
 Problem M3.2: Branch Prediction [? Hours]

This problem will investigate the effects of adding global history bits to a standard branch
prediction mechanism. In this problem assume that the MIPS ISA has no delay slots.

Throughout this problem we will be working with the following program.

loop:

LW R4, 0(R3)
 ADDI R3, R3, 4
 SUBI R1, R1, 1
b1:

BEQZ R4, b2
 ADDI R2, R2, 1
b2:

BNEZ R1, loop

Assume the initial value of R1 is n (n>0).
Assume the initial value of R2 is 0 (R2 holds the result of the program).
Assume the initial value of R3 is p (a pointer to the beginning of an array of 32-bit integers).

All branch prediction schemes in this problem will be based on those covered in the lecture. We
will be using a 2-bit predictor state machine, as shown below.

00 10

01

11
taken taken

taken

taken
taken

taken
taken

taken

Figure M3.2-A: BP bits state diagram

In state 1X we will guess not taken. In state 0X we will guess taken.

Assume that b1 and b2 do not conflict in the BHT.

Problem M3.2.A Program

What does the program compute? That is, what does R2 contain when we exit the loop?

Problem M3.2.B 2-bit branch prediction

Now we will investigate how well our standard 2-bit branch predictor performs. Assume the
inputs to the program are n=8 and p[0] = 1, p[1] = 0, p[2] = 1, p[3] = 0,… etc. That is the array
elements exhibit an alternating pattern of 1's and 0's. Fill out Table M3.2-1 (note that the first
few lines are filled out for you). What is the number of mispredicts?

Table M3.2-1 contains an entry for every branch (either b1 or b2) that is executed. The Branch
Predictor (BP) bits in the table are the bits from the BHT. For each branch, check the
corresponding BP bits (indicated by the bold entries in the examples) to make a prediction, then
update the BP bits in the following entry (indicated by the italic entries in the examples).

Problem M3.2.C Branch prediction with one global history bit

Now we add a global history bit to the branch predictor, as described in the lecture. Fill out Table
M3.2-2, and again give the total number of mispredicts you get when running the program with
the same inputs.

Problem M3.2.D Branch prediction with two global history bits

Now we add a second global history bit. Fill out Table M3.6-3. Again, compute the number of
mispredicts you get for the same input.

Problem M3.2.E Analysis I

Compare your results from problems M3.2.B, M3.2.C and M3.2.D. When do most of the
mispredicts occur in each case (at the beginning, periodically, at the end, etc.)? What does this
tell you about global history bits in general? For a large n, what prediction scheme will work best?
Explain briefly.

Problem M3.2.F Analysis II

The input we worked with in this problem is quite regular. How would you expect things to
change if the inputs were random (each array element were equally probable to be 0 or 1). Of the
three branch predictors we looked at in this problem, which one will perform best for this type of
input? Is your answer the same for large and small n?

What does this tell you about additional history bits: when are they useful and when do they hurt
you?

System
State

Branch Predictor Branch Behavior

PC R3/R4 b1 bits b2 bits Predicted Actual

b1 4/1 10 10 N N
b2 4/1 10 10 N T
b1 8/0 10 11 N T
b2 8/0 11 11 N T
b1 12/1 11 00
b2 12/1
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2

Table M3.2-1

System
State

Branch Predictor Behavior

PC R3/R4 history b1 bits b2 bits
 bit set 0 set 1 set 0 set 1 Predicted Actual

b1 4/1 1 10 10 10 10 N N
b2 4/1 0 10 10 10 10 N T
b1 8/0 1 10 10 11 10
b2 8/0
b1 12/1
b2 12/1
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2

Table M3.2-2

System
State

Branch Predictor Behavior

PC R3/R4 history b1 bits b2 bits
 bits set 00 set 01 set 10 set 11 set 00 set 01 set 10 set 11 Predicted Actual

b1 4/1 11 10 10 10 10 10 10 10 10 N N
b2 4/1 01 10 10 10 10 10 10 10 10 N T
b1 8/0 10 10 10 10 10 10 11 10 10
b2 8/0
b1 12/1
b2 12/1
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2

Table M3.2-3

1-bit global branch
history register

Taken/¬Taken?

2 2-bit BHT entries

Problem M3.3: Branch Prediction [? Hours]

Consider a CPU with a pipeline pictured on
the right. The first stage of the pipeline
fetches the instruction. The second stage of
the pipeline recognizes branch instructions
and performs branch prediction using a
BHT. If the branch is predicted to be taken,
it forwards the decoded target of the branch
to the first stage, and kills the instruction in
the first stage. The fifth stage of the
pipeline reads the registers and resolves the correct target of the branch. If the branch target
was mispredicted, the correct target is forwarded to the first stage, and all instructions in between
are killed. The remaining stages finish the computation of the instruction.

The processor uses a single global
history bit to remember whether the
last branch was taken or not. There is
only one line in the BHT, so the
address of the branch instruction is
not used for selecting the proper table
entry. Each entry in the table is
labeled as TW for Take Wrong, TR
for Take Right, NTW for do Not Take
Wrong and NTR for do Not Take
Right, as pictured below. The setup of
the BHT predictor is illustrated on the
right.

S1 Fetch

S2

S3

S4

 Branch Address Calc

S5

 Register File Read/Branch Resolve

Remainder of execute pipeline

NTW

taken
¬ taken

taken

taken

taken
NTR TR

TW

¬ taken

¬ taken ¬ taken

In this question we will study execution of the following loop. This processor has no branch
delay slots. You should assume that branch at address 1 is never taken, and that the branch at
address 5 is always taken.

Instruction
Label

Address Instruction

LOOP 1 BEQ R2, R5, NEXT
 2 ADD R4, R4, 1
 3 MULT R3, R3, R4

NEXT 4 MULT R2, R2, 3847
 5 BNEZ R4, LOOP
 6 NOP
 7 NOP
 8 NOP
 9 NOP
 10 NOP

You should also disregard any possible structural hazards. The processor always runs at full
speed, and there are no pipeline bubbles (except for those created by the branches).

Problem M3.3.A

Now we study how well the history bit works, when it is being updated by the fifth stage of the
processor. The fifth stage also updates the BHT based on the result of a branch. The same BHT
entry that was used to make the original prediction is updated.

Please fill in the table below.

You should fetch a new instruction every cycle. You should fill in the Branch Prediction and the
Prediction Correct? columns for branch instructions only (note that the branch prediction
actually happens one cycle after the instruction is fetched). You should fill in the Branch
Predictor State columns whenever they are updated. Please circle the instructions which will
be committed.

The first three committing instructions fetched have been filled in for you. You should enter
enough instructions to add 8 more committing instructions. You may not need all the rows in
the table.

Branch Predictor State
Cycle

Instruction

Fetched

Branch

Prediction

Prediction
Correct?

Branch
History

Last Branch
Taken Predictor

Last Branch Not
Taken Predictor

0 - - T TW TW
1 1 T N
2 2
3 4
4 5 T Y
5 6 NT NTR
6 2
7 3
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Problem M3.3.B

Now we study how well the branch history bit works, when it is being updated speculatively
by the second stage of the processor. If the branch is mispredicted, the fifth stage sets the branch
history bit to the correct value. Finally, the fifth stage also updates the BHT based on the result
of a branch. The same BHT entry that was used to make the original prediction is updated.

Please fill in the table below. The notation in the table should be same as in M3.3.A.

The first three committing instructions fetched have been filled in for you. You should enter
enough instructions to add 8 more committing instructions. You may not need all the rows in
the table.

Branch Predictor State
Cycle

Instruction

Fetched

Branch

Prediction

Prediction
Correct?

Branch
History

Last Branch
Taken Predictor

Last Branch Not
Taken Predictor

0 - - T TW TW
1 1 T N
2 2 T
3 4
4 5 T Y
5 6 NT NTR
6 2
7 3
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Problem M3.4: Branch Prediction [? Hours]

Consider the fetch pipeline of UltraSparc-III processor. In this part, we evaluate the impact of
branch prediction on the processor’s performance. There are no branch delay slots.

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

Branch
Target
Address
Known

Branch
Direction &
Jump
Register
Target
Known

Here is a table to clarify when the direction and the target of a branch/jump is known.

Instruction Taken known?
(At the end of)

Target known?
(At the end of)

BEQZ/BNEZ R B
J B (always taken) B

JR B (always taken) R

Problem M3.4.A

As a first step, we add a branch history table (BHT) in the fetch pipeline as shown on the next
page. In the B stage (Branch Address Calc/Begin Decode), a conditional branch instruction
(BEQZ/BNEZ) looks up the BHT, but an unconditional jump does not. If a branch is predicted to
be taken, some of the instructions are flushed and the PC is redirected to the calculated branch
target address. The instruction at PC+4 is fetched by default unless PC is redirected by an older
instruction.

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

BHT

PC is redirected
if a branch
is predicted to
be taken by BHT.

For each of the following cases, write down the number of pipeline bubbles caused by a branch
or jump. If there is no bubble, you can simply put 0. (Y = yes, N= no)

 Predicted
Taken?

Actually
Taken? Pipeline bubbles

Y Y
Y N
N Y

BEQZ/
BNEZ

N N
J Always taken

(No lookup) Y
JR Always taken

(No lookup) Y

Problem M3.4.B

To improve the branch performance further, we decide to add a branch target buffer (BTB) as
well. Here is a description for the operation of the BTB.

1. The BTB holds entry_PC, target_PC pairs for jumps and branches predicted to be taken.
Assume that the target_PC predicted by the BTB is always correct for this question. (Yet
the direction still might be wrong.)

2. The BTB is looked up every cycle. If there is a match with the current PC, PC is
redirected to the target_PC predicted by the BTB (unless PC is redirected by an older
instruction); if not, it is set to PC+4.

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

BTB

BHT

BHT in later
pipeline stage
corrects when
BTB misses a
predicted
taken branch.

Fill out the following table of the number of pipeline bubbles (only for conditional branches).

BTB Hit?
(BHT)

Predicted
Taken?

Actually
Taken? Pipeline bubbles

Y Y Y
Y Y N
Y N Y Cannot occur
Y N N Cannot occur
N Y Y
N Y N
N N Y

Conditional
Branches

N N N

Problem M3.4.C

We will be working on the following program:

ADDRESS INSTRUCTION
0x1000 BR1: BEQZ R5, NEXT ; always taken
0x1004 ADDI R4, R4, #4
0x1008 MULT R3, R5, R3
0x100C ST R3, 0(R4)
0x1010 SUBI R5, R5, #1
0x1014 NEXT: ADDI R1, R1, #1
0x1018 SLTI R2, R1, 100 ; repeat 100 times
0x101C BR2: BNEZ R2, BR1
0x1020 NOP
0x1024 NOP
0x1028 NOP

Given a snapshot of the BTB and the BHT states on entry to the loop, fill in the timing diagram
for one iteration (plus two instructions) on the next page. (Don’t worry about the stages beyond
the E stage.) We assume the following for this question.

1. The initial values of R5 and R1 are zero, so BR1 is always taken.
2. We disregard any possible structural hazards. There are no pipeline bubbles (except for

those created by branches.)
3. We fetch only one instruction per cycle.
4. We use a two-bit predictor whose state diagram is shown below. In state 1X we will guess

not taken; in state 0X we will guess taken. BR1 and BR2 do not conflict in the BHT.

00 10

01

11
taken taken

taken

taken
taken

taken
taken

taken

5. We use a two-entry fully-associative BTB with the LRU replacement policy.

Initial Snapshot

1 0x10000x101C
Entry PC

Predicted
Target PC

BTB

...

00

...

11

...

BHT

BR1

BR2

(Valid)
V

T

im
in

g
di

ag
ra

m
 fo

r
M

3.
4.

C

TI
M

E
→

A

dd
re

ss

In
st

ru
ct

io
n

1
2

3
4

5
6

7
8

9
10

11

12
13

14
15

16
17

18
19

20
21

22
23

0
x
1
0
0
0

B
E
Q
Z

R
5
,

N
E
X
T

A
P

F
B

I
J

R
E

0
x
1
0
1
4

A
D
D
I

R
1
,

R
1
,

#
1

0
x
1
0
1
8

S
L
T
I

R
2
,

R
1
,

1
0
0

0
x
1
0
1
C

B
N
E
Z

R
2
,

L
O
O
P

0
x
1
0
0
0

B
E
Q
Z

R
5
,

N
E
X
T

0
x
1
0
1
4

A
D
D
I

R
1
,

R
1
,

#
1

Problem M3.4.D

What will be the BTB and BHT states right after the 6 instructions in Question 9 have updated
the branch predictors’ states? Fill in (1) the BTB and (2) the entries corresponding to BR1 and
BR2 in the BHT.

Entry PC
Predicted
Target PC

BTB

...

...

...

BHT

BR1

BR2

(Valid)
V

