADD  _store_op ; accum <- STORE M[n]    

 STORE  _L1  ; M[_L1] <- STORE M[n] 

 CLEAR    ; accum <- 0 

 ADD  _orig_accum ; accum <- original accum 

_L1: CLEAR    ; This will be replaced by  

     ; STORE M[n], and will have the 

     ; effect: M[M[n]]<- orig. accum 

.end macro 

 

After getting the value of M[n] into the accumulator, we add it to the STORE template at _store_op. Since the 

template has 0 for its operand, the resulting number will have the STORE opcode with the value of M[n] in the 
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operand field, and thus will be equivalently a STORE M[n] instruction. As before, we store this into _L1 and then 

restore the accumulator value to its original value. When the PC reaches _L1, it then stores the original value of the 

accumulator into M[M[n]]. 

 

BGEind and BLTind are very similar to STOREind.  BGEind is shown below. BLTind is the same except that 

we use _blt_op instead of _bge_op. 
 

.macro BGEind(n) 

 STORE  _orig_accum ; Save original accum 

 CLEAR    ; accum <- 0 

 ADD  n  ; accum <- M[n] 

 ADD  _bge_op ; acuum <- BGE M[n] 

 STORE  _L1  ; M[_L1] <- BGE M[n] 

 CLEAR    ; accum <- 0 

 ADD  _orig_accum ; accum <- original accum 

_L1: CLEAR    ; This is replaced by BGE M[n] 

.end macro 

 

 

Problem M1.1.B Subroutine Calling Conventions 

 
We implement the following contract between the caller and the callee: 

1. The caller places the argument in the address slot between the function-calling jump instruction and the 

return address. Just before jumping to the subroutine, the caller loads the return address into the 

accumulator. 

2. In the beginning of a subroutine, the callee receives the return address in the accumulator. The argument 

can be accessed by reading the memory location preceding the return address. The code below shows pass-

by-value as we create a local copy of the argument. Since the subroutine receives the address of the 

argument, it’s easy to eliminate the dereferencing and deal only with the address in a pass-by-reference 

manner. 

3. When the computation is done, the callee puts the return value in the accumulator and then jumps to the 

return address. 

 

A call looks like 

 
  ......   ; preceding code sequence 

  clear 

  add  _THREE ; accum <- 3 

  bge  _here  ; skip over pointer 

_hereptr .fill  _here  ; hereptr = &here 

_here  add  _hereptr ; accum <- here+3 = return addr 

  bge  _sub  ; jump to subroutine 

      ; The following address location is 

      ; reserved for argument passing and  

      ; should never be executed as code: 

_argument .fill 6   ; argument slot 

  ......   ; rest of program 

 

(note that without an explicit program counter, a little work is required to establish the return address). 
 

The subroutine begins: 
 

_sub  store  _return ; save the return address 

  sub  _ONE  ; accum <- &argument = return address-1 

  store  _arg  ; M[_arg] <- &argument = return address-1 
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  clear 

  ADDind _arg  ; accum <- *(&arg0) 

  store  _arg  ; M[_arg] <- arg 

 

And ends (with the return value in the accumulator): 
 

  BGEind _return 

       

The subroutine uses some local storage: 
_arg  clear    ; local copy of argument 

_return clear    ; reserved for return address 

 

We need the following global constants: 
_ONE  or  1  ; recall that OR’s opcode is 00000 

_THREE or  3  ; so positive constants are easy to form 

   

The following program uses this convention to compute fib(n) as specified in the problem set.  It uses the indirection 

macros, templates, and storage from part M1.1.A. 
  

;; The Caller Code Section 

;; ......    ; preceding code sequence 

_caller clear 

  add  _THREE ; accum <- 3 

  bge  _here 

_hereptr .fill  _here 

_here  add  _hereptr ; accum <- here+3 = return addr 

  bge  _fib  ; jump to subroutine 

 

;; The following address location is reserved for 

;; argument passing and should never be executed as code 

arg0  .fill  4  ; arg 0 slot.  N=4 in this example 

 

_rtpnt end 

 

;; The fib Subroutine Code Section 

 

; function call prelude 

_fib  store  _return ; save the return address 

  sub  _ONE 

  store  _n  ; M[_n] <- &arg0 = return address-1 

  clear 

  ADDind _n  ; accum <- *(&arg0) 

  store  _n  ; M[_n] <- arg0 

  

; fib body 

  clear  

  store  _x  ; x=0 

  add  _ONE 

  store  _y  ; y=1 

  

  clear    ; if(n<2) 

  add  _n 

  sub  _TWO 

  blt  _retn 

  

  clear 

  store  _i  ; for (i = 0; 
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_forloop clear    ; i < n-1; 

  add  _n 

  sub  _ONE 

  sub  _i 

  sub  _ONE 

  blt  _done 

_compute clear 

  add  _x 

  add  _y 

  store  _z  ; z = x+y 

  clear 

  add  _y 

  store  _x  ; x = y 

  clear 

  add  _z 

  store  _y  ; y = z 

  

_next  clear         ; i++)  

  add  _i 

  add  _ONE 

  store  _i 

  bge  _forloop  

 

_retn    clear 

  add _n 

  BGEind _return ; return n 

  

_done  clear    

  add  _z 

  BGEind _return ; return z 

  

;; Global constants (remember that OR's opcode is 00000) 

 

_ONE  or 1 

_TWO  or 2 

_THREE or 3 

_FOUR  or 4 

 

These memory locations are private to the subroutine 

 

_return clear  ; return address 

_n  clear  ; n 

_x  clear 

_y  clear 

_z  clear 

_i  clear  ; index 

_result clear  ; fib 

 

Now we can see how powerful this indirection addressing mode is! It makes programming much simpler.   

 

The 1 argument-1 result convention could be extended to variable number of arguments and results by 

1. Leaving as many argument slots in the caller code between the subroutine call instruction and the 

return address. This works as long as both the caller and callee agree on how many arguments are 

being passed. 

2. Multiple results can be returned as a pointer to a vector (or a list) of the results. This implies an 

indirection, and so, yet another chance for self-modifying code. 
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Problem M1.1.C Subroutine Calling Other Subroutines 

 
The subroutine calling convention implemented in Problem M1.1.B stores the return address in a fixed memory 

location (_return). When fib_recursive is first called, the return address is stored there. However, this 

original return address will be overwritten when fib_recursive makes its first recursive call. Therefore, your 

program can never return to the original caller! 
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Problem M1.2: CISC, RISC, and Stack: Comparing ISAs 

 

Problem M1.2.A CISC 

 
How many bytes is the program?  19 

 

How many bytes of instructions need to be fetched if b = 10?  

 

(2+2) + 10*(13) + (6+2+2) = 144 

 

Assuming 32-bit data values, how many bytes of data memory need to be fetched? Stored? 

 

Fetched: the compare instruction accesses memory, and brings in a 4 byte word b+1 times: 4 * 11 = 44 

Stored: 0 

 

Problem M1.2.B RISC 

 
Many translations will be appropriate, here’s one.  We ignore MIPS32’s branch-delay slot in this solution since it 

hadn’t been discussed in lecture.  Remember that you need to construct a 32-bit address from 16-bit immediate 

values. 

 

x86 instruction label MIPS32 instruction sequence 

xor    %edx,%edx 

      

 xor r4, r4, r4 

 

xor    %ecx,%ecx 

          

 xor r3, r3, r3 

 

cmp    0x8047580,%ecx loop 

 

lui r6, 0x0804 

lw r1, 0x7580 (r6) 

slt r5, r3, r1 

 

jl     L1  

 

 bnez r5, L1 

 

jmp    done  j done 

 

add    %eax,%edx L1 add r4, r4, r2 

 

inc    %ecx 

 

 addi r3, r3, #1 

 

jmp    loop  j loop 

 

... done: ... 

 

How many bytes is the MIPS32 program using your direct translation? 

 

10*4 = 40 

 

How many bytes of MIPS32 instructions need to be fetched for b = 10 using your direct translation.   

 

There are 2 instructions in the prelude and 7 that are part of the loop (we don’t need to fetch the ‘j done’ until the 

11th iteration). There are 5 instructions in the 11th iteration. All instructions are 4 bytes.  4(2+10*7+5) = 308. 
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Note:  You can also place the label ‘loop’ in two other locations assuming r6 and r1 hold the same values for the 

remaining of the program after being loaded. One location is in front of the lw instruction, and we reduce the 

number of fetched byte to 268. The other is in front of the slt instruction, and we further decrease the number of 

fetched bytes to 228. 

 

How many bytes of data memory need to be fetched? Stored?  

 

Fetched: 11 * 4 = 44 (or 4 if you place the label ‘loop’ in front of the slt instruction) 

Stored: 0 

 

 

Problem M1.2.C Optimization 
 

There are two ideas that we have for optimization. 

 

1) We count down to zero instead of up for the number of iterations. By doing this, we can eliminate the slt 

instruction prior to the branch instruction. 

 

2) Hold b value in a register if you haven’t done it already. 

 
   xor r4, r4, r4 

   lui r6, 0x0804   

   lw r1, 0x9580(r6)  

   jmp dec    

loop:  add r4, r4, r2   

dec:  addiu r1, r1, #-1 

   bgez r1, loop 

done:       

 
This modification brings the dynamic code size down to 144 bytes, the static code size down to 28 and memory 

traffic down to 4 bytes. 
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Problem M1.3: Addressing Modes on MIPS ISA 

 

 

Problem M1.3.A Displacement addressing mode 

 

The answer is yes. 

 

LW R1, 16(R2)        ADDI R3, R2, #16 

LW R1, 0(R3) 

 

     (R3 is a temporary register.) 

 

 

 

 

 

 

Problem M1.3.B Register indirect addressing 

 

The answer is yes once again. 
 

LW R1, 16(R2)        

 

lw_template:   LW   R1, 0      ; it is placed in data region 

 ... 

LW_start: LW   R3, lw_template 

   ADDI R4, R2, #16 

   ADD  R3, R3, R4  ; R3 <- “LW R1, addr” 

   SW R3, _L1   ; write the LW instruction 

       _L1: NOP     ; to be replaced by “LW ..” 

 

(R3 and R4 are temporary registers.) 
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Problem M1.3.C Subroutine 

 

Yes, you can rewrite the code as follows. 

 
Subroutine: lw   R6, ret_inst ; r6 = “j 0” 

add  R6, R6, R31 ; R6 = “j return_addr” 

sw   R6, return   ; replacing nop with “j return_addr” 

 

xor  R4, R4, R4 ; result = 0 

xor  R3, R3, R3 ; i = 0 

loop:  slt  R5, R3, R1  

bnez R5, L1  ; if (i < b) goto L1 

return: nop   ; will be replaced by “j return_addr” 

L1:  add  R4, R4, R2 ; result += a 

addi R3, R3, #1 ; i++ 

j    loop 

ret_inst: j    0   ; jump instruction template 
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Problem M1.4: Fully-Bypassed Simple 5-Stage Pipeline 
 

Problem M1.4.A Stall 

 
We still need the logic for stalls, because we cannot prevent load-use hazard. If a load instruction is followed by an 

instruction which takes the loaded value as a source operand, we cannot avoid stalling for a cycle. The following 

instruction sequence illustrates this hazard. 

 
LW  R1, 0(R2)    # R1 <- M[R2] 

ADD R3, R5, R1   # R1 is a source operand of ADD (data dependency) 

       # The correct value of R1 is not available when 

       # ADD is in ID stage.  So it has to stall for a cycle. 

 

 

Problem M1.4.B Bypass Signal 

 
Here are the bypass conditions. 

 

Bypass EX->ID ASrc = (rsD=wsE).we-bypassE.re1D  

 

Bypass MEM->ID  = (rsD=wsM).weM.re1D 

 

Bypass WB->ID  = (rsD=wsW).weW.re1D 

 

Priority: Bypass EX->ID  > Bypass MEM->ID > Bypass WB->ID 

(In order to execute a given program correctly, the value from the latest producer must be taken if multiple bypass 

paths are active.)  

 

 

Problem M1.4.C Partial Bypassing 

 
It is an open question and there is no single correct answer. Here are a couple of issues to consider as a guideline. 

 

First, you may consider the penalty for not having all the bypass paths. If we don’t have the bypass path EX→ID, 

we have to stall for three cycles for the hazard to be resolved. Likewise, not having MEM→ID results in a stall of 

two cycles, and not having WB→ID, in one. Therefore, you can conclude that the bypass path between EX→ID is 

the most beneficial. 

 

Secondly, the best bypass path depends on the access patterns of data. The EX→ID bypass path is effective if a 

producer instruction is followed by a consumer, except load-use cases (See solution for M1.4.A). On the other hand, 

the MEM→ID bypass path works best if there are many load-use cases or many (producer, consumer) pairs have an 

independent instruction between them. Likewise, the WB→ID bypass path helps when many (producer, consumer) 

pairs are separated by exactly two independent instructions. 
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Problem M1.5: Basic Pipelining  

 

Problem M1.5.A Mux Control Signals (1) 
 

PCEn = (S==Execute) 
 

IREn = (S==I-Fetch) 
 

 

AddrSrc = Case S 

 

I-Fetch => PC 

 

Execute  => ALU 
 

 

 

Problem M1.5.B Modified pipeline 
 

A stall can occur in 2 different cases. 

1. A structural hazard in the shared memory. 

LD  R1, 16(R2) 

Any instruction following this LD instruction should be stalled. 

 

2. The other is caused by a control hazard, because we don’t have a delay slot. 

J 200 

Any instruction following this J instruction should be flushed. 
 

Problem M1.5.C Mux Control Signals (2) 
 

 

PCEnable = not ((opcode == LW) or (opcode == SW)) 
 

 

 

 

AddrSrc = Case opcode 

 

not (LW or SW)  => PC 

 

(LW or SW)  => ALU 
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IRSrc = Case opcode 

 

LW or SW or Jump or Brtaken  => nop 

 

Else  => Mem 
 

 

 

Problem M1.5.D  
 

Time PC “IR” PCenable PCSrc1 AddrSrc IRSrc 

t0 I1:100 - 1 pc+4 PC Mem 

t1 I2:104 I1 1 Pc+4 PC Mem 

t2 I3:108 I2 0 * ALU Nop 

t3 I3:108 - 1 pc+4 PC Mem 

t4 I4:112 I3 1 jabs PC Nop 

t5 I7:312 - 1 pc+4 PC Mem 

t6 I8:316 I7 1 pc+4 PC Mem 

 

 

Problem M1.5.E Self-Modifying Code 
 

The answer is no. The hazard is resolved by the datapath itself because (1) memory accesses are 

serialized by the stall logic at the shared memory and (2) memory write takes only one cycle. 
 

Problem M1.5.F  
 

Due to this rerouting we will now have to stall even if it is an ALU instruction. 
 

Problem M1.5.G Architecture Comparison 
 

The Princeton architecture is cheaper than the Harvard architecture, but the Harvard architecture 

is faster than the Princeton architecture. 
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Problem M1.6: A 5-Stage Pipeline with an Additional Adder 
 

Problem M1.6.A Elimination of a hazard 
 

The new datapath is trying to eliminate the hazard that occurs when a load instruction is immediately followed by an 

ALU instruction that requires the value that was loaded. In the original datapath, a pipeline interlock (stall) is needed 

for this type of an instruction sequence, an example of which is shown below. In Ben’s datapath, this load-use 

interlock is not required because the data from the load instruction can be immediately forwarded to the ALU. 

 
LW R1, 0(R3) 

ADDI R1, R1, #5 

 

Problem M1.6.B New Hazard           

 
The new hazard occurs when the result of an ALU operation is needed to calculate the address of a load or store 

instruction. 

 
ADDI R1, R1, #5 

LW R3, 3(R1) 

 

 

Problem M1.6.C Comparison           

 
Now an address-generation interlock is needed for the LW instruction in the sequence in M1.6.B. Note that this new 

hazard affects both load and store instructions, while the original hazard only affected load instructions. This is a 

disadvantage of the modified pipeline. Also, the new datapath requires more hardware (another adder) than the 

original datapath. However, the load-use hazard illustrated in Problem M1.6.A has been eliminated. If we examine 

the behavior of typical programs, we will see that the percentage of load instructions resulting in the load-use 

interlock from Problem M1.6.A is higher than the percentage of all loads and stores resulting in the address-

generation interlock from Problem M1.6.B. This is because many address calculations are based on values that 

change infrequently (e.g. the stack pointer does not change while a procedure is being executed). If a base address 

register has not been recently changed, then there will be no address-generation interlock. By contrast, when a load 

is issued, the load value is usually required within a few cycles, so a load-use interlock is much more likely.  

Whether performance is better on the original pipeline or on the modified pipeline will depend on the specific 

program. 

 

Problem M1.6.D Stall Logic 
 

The stall equation for only the new hazard is given below. The op signal is used to determine the instruction opcode. 

 

Stall = ((opID = LW) + (opID = SW)).(rsID = wsAC).((opAC = ALU) + (opAC = ALUi)).(wsAC  0) 
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Problem M1.6.E Datapath Improvement 
 

If we eliminated the displacement addressing mode from the MIPS ISA and only supported register indirect 

addressing, then we would no longer need to compute an effective address for loads and stores.  We could improve 

the datapath by eliminating the AC (effective address calculation) stage from Ben’s modified pipeline, resulting in 

the following stages 

 

IF ID EX/MEM WB 

Instruction fetch Instruction decode 

and register fetch 

Execution of ALU 

operations or memory 

access 

Write-back to register 

file 

 
A diagram showing the new pipeline is given below. 

 

 
This new datapath does not have either of the hazards from Ben’s original or modified pipelines. Thus, bubbles 

would not need to be inserted into the pipeline regardless of the instruction sequence, improving instruction 

throughput. As a side note, the latency of a single instruction has also been reduced since there are now only 4 stages 

instead of 5. Although this does not improve performance in the steady state, a fewer number of stages does help 

because fewer pipeline registers and bypass paths are required.  However, this instruction set is limited in that it only 

supports register indirect addressing. This means that displacement addressing would have to be synthesized from 

simpler instructions (see Problem M1.6.F). 
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Problem M1.6.F Displacement Addressing Synthesizing 
 

Programmers could synthesize a displacement load/store instruction using the ADDi instruction, a scratch register, 

and the register indirect load/store instruction. For example, to synthesize the following instruction with 

displacement addressing 

 
LW R1, 4(R2) 

 

we could use the following equivalent instruction sequence, where R3 is a temporary register 

 
ADDI R3, R2, #4 

LW R1, (R3) 

 

The same programs could be written as before using this technique. However, using this limited ISA may increase 

the number of instructions in the program as compared to the original ISA. 

 

Problem M1.6.G Jumps and Branches 
 

If Ben uses the ALU to resolve conditional branches in both his original pipeline and his modified pipeline shown in 

Problem M1.6.A, then there will be an additional cycle of branch delay in the new datapath because the ALU is now 

one stage later in the pipeline. If we don’t worry about duplicating logic, then we can put a comparator in any stage 

of the pipeline (except Instruction Fetch, as the register file has not yet been read in this stage) in order to resolve 

conditional branches.  The table shown below compares each possible placement of the comparator. 

 

Comparator 

In Stage 

Number 

of Branch 

Delay 

Cycles 

Additional Stall Condition Change in Clock Period 

WB 4 None 

Will remain unchanged since comparator is simpler 

than ALU operation so it cannot be the critical 

path. 

EX/MEM 3 None 

Will remain unchanged since comparator is simpler 

than ALU operation so it cannot be the critical 

path. 

AC 2 

1 cycle stall when the 

ALU output or result of a 

load is used for the branch 

Will remain unchanged since comparator is simpler 

than ALU operation so it cannot be the critical 

path. 

ID 1 

2 cycle stall when the 

ALU output or result of a 

load is used for the branch 

Will likely increase the clock period since it now 

could be on the critical path (fetch register value + 

compare) 

 

Obviously placing the comparator in the Write-Back stage makes no sense since this doesn’t provide an advantage 

over placing the comparator in the Execute/Memory stage, and in fact, it increases the number of branch delay 

cycles by 1. Placing the comparator in the Address Calculation stage instead of the Execute/Memory stage reduces 

the number of branch delay cycles by 1, but introduces a potential stall condition. Since the branch delay affects all 

branches, while the stall condition would only affect some of the branches, placing the comparator in the Address 

Calculation stage is to be preferred over the Execute/Memory stage. Finally, the comparator could be placed in the 

Instruction Decode stage. If this doesn’t lengthen the critical path, then this would be the best placement, as the 

number of branch delay cycles is reduced to 1. However, if it does lengthen the critical path—and it likely will—

then the increased cycle time would probably not be worth the reduction in the branch delay, as now all instructions 

will run more slowly. 
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Problem M1.7: Dual ALU Pipeline 

 
 
Problem M1.7.A ALU Usage 

 
 

  ALU1 or ALU2? 
add r1, r2, r3 ALU1 
lw  r4, 0(r1)  
add r5, r4, r6 ALU2 
add r7, r5, r8 ALU2 
add r1, r2, r3 ALU1 
lw  r4, 0(r1)  
add r5, r1, r6 ALU1 

 

The following timeline shows the execution of the instructions, with the stage where each 

instruction produces its result highlighted in bold, and the bypassing between instructions shown 

by arrows. 

 
add1 IF ID EX1 EX2 WB       
lw1  IF ID EX1 MEM WB      
add2   IF ID EX1 EX2 WB     
add3    IF ID EX1 EX2 WB    
add4     IF ID EX1 EX2 WB   
lw2      IF ID EX1 MEM WB  
add5       IF ID EX1 EX2 WB 

 

The pipeline is initially idle, so the first add reads its operands from the register file in ID and 

uses ALU1. The second add uses the result of the lw which is not available by the end of ID; 

therefore the add uses ALU2, and the load data is bypassed to it at the end of EX1. The third add 

uses the result of the second, so its data is not available by the end of ID; it also uses ALU2, 

allowing the data to be bypassed to it at the end of EX1. The fourth add has no dependencies on 

the previous instructions; it reads its operands from the register file in ID and uses ALU1. The 

fifth add uses the result of the fourth add. This value is bypassed to it at the end of ID from 

EX2/MEM, and it uses ALU1.   
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Problem M1.7.B Control Signal 

 

alu2ID = ( ((OPID = ALU) + (OPID = ALUi))  

         ∙((rsID = wsEX1) + (rtID = wsEX1)∙re2ID)  

         ∙(wsEX1  0) 

         ∙( (OPEX1 = LW) + alu2EX1  ) 
         ) 

 
An ALU instruction uses ALU2 if its operands are not available by the end of ID. This occurs if 

the ALU instruction (in ID) uses the result of its immediately preceding instruction (in EX1) as a 

source, but the instruction will not produce its result until EX2/MEM. The two classes of 

instructions which do not produce a result until EX2/MEM are LW instructions and ALU 

instructions which use ALU2.   

 

Note that the feedback dependence of alu2ID on alu2EX1 means that a sequence of ALU 

instructions following a LW will continue to use ALU2 as long as each instruction uses the result 

of its predecessor. 

 

Problem M1.7.C Instruction Sequences Causing Stalls 

 

 

  Stall?  Explanation 
add r1, r2, r3 

lw  r4, 0(r1) 
No 

The add (in EX1) uses ALU1 and bypasses 

its result to the LW (in ID). 

lw  r1, 0(r2) 

add r3, r1, r4 

lw  r5, 0(r1) 
No 

The first LW (in EX2/MEM) bypasses its 

result to the add (in EX1) which will use 

ALU2, and also to the second LW (in ID). 

lw  r1, 0(r2) 

lw  r3, 0(r1) Yes 
The result of the first LW (in EX1) is not 

available in time for the second LW (in 

ID), so the second LW must stall. 
lw  r1, 0(r2) 

sw  r1, 0(r3) No 
The LW (in EX2/MEM) bypasses its result 

to the SW (in EX1) in time for it to store 

the data in EX2/MEM. 
lw  r1, 0(r2) 

add r3, r1, r4 

sw  r5, 0(r3) 
Yes 

The LW (in EX2/MEM) bypasses its result 

to the add (in EX1) which will use ALU2.  

But, the  result of the add (in EX1) is not 

available in time for the SW (in ID), so the 

SW must stall. 
lw  r1, 0(r2) 

add r3, r1, r4 
No 

The LW (in EX2/MEM) bypasses its result 

to the add (in EX1) which will use ALU2. 
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Note that the base address operand for both LW and SW must be available by the end of ID, but 

the data operand for SW must only be available by the end of EX1. 

 

 

Problem M1.7.D Stall Equation 

 

stallID = ( ((OPID = LW) + (OPID = SW))  

          ∙(rsID = wsEX1)  

          ∙(wsEX1  0) 
          ∙((OPEX1 = LW) + alu2EX1) 

          ) 
 

Since all instruction results are produced by the end of EX2/MEM, the operands for an 

instruction are always available by the end of EX1 even if it uses the result of its immediately 

preceding instruction as a source. 

 

The only stall condition is when the base address operand for a memory instruction is not 

available by the end of ID. This occurs if the memory instruction (in ID) uses the result of its 

immediately preceding instruction (in EX1) as its base address, but the instruction will not 

produce its result until EX2/MEM. The two classes of instructions which do not produce a result 

until EX2/MEM are LW instructions and ALU instructions which use ALU2. 

 

Note that ALU instructions never need to stall the pipeline. They either use ALU1 if their 

operands will be available by the end of ID, or ALU2 if their operands will be available by the 

end of EX1. 
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Problem M1.8: Processor Design (Short Yes/No Questions) 
 

Problem M1.8.A Interlock vs. Bypassing 

 

No. Data dependencies are preserved with either interlocks or bypassing, so the processors 

always generate the same results. Bypassing improves performance by eliminating stalls. 

 

 

Problem M1.8.B Delay Slot 

 

Yes. The instruction following a taken branch is executed on processor A, but killed on 

processor B so the processors can generate different results. 

 

 

Problem M1.8.C Structural Hazard 

 

No. Both processors retrieve the same data values. There is only a performance difference 

because processor A must stall an instruction fetch to allow a load instruction to access memory. 

 


