
Last updated:

03/10/2015

 1

Problem M2.0: Complex Pipelining Dependencies

I1: L.D F1, 0 (R1) ; F1 = *r1;
I2: MUL.D F2, F0, F2 ; F2 = F0*F2;
I3: ADD.D F1, F2, F2 ; F1 = F2 + F2;
I4: L.D F2, 0 (R2) ; F2 = *r2;
I5: ADD.D F3, F1, F2 ; F3 = F1 + F2;
I6: S.D F3, 0 (R3) ; *r3 = F3;
……

 Earlier (Older) Instruction

I1 I2 I3 I4 I5 I6

I1 -

I2 - -

I3 WAW RAW -

I4 - WAW/WAR WAR -

I5 - - RAW RAW -

I6 - - - - RAW -

Current

Instruction

Last updated:

03/10/2015

 2

Problem M2.1: Out-of-order Scheduling [? Hours]

 loop:

I1 L.D F2, 0(R1) ;load X(i)

I2 MUL.D F1, F2, F0 ;multiply a*X(i)

I3 L.D F3, 0(R2) ;load Y(i)

I4 ADD.D F3, F1, F3 ;add a*X(i)+Y(i)

I5 S.D F3, 0(R2) ;store Y(i)

I6 DADDUI R1, R1, 8 ;increment X index

I7 DADDUI R2, R2, 8 ;increment Y index

I8 DSGTUI R3, R1, 800 ;test if done

I9 BEQZ R3, loop ;loop if not done

Problem M2.1.A In-order using a scoreboard

Each loop takes 28 cycles. The bottleneck is the long latency of the FP functional units.

Instr.

Issued

Time

(cycles)

Functional Unit Status
Registers Reserved

for Writes Int Load (1)
Adder

(4)

Multiplier

(15)
WB

I1 0 F2 F2

 1 F2 F2

I2 2 F1 F1

I3 3 F3 F1 F1,F3

 4 F1 F3 F1,F3

 ...

 16 F1 F1

 17 F1 F1

I4 18 F3 F3

 ...

 21 F3 F3

 22 F3 F3

I5 23

I6 24 R1

I7 25 R2

I8 26 R3

I9 27

Table M2.1-1

Last updated:

03/10/2015

 3

Problem M2.1.B Out-of-order

The arrows show hazards that slow down the loop.Again, 28 cycles are required for each

iteration. Out-of-order issue doesn’t give any wins as we still must wait for the RAW hazard

between I1/I2, I2/I4 and I4/I5, the WAW hazard between I3/I4, as well as the WAR hazard

between I5/I7.

Time

Op Dest Src1 Src2
Decode → Issue Issued WB

I1 -1 0 1 L.D F2 R1

I2 0 2 17 MUL.D F1 F2 F0

I3 1 3 4 L.D F3 R2

I4 5 18 22 ADD.D F3 F1 F3

I5 6 23 S.D R2 F3

I6 7 8 DADDUI R1 R1

I7 24 25 DADDUI R2 R2

I8 25 26 DSGTUI R3 R1

I9 26 27 BEQZ R3

Table M2.1-2

Last updated:

03/10/2015

 4

Problem M2.1.C Register Renaming

Thanks to register re-renaming, we can eliminate the WAW hazard between I3/I4 and the WAR

hazard between I5/I7, and we can decode an instruction every cycle. Thus, instructions I7, I8,

and I9 can be issued without stalling on I5 and we can issue a loop every 9 cycles (and complete

the previous iteration of the loop every nine cycles). A fully pipelined multiplier is necessary to

allow a new multiply instruction to be issued every 9 cycles.

In reality, it turns out that the single-issue and single-writeback restrictions introduce structural

conflicts that don’t allow the loop to settle in a 9-cycle period. A rough simulation suggests that a

loop completes in a 10, 9, 8, 9, ... cycle pattern.

Time

Op Dest Src1 Src2
Decode → Issue Issued WB

I1 -1 0 1 L.D T0 R1

I2 0 2 17 MUL.D T1 T0 F0

I3 1 3 4 L.D T2 R2

I4 2 18 22 ADD.D T3 T1 T2

I5 3 23 S.D T3 R2

I6 4 5 DADDUI T4 R1

I7 5 6 DADDUI T5 R2

I8 6 7 DSGTUI T6 T4

I9 7 8 BEQZ T6

I1 8 9 10 L.D T7 T4

I2 9 11 26 MUL.D T8 T7 F0

I3 10 12 13 L.D T9 T5

I4 11 27 31 ADD.D T10 T8 T9

I5 12 32 S.D T10 T5

I6 13 14 DADDUI T11 T4

I7 14 15 DADDUI T12 T5

I8 15 16 DSGTUI T13 T11

I9 16 17 BEQZ T13

Table M2.1-3

Last updated:

03/10/2015

 5

Problem M2.2: Out-of-Order Scheduling [? Hours]

Problem M2.2.A

This question is similar to Problem M3.1.C with shorter latency for the FPU.

 Time

OP Dest Src1 Src2 Decode

ROB

Issued WB Committed

I1 -1 0 1 2 L.D T0 R2 -

I2 0 2 12 13 MUL.D T1 T0 F0

I3 1 13 15 16 ADD.D T2 T1 F0

I4 2 3 4 17 ADDI T3 R2 -

I5 3 4 5 18 L.D T4 T3 -

I6 4 6 16 19 MUL.D T5 T4 T4

I7 5 17 19 20 ADD.D T6 T5 T2

Table M2.2-1

Problem M2.2.B

(This is NOT a unified register file design. The register names (T0, T1, …etc) in the renaming

table refer to the ROB tags. Since we have a two-entry ROB, we should only use T0 and T1 for

the renaming.)

 Time

OP Dest Src1 Src2 Decode

ROB

Issued WB Committed

I1 -1 0 1 2 L.D T0 R2 -

I2 0 2 12 13 MUL.D T1 T0 F0

I3 3 13 15 16 ADD.D T0 T1 F0

I4 14 15 16 17 ADDI T1 R2 -

I5 17 18 19 20 L.D T0 T1 -

I6 18 20 30 31 MUL.D T1 T0 T0

I7 21 31 33 34 ADD.D T0 T1 F3

Table M2.2-2

Last updated:

03/10/2015

 6

Problem M2.3: Superscalar Processor [? Hours]

Problem M2.3.A

Fill in the renaming tags in the following two tables for the execution of instructions I1 to I10

Instr # Instruction Dest Src1 Src2

I1 LD F2, 0(R2) T1 R2 0

I2 LD F3, 0(R3) T2 R3 0

I3 FMUL F4, F2, F3 T3 T1 T2

I4 LD F2, 4(R2) T4 R2 4

I5 LD F3, 4(R3) T5 R3 4

I6 FMUL F5, F2, F3 T6 T4 T5

I7 FMUL F6, F4, F5 T7 T3 T6

I8 FADD F4, F4, F5 T8 T3 T6

I9 FMUL F6, F4, F5 T9 T8 T6

I10 FADD F1, F1, F6 T10 F1 T9

Renaming table

 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

R2

R3

F1 T10

F2 T1 T4

F3 T2 T5

F4 T3 T8

F5 T6

F6 T7 T9

Last updated:

03/10/2015

 7

Problem M2.3.B

I1 I2 I3 I4 I5

I6I7I8I9I10

I11 I12 I13 I14

Problem M2.3.C

See the following table.

Last updated:

03/10/2015

 8

Slot

Instruction

Cycle

instruction

entered

ROB

Argument 1 Argument 2 dst Cycle

dispatched

Cycle

written

back to

ROB

src1 cycle

available

Src2 cycle

available

dst reg

T1 LD F2, 0(R2) 1 C 1 R2 1 F2 2 6

T2 LD F3, 0(R3) 1 C 1 R3 1 F3 3 7

T3 FMUL F4, F2, F3 2 F2 6 F3 7 F4 8 12
T4 LD F2, 4(R2) 2 C 2 R2 2 F2 4 8

T5 LD F3, 4(R3) 3 C 3 R3 3 F3 5 9

T6 FMUL F5, F2, F3 3 F2 8 F3 9 F5 10 14

T7 FMUL F6, F4, F5 4 F4 12 F5 14 F6 15 19

T8 FADD F4, F4, F5 4 F4 12 F5 14 F4 15 18

T9 FMUL F6, F4, F5 5 F4 18 F5 14 F6 19 23

T10 FADD F1, F1, F6 5 F1 5 F6 23 F1 24 27

T11 ADD R2, R2, 8 6 R2 6 C 6 R2 7 9

T12 ADD R3, R3, 8 6 R3 6 C 6 R3 8 10

T13 ADD R4, R4, -1 7 R4 7 C 7 R4 9 11

T14 BNEZ R4, loop 7 R4 11 C Loop

T15 LD F2, 0(R2) 8 C 8 R2 9 F2 10 14

T16 LD F3, 0(R3) 8 C 8 R3 10 F3 11 15

T17 FMUL F4, F2, F3 9 F2 14 F3 15 F4 16 20

T18 LD F2, 4(R2) 9 C 9 R2 9 F2 12 16

T19 LD F3, 4(R3) 10 C 10 R3 10 F3 13 17

T20 FMUL F5, F2, F3 10 F2 16 F3 17 F5 18 22

T21 FMUL F6, F4, F5 11 F4 20 F5 22 F6 23 27

T22 FADD F4, F4, F5 11 F4 20 F5 22 F4 23 26

T23 FMUL F6, F4, F5 12 F4 26 F5 22 F6 27 31

T24 FADD F1, F1, F6 12 F1 27 F6 31 F1 32 35

T25 ADD R2, R2, 8 13 R2 13 C 13 R2 14 16

T26 ADD R3, R3, 8 13 R3 13 C 13 R3 15 17

T27 ADD R4, R4, -1 14 R4 14 C 14 R4 16 18

T28 BNEZ R4, loop 14 C Loop

T29

Last updated:

03/10/2015

 9

Problem M2.3.D

I5, I6, I7, I8, I9, I10 (see registers in blue in previous table)

27 cycles.

Problem M2.3.E

The behavior should repeat - should be obvious from the dependency graph (DAG) in Problem

M2.3.D.

Problem M2.3.F

Yes

An extra FP multiplier does not really help, because All FMUL instructions execute as soon as

operands are ready. But an extra memory port helps, because dispatch of I4, I5 was delayed

waiting for memory port.

Problem M2.3.G

The answer is 4 cycles.

Since the integer index/counter additions are relatively short, they can proceed to generate values

for different loop iterations and load all values from memory saving them to renamed registers.

After a large number of iterations, many iterations of the loop will be running in parallel. Hence,

the number of cycles is the latency of FMUL (3 + 1 cycle for write-back). In steady state, one

iteration can complete every 4 cycles.

Last updated:

03/10/2015

 10

Problem M2.4: Register Renaming and Static vs. Dynamic Scheduling

Problem M2.4.A Simple Pipeline

The following table shows the cycles in which instructions are decoded, issued, and written back.

It starts with cycle 0 in which the first load has been decoded (and thus has just entered the issue

stage). It is assumed that all instructions prior to the first load have already been completed.

Although not shown below, there is a buffer that holds instructions that are waiting in the issue

stage. Since there is no bypassing, an instruction must complete the write-back stage before a

dependent instruction can issue. For example, as shown in the table, the second load is issued in

cycle 2, executes for 2 cycles, and is written back in cycle 4. Thus, any instruction that depends

on the load can issue no earlier than cycle 5.

C
y
c
l
e

Decoded Instruction

(Enters Issue)

Issued Instruction

(Enters Execute)

WB Cycle For

Issued Instruction

0 L.S F0, 0(R1) Stall

1 L.S F1, 0(R2) L.S F0, 0(R1) 3

2 MUL.S F0, F0, F1 L.S F1, 0(R2) 4

3 L.S F2, 0(R3) Stall

4 L.S F3, 0(R4) Stall

5 MUL.S F2, F2, F3 MUL.S F0, F0, F1 9

6 ADD.S F0, F0, F2 L.S F2, 0(R3) 8

7 S.S F0, 0(R5) L.S F3, 0(R4) 9

8 Stall

9 Stall

10 MUL.S F2, F2, F3 14

11 Stall

12 Stall

13 Stall

14 Stall

15 ADD.S F0, F0, F2 17

16 Stall

17 Stall

18 S.S F0, 0(R5)

The number of cycles from the issue of the first load instruction until the issue of the final store

instruction is 18 cycles, inclusive.

Last updated:

03/10/2015

 11

Problem M2.4.B Static Scheduling

The new code sequence is given below. Originally there were two stall cycles after the second

load instruction. Now these cycles will be filled by the third and fourth load instructions. The

remaining instructions cannot be reordered due to data dependencies (except for the two multiply

instructions, although doing that would hurt performance).

 L.S F0, 0(R1)

 L.S F1, 0(R2)

 L.S F2, 0(R3)

 L.S F3, 0(R4)

 MUL.S F0, F0, F1

 MUL.S F2, F2, F3

 ADD.S F0, F0, F2

 S.S F0, 0(R5)

The following table shows the cycles in which the instructions in the above sequence are

decoded, issued, and written back.

C
y
c
l
e

Decoded Instruction

(Enters Issue)

Issued Instruction

(Enters Execute)

WB Cycle For

Issued Instruction

0 L.S F0, 0(R1) Stall

1 L.S F1, 0(R2) L.S F0, 0(R1) 3

2 L.S F2, 0(R3 L.S F1, 0(R2) 4

3 L.S F3, 0(R4) L.S F2, 0(R3) 5

4 MUL.S F0, F0, F1 L.S F3, 0(R4) 6

5 MUL.S F2, F2, F3 MUL.S F0, F0, F1 9

6 ADD.S F0, F0, F2 Stall

7 S.S F0, 0(R5) MUL.S F2, F2, F3 11

8 Stall

9 Stall

10 Stall

11 Stall

12 ADD.S F0, F0, F2 14

13 Stall

14 Stall

15 S.S F0, 0(R5)

The number of cycles from the issue of the first load instruction to the issue of the final store

instruction is 15 cycles, inclusive. Static scheduling has enabled us to reduce the execution time

of the sequence by 17%.

Last updated:

03/10/2015

 12

Problem M2.4.C Fewer Registers

The new code sequence using only two floating-point registers is shown below. It is assumed

that R6 holds the address of a memory location that can be used to store temporary values.

 L.S F0, 0(R1)

 L.S F1, 0(R2)

 MUL.S F0, F0, F1

 L.S F1, 0(R3)

 S.S F0, 0(R6)

 L.S F0, 0(R4)

 MUL.S F0, F0, F1

 L.S F1, 0(R6)

 ADD.S F0, F0, F1

 S.S F0, 0(R5)

The following table shows the cycles in which the instructions in the above sequence are

decoded, issued, and written back. For this problem, a store instruction is needed in the middle

of the instruction sequence in order to spill a register. Although not explicitly stated in the

problem, stores have the same latency as loads (two cycles), since they use the same functional

unit. Because the result of the store is not needed for several cycles after it completes (when the

load restores the spilled value), it would take a very long latency for store instructions in order to

delay the last load. We don’t have to worry about WAR hazards in the above sequence because

instructions are issued in-order. Note that we can no longer execute the four original loads in

sequence as in M3.4.B because of the lack of available registers. We can, however, execute the

third load before saving the intermediate value from the first MUL instruction.

Last updated:

03/10/2015

 13

C
y
c
l
e

Decoded Instruction

(Enters Issue)

Issued Instruction

(Enters Execute)

WB Cycle For

Issued Instruction

0 L.S F0, 0(R1) Stall

1 L.S F1, 0(R2) L.S F0, 0(R1) 3

2 MUL.S F0, F0, F1 L.S F1, 0(R2) 4

3 L.S F1, 0(R3) Stall

4 S.S F0, 0(R6) Stall

5 L.S F0, 0(R4) MUL.S F0, F0, F1 9

6 MUL.S F0, F0, F1 L.S F1, 0(R3) 8

7 L.S F1, 0(R6) Stall

8 ADD.S F0, F0, F1 Stall

9 S.S F0, 0(R5) Stall

10 S.S F0, 0(R6)

11 L.S F0, 0(R4) 13

12 Stall

13 Stall

14 MUL.S F0, F0, F1 18

15 L.S F1, 0(R6) 17

16 Stall

17 Stall

18 Stall

19 ADD.S F0, F0, F1 21

20 Stall

21 Stall

22 S.S F0, 0(R5)

The number of cycles from the issue of the first load instruction to the issue of the final store

instruction is 22 cycles, inclusive. The use of only two floating-point registers results in a severe

performance hit.

Last updated:

03/10/2015

 14

Problem M2.4.D Register renaming and dynamic scheduling

The table below shows the cycles in which the instructions in the original code sequence are

decoded, issued, and written back on the single-issue machine with register renaming and out-of-

order issue. The table also contains the rename table for the architectural registers.

C
y
c
l
e

Decoded/Renamed

Instruction (Enters

Issue)

Rename Issued Instruction

(Enters Execute)

WB Cycle

For Issued

Instruction
F0 F1 F2 F3

0 L.S T0, 0(R1) T0 Stall

1 L.S T1, 0(R2) T0 T1 L.S T0, 0(R1) 3

2 MUL.S T2, T0, T1 T2 T1 L.S T1, 0(R2) 4

3 L.S T3, 0(R3) T2 T1 T3 Stall

4 L.S T4, 0(R4) T2 T1 T3 T4 L.S T3, 0(R3) 6

5 MUL.S T5, T3, T4 T2 T1 T5 T4 MUL.S T2, T0, T1 9

6 ADD.S T6, T2, T5 T6 T1 T5 T4 L.S T4, 0(R4) 8

7 S.S T6, 0(R5) T6 T1 T5 T4 Stall

8 Stall

9 MUL.S T5, T3, T4 13

10 Stall

11 Stall

12 Stall

13 Stall

14 ADD.S T6, T2, T5 16

15 Stall

16 Stall

17 S.S T6, 0(R5)

The number of cycles from the issue of the first load instruction to the issue of the final store

instruction is 17 cycles, inclusive. This is one cycle better than executing this code on an in-order

machine but not quite as good as the performance of the optimized code in M2.4.B, which only

required 15 cycles. The difference in performance between the statically scheduled code and the

dynamically scheduled code can be attributed to the fact that only a single instruction can be

decoded at a time, which limits the hardware’s ability to find independent instructions to issue.

The optimized version of the code from M2.4.B executing on this machine would not improve in

performance over executing on an in-order machine – it would still take 15 cycles.

Note, that in cycle 5, we would get better performance if we issued the final load instruction

rather than the MUL instruction. The machine doesn’t know that, so it issues the instruction that

entered the ROB first.

Problem M2.4.E Effect of Register Spills

Last updated:

03/10/2015

 15

The table below shows the cycles in which the instructions in the original code sequence are

decoded, issued, and written back on the single-issue machine with register renaming and out-of-

order issue.

C
y
c
l
e

Decoded/Renamed

Instruction (Enters

Issue)

Rename Issued Instruction

(Enters Execute)

WB Cycle

For Issued

Instruction
F0 F1

0 L.S T0, 0(R1) T0 Stall

1 L.S T1, 0(R2) T0 T1 L.S T0, 0(R1) 3

2 MUL.S T2, T0, T1 T2 T1 L.S T1, 0(R2) 4

3 L.S T3, 0(R3) T2 T3 Stall

4 S.S T2, 0(R6) T2 T3 L.S T3, 0(R3) 6

5 L.S T4, 0(R4) T4 T3 MUL.S T2, T0, T1 9

6 MUL.S T5, T4, T3 T5 T3 Stall

7 L.S T6, 0(R6) T5 T6 Stall

8 ADD.S T7, T5, T6 T7 T6 Stall

9 S.S T7, 0(R5) T7 T6 Stall

10 S.S T2, 0(R6) 12

11 L.S T4, 0(R4) 13

12 L.S T6, 0(R6) 14

13 Stall

14 MUL.S T5, T4, T3 18

15 Stall

16 Stall

17 Stall

18 Stall

19 ADD.S T7, T5, T6 21

20 Stall

21 Stall

22 S.S T7, 0(R5) 24

It now takes 22 cycles between issue of the first load instruction and issue of the last store

instruction. That is the same performance as M2.4.C, and much worse than M2.4.D.

We managed to execute two instructions out of order, but we still couldn’t beat the in-order

performance. The problem lies with the fact that we had to wait for the first store to issue before

we could continue with the program. This is directly linked to having only two registers, thus

having to store intermediate values.

Last updated:

03/10/2015

 16

Problem M2.5: Register Renaming Schemes

Problem M2.5.A Finding Operands: Original ROB scheme

Instruction Src1 value

Regfile, ROB,

rename table,

or instruction? Src2 value

Regfile, ROB,

rename table, or

instruction?

sub r5,r1,r3 1 Regfile t2 Rename table

addi r6,r2,4 2 Regfile 4 Instruction

andi r7,r4,3 4 ROB 3 Instruction

Problem M2.5.B Finding Operands: Future File Scheme

A source register operand for an instruction I can be in one of the following three possible states.

1. It can be produced by a previous instruction that has not yet completed, in which case I

will get the tag from the rename table.

2. It can be produced by a previous instruction that has completed execution but has not yet

written back to the register file. However, the previous instruction will have written the

value to the future file in this case, so I can obtain the value from that structure.

3. It can be produced by a previous instruction that has committed its value to the register

file, in which case I can simply read the value from the regfile.

None of the above scenarios requires I to fetch an operand from the ROB.

Problem M2.5.C Future File Operation

An example code sequence is:

LD R2, 0(R1)

ADDI R3, R2, 1

SUB R4, R3, R5

ADD R3, R4, R6

An instruction result will be written to the ROB but not the future file if a subsequent instruction

has been decoded and writes to the same destination register. To illustrate with the given

example, since instruction decode occurs in order, the ADD instruction will be decoded after the

ADDI instruction. Thus, the entry for R3 in the rename table will contain a tag for the ADD

instruction after all of the above instructions have been decoded. Now suppose that the ADDI

instruction completes execution after the ADD instruction is decoded. Because the tag for R3 will

not match the tag for the ADDI instruction, the result of that instruction will not be written back

to the future file, but it will be written back to the ROB.

