
Name ____________________________

Page 1 of 16

Computer System Architecture

6.823 Quiz #3

April 25
th

, 2014

Professors Daniel Sanchez and Joel Emer

This is a closed book, closed notes exam.

 80 Minutes

 16 Pages

Notes:

 Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.

 Please carefully state any assumptions you make.

 Show your work to receive full credit.

 Please write your name on every page in the quiz.

 You must not discuss a quiz's contents with other students who have not

yet taken the quiz.

Part A ________ 45 Points

Part B ________ 35 Points

Part C ________ 20 Points

TOTAL ________ 100 Points

Name ____________________________

Page 2 of 16

Part A: Let’s Talk About Loads (45 pts)

Consider the following code sequence:

…

I1: DIV R3, R1, 8

I2: BNEZ R9, Somewhere

I3: ST R2, 0(R3)

I4: LD R1, 8(R4)

I5: ADD R5, R1, 8

I6: SUB R10, R6, R7

I7: MUL R8, R9, R10

I8: BEQZ R8, Somewhere else

…

We will explore how this program behaves on different architectural styles. In all cases,

assume the following execution latencies:

 ADD, SUB: 2 cycles

 BNEZ, BEQZ: 2 cycles

 LD: 2 cycles if cache hit, 8 cycles if miss

 MUL: 5 cycles

 DIV: 10 cycles

Additionally, the LD (I4) in this sequence misses in the data cache and therefore has a

long latency of 8 cycles.

Assume that the branch at I2 is not taken and fetch and decode never stall (e.g., by

missing on the instruction cache or the BTB). Also assume that there are no structural

hazards.

Question 1 (5 points):

Loads are often a bottleneck in processor performance, and as such compilers will try to

move the loads as early as possible in the program to “hide” their latency. However, in

the preceding code sequence, an optimizing compiler cannot move the load earlier in the

program. Explain why in one or two sentences.

Name ____________________________

Page 3 of 16

Question 2 (6 points):

Show how this program would work on a single-issue in-order pipeline that tracks

dependencies with a simple scoreboard. Instructions are issued (i.e., dispatched for

execution) in order, but can complete out of order. Assume infinite functional units and

full bypassing. Fill in the remainder of the table below.

Instruction Issue Cycle Completion Cycle

I1: DIV R3, R1, 8 1 11

I2: BNEZ R9 2 4

I3: ST R2, 0(R3) 11 n/a

I4: LD R1, 8(R4) 12 20

I5: ADD R5, R1, 8 20

I6: SUB R10, R6, R7

I7: MUL R8, R9, R10

I8: BEQZ R8

Name ____________________________

Page 4 of 16

Question 3 (6 points):

Assuming a single-issue out-of-order processor, show at which cycles instructions are

issued (i.e., dispatched for execution) and complete. Assume that instructions are

dispatched in program order if multiple are ready in the same cycle, and do not speculate

on data dependencies. Again assume infinite functional units and full bypassing.

Instruction Issue Cycle Completion Cycle

I1: DIV R3, R1, 8 1 11

I2: BNEZ R9

I3: ST R2, 0(R3)

I4: LD R1, 8(R4)

I5: ADD R5, R1, 8

I6: SUB R10, R6, R7

I7: MUL R8, R9, R10

I8: BEQZ R8

In one or two sentences, what is the advantage of an out-of-order architecture vs. the in-

order pipeline for this code sequence?

Question 4 (5 points):

Suppose the out-of-order processor chose to execute the load first, before all other

instructions in the code sequence. What events could cause the load to be aborted, and

what mechanisms are required to detect mis-speculation and roll back? Ignore exceptions

in your answer.

Name ____________________________

Page 5 of 16

Question 5 (6 points):

Write VLIW code for this instruction sequence, assuming that the VLIW format is:

Memory operation ALU operation ALU operation / Branch

Try to make your VLIW code as efficient as possible, including re-ordering any

instructions that do not have dependencies. For this VLIW code just use standard MIPS

instructions to fill slots without predication or new, VLIW-specific instructions. (That is,

simply schedule the instructions already provided.) Assume that the VLIW architecture

has a scoreboard that stalls when a result is used before it is ready (e.g., on a cache miss).

In one or two sentences, what is the advantage/disadvantage of a VLIW architecture for

this code sequence vs. the out-of-order pipeline?

Josh Fisher points out that if it has a scoreboard, it’s not a true VLIW. How would the

code sequence change if we didn’t have a scoreboard?

Name ____________________________

Page 6 of 16

Question 6 (5 points):

VLIW architectures rely heavily on the compiler to expose instruction-level parallelism

in the program, so hiding load latency is a major challenge. VLIW compilers developed a

technique called trace scheduling that merges multiple basic blocks into a single code

sequence with software checks to ensure correctness. We profile our program and find

that the first branch (I2) is almost never taken, so merging both basic blocks is a good

idea.

If we use trace scheduling to move the load (I4) to be the first instruction, what

conditions must software check to ensure correctness of the load for this code sequence?

Ignore exceptions in your answer.

Name ____________________________

Page 7 of 16

Question 7 (6 points):

To mitigate load latency, you decide to implement a prefetch instruction.

PREFETCH Imm(rs) takes a single argument, an address, and hints to the processor

that the given address may be used soon. Crucially, PREFETCH is side-effect free—the

processor can choose to ignore PREFETCH’s without affecting program behavior.

Now consider the following simplified code sequence:

DIV R3, R1, 8

ST R2, 0(R3)

LD R1, 8(R4)

ADD R5, R1, 8

The diagram below shows how this code executes on an in-order issue processor with

scoreboarding. Show how performance can be improved using PREFETCH.

Cycle In-order In-order w/ Prefetch

1 DIV

2

3

4

5

6

7

8

9

10

11 ST

12 LD

13

14

15

16

17

18

19

20 ADD

21

22 Complete

Name ____________________________

Page 8 of 16

Question 8 (6 points):

In lecture we discussed an alternative instruction, “load-speculate”:
LD.S rt, Imm(rs)

Load-speculate will fetch the value from memory but if the access faults it instead returns

zero and does not cause an exception. Unlike prefetch, it gives not just the address but the

source address and the destination register, which receives a value from memory. A load-

speculate is followed in the program by a “load-check”:
CHK.S rt, cleanup

Load-check checks if the register was written by a LD.S that should have caused an

exception (e.g., due to a page fault). If it was, then CHK.S branches to somewhere else to

service the exception and handle any necessary cleanup. CHK.S executes in 1 cycle.

Show how to use LD.S/CHK.S to speed up the code even further than was possible with

PREFETCH. Assume scoreboarding and infinite functional units. Assume that in this case

the compiler knows that the load (I4) can be scheduled before the store (I3) safely. Do

not show cleanup code.

Cycle In-order In-order+LD.S+CHK.S

1 DIV

2

3

4

5

6

7

8

9

10

11 ST

12 LD

13

14

15

16

17

18

19

20 ADD

21

22 Complete

Name ____________________________

Page 9 of 16

Part B: Exploiting Parallelism (35 points)

Consider the following C code sequence:

const int size = 64 * 1024;

int a[SIZE], b[SIZE], c[SIZE];

for (int i = 0; i < SIZE; i++) {

 if (a[i] > b[i]) {

 c[i] = a[i] + b[i];

}

}

This is a repetitive computation with a simple dependency graph. If we look at the MIPS

assembly code, we see that a large percentage of the instructions are doing bookkeeping.

We’d like to reduce this overhead.

 // R1 points to a, R2 points to b, R3 points to c

// R6 is i

 ADD R6, R0, SIZE

Loop: LD R4, 0(R1)

 LD R5, 0(R2)

 SUB R8, R4, R5

 BGEZ R8, Skip

 ADD R4, R5, R4

 ST R4, 0(R3)

Skip: ADD R1, R1, 4

 ADD R2, R2, 4

 ADD R3, R3, 4

 SUB R6, R6, 1

 BNEZ R6, Loop

Question 1 (5 points):

Circle the MIPS instructions in the assembly above that perform “useful work” rather

than bookkeeping.

Name ____________________________

Page 10 of 16

Question 2 (5 points):

If the loads in the preceding code take four cycles, then this code sequence will stall and

performance will suffer. Explain how an in-order, fine-grain multithreaded processor

with two threads could mitigate this effect?

How would the program need to change for multhreading? (You do not need to write the

code.)

Name ____________________________

Page 11 of 16

Question 3 (10 points):

An alternative approach is to hide the load latency within a single thread by using loop

unrolling. Loads take four cycles and adds take one cycle. Write a loop unrolled VLIW

version of the preceding code using the same VLIW instruction format as in Part A:

Memory operation ALU operation ALU operation / Branch

Unroll the fewest number of loop iterations necessary to cover the load’s latency.

Whatever degree of unrolling you choose, assume it divides the array size. Also assume

that predication is allowed:

(p1) instruction executes the instruction if predicate register p1 is set.

cmp.gt p1, r1, r2 sets predicate register p1 if r1 is greater than r2.

Finally, R1 points to a, R2 points to b, R3 points to c, and R6 is i.

NOTE: The back of this page has additional space.

Name ____________________________

Page 12 of 16

Additional space:

Name ____________________________

Page 13 of 16

Question 4 (10 points):

Write a vector version using vector instructions and the vector mask register. Assume that

the vector machine can do up to 64 operations per instruction, and note that SIZE is a

multiple of 64.

VLR register stores the vector length.

LV v1, r1, Imm loads vector register v1 with memory starting at address r1 and

stride Imm. SV v1, r1, Imm behaves similarly for stores.

ADDV v1, v2, v3 adds v2 and v3 and puts the result in v1.

SGTVV v1, v2 sets the vector mask register for each vector element in v1 greater than

the corresponding element in v2 (mask set means the operation is enabled).

CVM resets the vector mask register (turns on all elements).

 // R1 points to a, R2 points to b, R3 points to c

// R6 is i

 ADD R6, R0, SIZE

 LI VLR, 64

Loop:

Skip: ADD R1, R1, 64*4

 ADD R2, R2, 64*4

 ADD R3, R3, 64*4

 SUB R6, R6, 64

 BNEZ R6, Loop

Name ____________________________

Page 14 of 16

Question 5 (5 points):

Is this program easy to map to GPUs? What inefficiencies may arise? Explain your

answer in one or two sentences.

Name ____________________________

Page 15 of 16

Part C: TLBs in Outer Space (20 points):

You observe that page table entries exhibit a lot of spatial locality (consecutive pages are

often accessed). To increase your processor’s TLB hit rate, you increase the block size of

your TLB to hold several page table entries:

 Each TLB entry holds 4 page table entries (PTEs).

 Each page table entry is 19 bits containing:

o A 16-bit physical page number (PPN).

o Three protection bits:

 Readable bit

 Writeable bit

 Used bit (for page replacement)

NASA has hired you to design a processor for a manned mission to Mars. You need to

make sure your TLB works in the hostile environment of outer space.

Question 1 (10 points):

One of NASA’s programs executes the following memory operations:

Cycle Operation Instruction is ACE?

0 Load from page A (TLB miss) Yes

15 Load from page A Yes

20 Load from page A Yes

30 Load from page A No

40 Load from page B (TLB miss, evicting block

containing A from the TLB)

Yes

For which cycles is the PPN for page A itself ACE?

Cycle 0-15 15-20 20-30 30-40

Is ACE?

What is the AVF of the PPNs in the TLB block (consider all PPNs in a block, but not tag

or protection bits) over cycles 0-40?

Name ____________________________

Page 16 of 16

Question 2 (10 points):

Discuss the AVF of each protection bit (readable, writeable, used) for PTEs in the TLB.

Consider the tag of the TLB. Is the AVF of these tag bits relatively high or relatively

low? Explain why in one or two sentences.

You want to protect the data in the TLB. Would you recommend using parity or

SECDED (single error correction, double error detection)? Explain your answer in one or

two sentences.

