
Name ____________________________ 

 

Page 1 of 16 

 

Computer System Architecture  

6.823 Quiz #1 

March 7th, 2014 

Professors Daniel Sanchez and Joel Emer 
 

 

This is a closed book, closed notes exam. 

 

 80 Minutes 

  16 Pages 

 
Notes: 

 Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 

 Please carefully state any assumptions you make. 

 Show your work to receive full credit. 

 Please write your name on every page in the quiz. 

 You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. 

 

 

 

  

 

 

Part A ________     40 Points 

Part B ________     35 Points 

Part C ________     25 Points 

 

 

 

TOTAL        ______  100 Points
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Part A: Execute Data Instruction (40 pts) 

 
One day, Ben Bitdiddle started an EDSACjr-based company. Ben wanted to leverage the 

speed of read-only memory and avoid the inherent hazards of the Princeton architecture, 

so he went with a Harvard architecture. Unfortunately, Ben’s system didn’t have any 

index registers, so he couldn’t write self-modifying code. That meant there were a large 

number of programs he couldn’t implement anymore. Ben decided to add an instruction 

to solve this problem. He called his new instruction EXD , for execute data. The EXD 

instruction treats the contents of the accumulator as a new instruction and executes 

whatever that instruction may be. If the accumulator does not contain a valid instruction, 

then EXD falls back on the processor’s fault handling for bad instructions (which you 

needn’t worry about). 

 

For example, from Handout #1 the instruction ADD 6 (which adds the contents of 

memory at address six to the accumulator) is encoded as: 0000 1000 0000 0110. 

 

Therefore if the contents of the accumulator are 0000 1000 0000 0110, the EXD 

instruction will interpret the accumulator as an ADD 6 instruction, and add the contents 

of memory at address six to the accumulator (now interpreted as the number: 0000 1000 

0000 0110 = 2054). So if memory at address six holds the value one, then the 

accumulator will become 0000 1000 0000 0111. (Which can be interpreted either as the 

instruction ADD 7 or the number 2055.) 

 

To simplify writing assembly code, Ben Bitdiddle also augments the EDSACjr’s 

instruction set with a load instruction, LD n. This load simply places the value in 

memory address n into the accumulator: ACC  Mem[n]. LD is encoded as 01011 n; 

that is, the opcode is 01011. 

 

Question 1 (5 points): 

 

When Ben shows his idea to Alyssa P. Hacker, she points out that EXD could cause an 

infinite loop. Provide a specific code sequence that illustrates Alyssa’s point, using EXD 

to loop forever. 
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Question 2 (10 points): 

 

Ignoring Alyssa’s observation, Ben decided to implement his EXD instruction for the 

EDSACjr, but he started having trouble figuring out how to use it. Help Ben by writing a 

series of EDSACjr instructions that will perform an indirect reduced add (that is, the 

instructions will take a vector of pointers, follow each pointer, and sum up the values 

stored at the locations in memory that the pointers specify). In C++, this might look 

something like: 

 
int s=0; 

for (int i=0; i < 10; i++){ 

    s += *A[i]; 

} 

 

Fill in the template below with assembly code for this program on the Harvard EDSACjr. 

You can define memory contents for both the data and instruction memories. 

 
Data Mem                               Instr Mem

Addr Data 

A: 120 

 107 

 122 

  130 

 151 

 112 

 132 

 109 

 140 

 117 

 

s: 0 

i: 10 

 

107: 40 

109: 10 

112: 24 

117: 50  

120: 5 

122: 10 

130: 20 

132: 29 

140: 22 

151: 12 

 

one: 1 

 
 

 

 
 

Addr  Data 

Loop: LD i 

 SUB one 

 BLT Done 

 STORE i 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 CLEAR 

 BGE Loop 

Done: HLT 
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Question 3 (15 points): 

 

Ben is so proud of his EXD instruction that he decides to implement it in MIPS using 

microprogramming, extending EXD to include a register field rs and then executing the 

contents of rs. 

 

First, write register transfer language (i.e. pseudocode like: A  PC) for Ben’s 

microcoded MIPS implementation of EXD: 

 

 

 

 

 

 

 

Fill in the sheet on the next page with the microcode for EXD. Use don’t cares (*) for 

fields where it is safe to use don’t cares. The solution should be elegant and efficient 

(fewest number of new states needed and hardware added). In order to further simplify 

this problem, ignore the busy signal and assume that the memory is as fast as the register 

file. You should try to optimize your implementation for minimum number of cycles 

necessary and for maximum number of don’t-care signals. 

 

Please comment your code clearly. If the pseudocode for a line does not fit in the space 

provided, or if you have additional comments, you may write in the margins as long as 

you do it neatly. Make sure that your microcode fetches the next instruction. 
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Bus-based MIPS architecture for microcoding.
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State Pseudocode ld 

IR 

Reg 

sel 

Reg 

W 

En 

Reg 

ld 

A 

ld 

B 

ALU En 

ALU 

ld 

MA 

Mem 

W 

En 

Mem 

Ex 

Sel 

En 

Imm 

µBr Jump 

target 

Fetch0 MA  PC 

A  PC 

* PC 0 1 1 * * 0 1 * 0 * 0 Next * 

 IR  Mem 1 * * 0 0 * * 0 * 0 1 * 0 Next * 

 PC  A+4 

B  A+4 

0 PC 1 1 * 1 A+4 1 * * 0 * 0 Dis-

patch 

* 

                 

Nop0: - * * * 0 * * * 0 * * 0 * 0 Jump Fetch0 

                 

EXD:                 
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Question 4 (10 points): 

 

Grateful for your help, Ben was nonetheless unhappy with the performance of the 

microcode. So he decided to implement a pipelined version of EXD. Ben realized that the 

EXD instruction was in and of itself a control hazard. Help Ben safeguard his pipeline. 

The diagram below shows the front end of the five-stage pipeline we used in class. A new 

datapath and mux have been added to move rd1 into the instruction register of the 

decode stage. 

 

 
 

Your task is to write the new stall signal (stall’) and fill in the missing signal, 

EXDmux. Write your signal in terms of signals (e.g., PC or rd1 or IRD) and feel free to 

use the old stall signal (stall). 

 

 

stall’  =  _________________________________________ 

 

 

 

EXDmux =  _________________________________________
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Part B: Write Effective Address Extensions (35 points) 

 
You’ve noticed that many programs execute code similar to the following during loops: 

 
LD  R1, 4(R2) 

ADD R2, R2, 4 

 

Or: 

 
ST  R1, 4(R2) 

ADD R2, R2, 4 

 

You want to optimize your architecture for this common case. You are going to do so by 

adding “write effective address” variants of the load and store instructions, LDWA and 

STWA. The semantics of these instructions are that they will perform the normal memory 

operation (LD or ST) and then write the effective address in the register that indexed into 

memory (not the register whose contents are read/written to memory). Specifically these 

instructions do the following: 

 
LDWA rs, rt, Imm: 

 rs  Memory[(rt) + Imm] 

 rt  (rt) + Imm 

 

STWA rs, rt, Imm: 

 Memory[(rt) + Imm]  (rs) 

 rt  (rt) + Imm 

 

These extensions allow us to rewrite the previous examples as: 

 
LDWA R1, R2, 4 

 

And: 

 
STWA R1, R2, 4 
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Question 1 (10 points): 

 

You start with implementing STWA. For the following sequence of instructions and the standard five-stage pipeline (shown above), 

indicate how each instruction will flow through the pipeline on the following page. Assume full bypassing and stall logic are 

implemented for your architecture. Use arrows to indicate forwarding and dashes for stalls, as illustrated. 
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Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 

LD R1, 0(R2) F D E M W         

ADD R3, R1, 10  F D - E M W       

LD R4, 0(R3)              

STWA, R4, R1, 4              

STWA R4, R1, 4              

ADD R2, R1, R3              
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Question 2 (5 points): 

 

You next want to implement LDWA, and quickly realize that LDWA runs into a structural hazard on the register file. You decide to fix 

this by adding an extra writeback stage (W2) to your pipelined design as shown above. In one or two sentences, explain what the 

hazard is and why the additional stage fixes it (assume correct stall logic). 
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Question 3 (10 points): 

 

Assume that the six-stage design above has full bypassing and correct stall logic. Fill in the pipeline for the instructions given below, 

using arrows and dashes as before. 

 

 

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 

LD R1, 0(R2) F D E M W1 W2        

ADD R3, R1, 10  F D - E M W1 W2      

LDWA R5, R3, 0              

ADD R1, R3, R4              

LDWA R5, R3, 0              

ADD R1, R5, R0              
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Question 4 (5 points): 

 

Adding a second writeback stage is only one way to fix this structural hazard. An alternative design is to add a second write port to the 

register file. Quickly sketch the datapath for this design in the diagram above. You do not need to write the stall logic. (Additional 

signals are: we2, ws2, wd2.) 

 

Question 5 (5 points): 

 

In one or two sentences, explain the tradeoffs between adding an additional pipeline stage vs. adding a write port to the register file. 

What conditions might favor one or the other design? 
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Part C: Caches (25 points) 

 

Your processor has an 8-line level 1 data cache as illustrated below. Suppose that cache 

lines are 32 bytes (256 bits) and memory addresses are 16 bits, with byte-addressable 

memory. The cache is indexed by low bits without hashing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Question 1 (10 points): 

 

We’re first going to fill in the above diagram with more detail. 

 

Divide the bits of the address according to how they are used to access the cache (tag, 

index, offset). 

 

What exactly is contained in the cache tags? (Include all bits necessary for correct 

operation of the cache as discussed in lecture.) 

 

How many bits in total are needed to implement the level 1 data cache? 

Tags Data 

Address (16 bits) 
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Question 2 (5 points): 

 

Suppose the processor accesses the following data addresses starting with an empty 

cache: 

 
0x0028: 0000 0000 0010 1000 

0x102A: 0001 0000 0010 1010 

0x9435: 1001 0100 0011 0101 

0xEFF4: 1110 1111 1111 0100 

0xBEEF: 1011 1110 1110 1111 

0x4359: 0100 0011 0101 1001 

0x01DE: 0000 0001 1101 1110 

0x8075: 1000 0000 0111 0101 

0x9427: 1001 0100 0010 0111 

 

What would the level 1 data cache tags look like after this sequence? How many hits 

would there be in the level 1 data cache? (Don’t worry about filling in the Data column – 

we didn’t give you the data!) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tags 
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Question 3 (10 points): 

 

Suppose that the level 1 data cache has a hit rate of 40% on your application, an access 

time of a single cycle, and a miss penalty to memory of forty cycles. What is the average 

memory access time? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You aren’t happy with your memory performance, so you decide to add a level two 

cache. Suppose the level two cache has a hit rate of 50%. What access time must the level 

two cache have for this to be a good design (ie, reduce AMAT)? 


