
Last updated:

04/15/2015

Problem M4.3: Sequential Consistency [? Hours]

Problem M4.3.A

Can X hold value of 4 after all three threads have completed? Please explain briefly.

Yes / No

C1-C4, B1-B3, A1-A4, B4- B6

Problem M4.3.B

Can X hold value of 5 after all three threads have completed?

Yes / No

All results must be even!

Problem M4.3.C

Can X hold value of 6 after all three threads have completed?

Yes / No

All of C, All of A, All of B

Problem M4.3.D

For this particular program, can a processor that reorders instructions but follows local

dependencies produce an answer that cannot be produced under the SC model?

Yes / No

All stores/loads must be done in order because they’re to the same address, so no new results are

possible.

Last updated:

04/15/2015

Problem M4.4: Synchronization Primitives [? Hours]

The mechanism here is as follows: LdR requests READ access to the address, StC requests

WRITE access to the address. Many students suggested that LdR can request WRITE access to

the address right away, which could lead to live lock.

Problem M4.4.A

Describe under what events the local reservation for an address is cleared.

If another processor requests Write access to the same cache line.

Problem M4.4.B

Is it possible to implement LdR/StC pair in such a way that the memory bus is not affected, i.e.,

unaware of the addition of these new instructions? Explain

Yes. Writeback [P2C_Req(a) S] and [C2P_Req(a) S] are sent normally. The “reservation” is

local (probably in the snooper or in the cache, though that might take too much resources – there

are very few reservations needed at the same time for any processor).

Problem M4.4.C

Give two reasons why the LdR/StC pair of instructions is preferable over atomic read-test-modify

instructions such as the TEST&SET instruction.

1. Bus doesn’t need to be aware of them.

2. Everything is local.

3. No ping-pong.

4. No extra hardware (tied to 1)

Problem M4.4.D

LdR/StC pair of instructions were conceived in the context of snoopy busses. Do these

instructions make sense in our directory-based system in Handout #12? Do they still offer an

advantage over atomic read-test-modify instructions in a directory-based system? Please explain.

No – our bus invalidates before transitioning from S to M. In general, maybe.

Last updated:

04/15/2015

Problem M4.5: Implementing Directories

Problem M4.5.A

Overhead for a 4-processor system: 4 bits / 32 bytes = 4 / (32 * 8) = 1/64

Overhead for a 64-processor system: 64 bits / 32 bytes = 64 / (32 * 8) = 1/4

Problem M4.5.B

Sequence 1 bit-vector scheme

of invalidate-requests

single-sharer scheme

of invalidate-requests

Processor #0 reads B 0 0

Processor #1 reads B 0 1

Processor #0 reads B 0 1

For the bit-vector scheme: No invalidate-requests are sent.

For the single-sharer scheme:

1 invalidate-request is sent to P0 when P1 reads B.

1 invalidate-request is sent to P1 when P0 reads B the second time.

Sequence 2 bit-vector scheme

of invalidate-requests

single-sharer scheme

of invalidate-requests

Processor #0 reads B 0 0

Processor #1 reads B 0 1

Processor #2 writes B 2 1

For the bit-vector scheme:

1 invalidate-request is sent to each shared processor (P0 and P1) when P2 writes B.

-> 2 invalidate-requests are sent.

For the single-sharer scheme:

1 invalidate-request is sent to P0 when P1 reads B.

1 invalidate-request is sent to the only sharer (P1) when P2 writes B.

Last updated:

04/15/2015

Problem M4.5.C

Sequence 1 global-bit scheme

of invalidate-requests

Processor #0 reads B 0

Processor #1 reads B 0

Processor #0 reads B 0

For the global-bit scheme: No invalidate-requests are sent.

Sequence 2 global-bit scheme

of invalidate-requests

Processor #0 reads B 0

Processor #1 reads B 0

Processor #2 writes B 64

For the global-bit scheme:

1 invalidate-request is sent to each of the 64 processors because the global bit is set when P2

writes B. -> 64 invalidate-requests are sent.

Note: If the protocol is optimized, no invalidate-request would be sent to P2 and the number of

invalidate-requests would be 63 instead of 64.

Last updated:

04/15/2015

Problem M4.6: Tracing the Directory-based Protocol [? Hours]

Processor A Processor B Processor C

A1: ST X, 1 B1: R := LD X C1: ST X, 6

A2: R := LD X B2: R := ADD R, 1 C2: R := LD X

A3: R := ADD R, R B3: ST X, R C3: R := ADD R, R

A4: ST X, R B4: R:= LD X C4: ST X, R

 B5: R := ADD R, R

 B6: ST X, R

Problem M4.6.A

Processor A Processor B Processor C

Ins EO Messages Ins EO Messages Ins EO Messages

A1 1
<M,A,Req,x,M>

<A,M,Rep,x,I,M,0>
B1 4

<M,B,Req,x,S>

<A,M,Req,x,S>

<M,A,Rep,x,M,S,2>

<B,M,Rep,x,I,S,2>

C1 8

<M,C,Req,x,M>

<B,M,Req,x,I>

<M,B,Rep,x,M,I,6>

<C,M,Rep,x,I,M,6>

A2 2 B3 5

<M,B,Req,x,M>

<A,M,Req,x,I>

<M,A,Rep,x,S,I,->

<B,M,Rep,x,S,M,->

C2 9

A4 3 B4 6 C4 10

 B6 7

How many messages are generated? 14

Last updated:

04/15/2015

Problem M4.6.B

Processor A Processor B Processor C

Ins EO Messages Ins EO Messages Ins EO Messages

A1 5

<M,A,Req,x,M>

<B,M,Req,x,I>

<M,B,Rep,x,M,I,2>

<A,M,Rep,x,I,M,2>

B1 1
<M,B,Req,x,S>

<B,M,Rep,x,I,S,0>
C1 8

<M,C,Req,x,M>

<A,M,Req,x,I>

<M,A,Rep,x,M,I,2>

<C,M,Rep,x,I,M,2>

A2 6 B3 2
<M,B,Req,x,M>

<B,M,Rep,x,S,M,->
C2 9

A4 7 B4 3 C4 10

 B6 4

How many messages are generated? 12

Problem M4.6.C

Can the number of messages in Problem M4.6.B be decreased by using voluntary responses?

Explain.

Yes – all the requests can be eliminated using voluntary rules. Total number of messages would

be 6 instead of 12.

Last updated:

04/15/2015

Problem M4.6.D

Processor A Processor B Processor C

Ins EO Messages Ins EO Messages Ins EO Messages

A1 1
<M,A,Req,x,M>

<A,M,Rep,x,I,M,0>
B1 2

<M,B,Req,x,S>

<A,M,Req,x,S>

<M,A,Rep,x,M,S,1>

<B,M,Rep,x,I,S,1>

C1 3

<M,C,Req,x,M>

<A,M,Req,x,I>

<B,M,Req,x,I>

<M,A,Rep,x,S,I>

<M,B,Rep,x,S,I>

<C,M,Rep,x,I,M,1>

A2 4

<M,A,Req,x,S>

<C,M,Req,x,S>

<M,C,Rep,x,M,S,6>

<A,M,Rep,x,S,6>

B3 5

<M,B,Req,x,M>

<A,M,Req,x,I>

<C,M,Req,x,I>

<M,A,Rep,x,S,I>

<M,C,Rep,x,S,I>

<B,M,Rep,x,I,M,6>

C2 6

<M,C,Req,x,S>

<B,M,Req,x,S>

<M,B,Rep,x,M,S,2>

<C,M,Rep,x,I,S,2>

A4 7

<M,A,Req,x,M>

<B,M,Req,x,I>

<C,M,Req,x,I>

<M,B,Rep,x,S,I>

<M,C,Rep,x,S,I>

<A,M,Rep,x,I,M,2>

B4 8

<M,B,Req,x,S>

<A,M,Req,x,S>

<M,A,Rep,x,M,S,12>

<B,M,Rep,x,S,12>

C4 9

<M,C,Req,x,M>

<A,M,Req,x,I>

<B,M,Req,x,I>

<M,A,Rep,x,S,I>

<M,B,Rep,x,S,I>

<C,M,Rep,x,I,M,12>

 B6 10

<M,B,Req,x,M>

<C,M,Req,x,I>

<M,C,Rep,x,M,I,4>

<B,M,Rep,x,I,M,4>

How many messages are generated? 46

Last updated:

04/15/2015

Problem M4.7: Snoopy Cache Coherent Shared Memory [? Hours]

Problem M4.7.A Where in the Memory System is the Current Value

See Table M4.7-1, M4.7-2 and M4.7-3.

Problem M4.7.B MBus Cache Block State Transition Table

See Table M4.7-1, M4.7-2 and M4.7-3.

Problem M4.7.C Adding atomic memory operations to MBus

Imagine a dual processor machine with CPUs A and B. Explain the difficulty of CPU A

performing fetch-and-increment(x) when the most recent copy of x is cleanExclusive in CPU B’s

cache. You may wish to illustrate the problem with a short sequence of events at processor A

and B.

The problem is that CPU B can read the value in location x while CPU A is performing the fetch-

and-increment operation—which violates the idea of fetch-and-increment being atomic. For

example, consider the following sequence of events and corresponding state transitions and

operations:

Event CPU A CPU B

1 Read(x); I->CS; send CR

2 Snoop CR; CE->CS

3 Read(x)

4 Write(x); CS->OE; send CI

5 Snoop CI; CS->I

Fill in the rest of the table below as before, indicating state, next state, where the block in

question may reside, and the CPU A and MBus transactions that would need to occur atomically

to implement a fetch-and-increment on processor A.

State other

cached

ops actions by this

cache

next

state

this

cache

other

caches

mem

Invalid yes read CR CS   

cleanShared yes write CI OE 

Last updated:

04/15/2015

initial state other

cached

ops actions by this

cache

final

state

this

cache

other

caches

mem

Invalid no none none I 

 CPU read CR CE  

 CPU write CRI OE 

 replace none Impossible

 CR none I  

 CRI none I 

 CI none Impossible

 WR none Impossible

 CWI none I 

Invalid yes none I  

 CPU read CS   

 CPU write OE 

 replace same Impossible

 CR as I  

 CRI above I 

 CI I 

 WR I  

 CWI I 

initial state other

cached

ops Actions by this

cache

final

state

this

cache

other

caches

mem

cleanExclusive no none none CE  

 CPU read none CE  

 CPU write none OE 

 replace none I 

 CR none or CCI
1
 CS   

 CRI none or CCI
1
 I 

 CI none Impossible

 WR none Impossible

 CWI none I 

Table M4.7-1

1
 Some Sun MBus implementations perform CCI from the cleanExclusive state, while others do not. We accept

both answers.

Last updated:

04/15/2015

initial state other

cached

ops Actions by this

cache

final

state

this

cache

other

caches

mem

ownedExclusive no none none OE 

 CPU read none OE 

 CPU write none OE 

 replace WR I 

 CR CCI OS  

 CRI CCI I 

 CI none Impossible

 WR none Impossible

 CWI none I 

initial state other

cached

ops actions by this

cache

final

state

this

cache

other

caches

mem

cleanShared no none none CS  

 CPU read none CS  

 CPU write CI OE 

 replace none I 

 CR none
2
 CS   

 CRI none I 

 CI none Impossible

 WR none Impossible

 CWI none I 

cleanShared yes none CS   

 CPU read CS   

 CPU write OE 

 replace same I  

 CR as CS   

 CRI above I 

 CI I 

 WR CS   

 CWI I 

Table M4.7-2

2
 Some Sun MBus implementations perform CCI from the cleanShared state. However, in these implementations,

requests are not broadcast on a bus, but are handled by a central system controller. The system controller arbitrates

which cache with a cleanShared copy provides the data. Unless an explanation is provided, CCI is not a valid

response from this state.

Last updated:

04/15/2015

initial state other

cached

ops actions by this

cache

final

state

this

cache

other

caches

mem

ownedShared no none none OS 

 CPU read none OS 

 CPU write CI OE 

 replace WR I 

 CR CCI OS  

 CRI CCI I 

 CI none Impossible

 WR none Impossible

 CWI none I 

ownedShared yes none OS  

 CPU read OS  

 CPU write OE 

 replace same I  

 CR as OS  

 CRI above I 

 CI I 

 WR Impossible

 CWI I 

Table M4.7-3

Last updated:

04/15/2015

Problem M4.8: Snoopy Cache Coherent Shared Memory [? Hours]

Problem M4.8.A

Fill out the state transition table for the new COS state:

initial state other

cached

ops actions by this

cache

final

state

COS yes none none COS

 CPU read none COS

 CPU write CI OE

 replace none I

 CR CCI COS

 CRI CCI I

 CI none I

 WR

Or:

Impossible

 none COS

 CWI none I

Note that WR is not necessary during replace because the line is clean.

Also, an incoming WR operations is Impossible because other caches can only have the block in

the CS state, but (none, COS) was also accepted as a correct answer.

Problem M4.8.B

cache transaction

source

for data

state for data block B

cache 1 cache 2 cache 3 cache 4

0. initial state — I I I I

1. cache 1 reads data block B memory CE I I I

2. cache 2 reads data block B CCI COS CS I I

3. cache 3 reads data block B CCI COS CS CS I

4. cache 1 replaces block B - I CS CS I

5.cache 4 reads data block B memory I CS CS CS

Problem M4.8.C

When the CPU does a write, it can change a cache block from CE to OE with no bus operation,

but to transition from COS to OE it must first broadcast a CI on the bus to invalidate any shared

(CS) copies of the block.

Last updated:

04/15/2015

Problem M4.9: Snoopy Caches [? Hours]

Problem M4.9.A

Hint: Consider how much processing can be performed safely on the following sequences after

an invalidation request for x has been received

Ld x; Ld y; Ld x

Ld x; St y; Ld x

The snooper can allow the CPU to continue executing normally, but cannot allow any new

messages from the outside to enter the caches until AFTER the caches cleared their content.

Problem M4.9.B

Consider a situation when L2 has a cache line marked Ex and a ShReq comes on the bus for this

cache line. What should the snooper do in this case, and why?

Here the snooper MUST respond RETRY and get the cache to write back the value.

Problem M4.9.C

When an ExReq message is seen by the snooper and there is a Wb message in the C2M queue

waiting to be sent, the snooper replies retry. If the cache line is about to be modified by another

processor, why is it important to first write back the already modified cache line? Does your

answer change if cache lines are restricted to be one word? Explain.

Because otherwise the Wb can happen out of order with some other memory operation and SC

could be broken.

Last updated:

04/15/2015

Problem M4.10: Relaxed Memory Models [? Hours]

We will study the interaction between two processes on different processors on such a system:

P1 P2

P1.1: LW R2, 0(R8) P2.1: LW R4, 0(R9)

P1.2: SW R2, 0(R9) P2.2: SW R5, 0(R8)

P1.3: LW R3, 0(R8) P2.3: SW R4, 0(R8)

Problem M4.10.A

Memory contents

M[R8] 7

M[R9] 6

Yes No

P1.1 P2.1 P1.2 P1.3 P2.2 P2.3

Problem M4.10.B

memory Contents

M[R8] 6

M[R9] 7

Yes No

The result would require that the memory contents don’t change. Since each thread reads a data

value and writes it to another address, this simply impossible here.

Problem M4.10.C

Is it possible for M[R8] to hold 0?

Yes No

The only way that M[R8] could end up with 0 is if P2.3 is completed before P2.1 and P2.2.

This violates Weak Ordering, so it is not possible.

Last updated:

04/15/2015

Now consider the same program, but with two MEMBAR instructions.

P1 P2

P1.1: LW R2, 0(R8) P2.1: LW R4, 0(R9)

P1.2: SW R2, 0(R9) MEMBARRW

 MEMBARWR P2.2: SW R5, 0(R8)

P1.3: LW R3, 0(R8) P2.3: SW R4, 0(R8)

We want to compare execution of the two programs on our system.

Here the intention was to keep the starting conditions the same as in first three questions, and ask

about the final conditions. This wasn’t clear, so we accepted both solutions. The yes/no

answers don’t actually change, but Questions 11 for 12 become simpler.

Problem M4.10.D

If both M[R8] and M[R9] contain 6, is it possible for R3 to hold 8?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

Following sequence works with and without MEMBAR instructions:

P1.1 -> P1.2 -> P2.1 -> P2.2 -> P1.3 -> P2.3

Problem M4.10.E

If both M[R8] and M[R9] contain 7, is it possible for R3 to hold 6?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

If M[R8] and M[R9] are to end up with 7, we have to execute P2.3 before we execute P1.1 Since

P1.3 has to come after P1.1 (Weak Ordering), R3, has to end up with 7 not 6.

Last updated:

04/15/2015

Problem M4.10.F

Is it possible for both M[R8] and M[R9] to hold 8?

Without MEMBAR instructions? Yes No

P2.2 P1.1 P1.2 P2.1 P2.3 P1.3

With MEMBAR instructions? Yes No

The sequence above violates the MEMBAR in P2—P2.2 executes before P2.1. That is the only

way to get 8 into both memory locations, thus the result is impossible with MEMBARs insterted.

Last updated:

04/15/2015

Problem 4.11: Memory Models

Consider a system which uses Sequential Consistency (SC). There are three processes, P1, P2

and P3, on different processors on such a system (the values of RA, RB, RC were all zeros

before the execution):

P1 P2 P3

P1.1: ST (A), 1 P2.1: ST (B), 1 P3.1: ST (C), 1

P1.2: LD RC, (C) P2.2: LD RA, (A) P3.2: LD RB, (B)

Problem 4.11.A

After all processes have executed, it is possible for the system to have multiple machine states. For

example, {RA, RB, RC}= {1,1,1} is possible if the execution sequence of instructions is

P1.1→P2.1→P3.1→P1.2→P2.2→P3.2. Also, {RA, RB, RC}= {1,1,0} is

possible if the sequence is P1.1 → P1.2 → P2.1 → P3.1 → P2.2 → P3.2.

For each state of {RA, RB, RC} below, specify the execution sequence of instructions that

results in the corresponding state. If the state is NOT possible with SC, just put X.

{0,0,0} : X

{0,1,0} : P2.1 P2.2 P1.1P1.2P3.1 P3.2

{1,0,0} : P1.1 P1.2 P3.1 P3.2 P2.1 P2.2

{0,0,1} : P3.1 P3.2 P2.1 P2.2 P1.1 P1.2

Last updated:

04/15/2015

Problem 4.11.B

Now consider a system which uses Weak Ordering(WO), meaning that a read or a write may

complete before a read or a write that is earlier in program order if they are to different addresses

and there are no data dependencies.

Does WO allow the machine state(s) that is not possible with SC? If yes, provide an execution

sequence that will generate the machine states(s).

Yes. {0,0,0} by P1.2→P2.2→P3.2→P1.1→P2.1→P3.1

Problem 4.11.C

The WO system in Problem 4.11.B provides four fine-grained memory barrier instructions.

Below is the description of these instructions.

- MEMBARRR guarantees that all read operations initiated before the MEMBARRR will be seen

before any read operation initiated after it.

- MEMBARRW guarantees that all read operations initiated before the MEMBARRW will be seen

before any write operation initiated after it.

- MEMBARWR guarantees that all write operations initiated before the MEMBARWR will be seen

before any read operation initiated after it.

- MEMBARWW guarantees that all write operations initiated before the MEMBARWW will be seen

before any write operation initiated after it.

Using the minimum number of memory barrier instructions, rewrite P1, P2 and P3 so the

machine state(s) that is not possible with SC by the original programs is also not possible with

WO by your programs.

P1 P2 P3

P1.1: ST (A), 1

P2.1: ST (B), 1

P3.1: ST (C), 1

MEMBARWR MEMBARWR MEMBARWR

P1.2: LD RC, (C)

P2.2: LD RA, (A)

P3.2: LD RB, (B)

Last updated:

04/15/2015

Problem M4.12: Directory-based Protocol

Problem 4.12.A

The following questions deal with the directory-based protocol discussed in class. Assume XY

routing, and message passing is FIFO. (XY routing algorithm first routes packets horizontally,

towards their X coordinates, and then vertically towards their Y coordinates.) Protocol messages

with the same source and destination sites are always received in the same order as that in which

they were sent. For this question, assume that the cache coherence protocol is free from

deadlock, livelock and starvation.

Assume the node 6 serves as the home directory, where the states for memory blocks are stored.

Assume all caches are initially empty and no responses are sent voluntarily (i.e. every response is

caused by a request)

 Processor 1 Processor 4 Processor 5

1.1: ST X, 10 4.1: LD R1, X 5.1: ST X, 20

Suppose the global execution order is as follows:

4.1 => 5.1 => 1.1

Assume that the next instruction will start its execution only when the previous instruction has

completed. For each instruction, list all protocol messages that are sent over the link 5 -> 6 (the

purple link in the above figure).

4.1: <6,4,C2M_Req,X,S> (4.1),

5.1: <6,5,C2M_Req,X,M>, <6,4,C2M_Rep,X,S,I> (5.1),

Last updated:

04/15/2015

1.1: <6,5,C2M_Rep,X,M,I,20> (1.1)

Problem 4.12.B

For the directory protocol, we assume the message passing to be FIFO, meaning protocol

messages with the same source and destination are always received in the same order as that in

which they were sent. Now suppose messages can be delivered out-of-order for the same source

and destination pairs. Describe one scenario that the cache coherence protocol will break due to

this out-of-order delivery.

1. Core 1: <M,1,C2M_Req,a,S> => <1,M,M2C_Rep,a,I,S,data> (not yet reached)

2. Core 2: <M,2,C2M_Req,a,M> => <1,M,M2C_Req,a,I>

If <1,M,M2C_Req,a,I> arrives earlier than <1,M,M2C_Rep,a,I,S,data>, it will be ignored, and

the core will not send any reply to home which is waiting. => Deadlock.

Problem 4.12.C

Under the 6823 directory-based protocol, a cache will receive a writeback request from the

directory <M2C_Req, a, S> for address “a” when it is in state M and another cache wants a

shared copy. Is it possible for a cache in the S state to receive <M2C_Req, a, S> ? Describe how

this scenario can occur using the messages passed between the cache and the memory, and the

state transitions.

Cache 1 in M, does voluntary writeback <M,1,M2C_Rep,a,M,S,data> and goes to S state. Now

Cache 2 in I state does a <M,2,C2M_Req,a,S>. If the Mem hasn’t received Cache 1’s response

yet, it will send a <1,M,P2C_Req,a,S> to Cache 1 which is in S.

