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Computer System Architecture  

6.823 Quiz #3 

April 25
th

, 2014 

Professors Daniel Sanchez and Joel Emer 
 

 

This is a closed book, closed notes exam. 

 

 80 Minutes 

  16 Pages 

 
Notes: 

 Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 

 Please carefully state any assumptions you make. 

 Show your work to receive full credit. 

 Please write your name on every page in the quiz. 

 You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. 

 

 

 

  

 

 

Part A ________       45 Points 

Part B ________       35 Points 

Part C ________       20 Points 

 

 

 

TOTAL        ________  100 Points
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Part A: Let’s Talk About Loads (45 pts) 

 
Consider the following code sequence: 

 
… 

I1: DIV R3, R1, 8 

I2: BNEZ R9, Somewhere 

I3: ST R2, 0(R3) 

I4: LD R1, 8(R4) 

I5: ADD R5, R1, 8 

I6: SUB R10, R6, R7 

I7: MUL R8, R9, R10 

I8: BEQZ R8, Somewhere else 

… 

 

We will explore how this program behaves on different architectural styles. In all cases, 

assume the following execution latencies: 

 ADD, SUB: 2 cycles 

 BNEZ, BEQZ: 2 cycles 

 LD: 2 cycles if cache hit, 8 cycles if miss 

 MUL: 5 cycles 

 DIV: 10 cycles 

 

Additionally, the LD (I4) in this sequence misses in the data cache and therefore has a 

long latency of 8 cycles. 

 

Assume that the branch at I2 is not taken and fetch and decode never stall (e.g., by 

missing on the instruction cache or the BTB). Also assume that there are no structural 

hazards. 

 

  

Question 1 (5 points): 

 

Loads are often a bottleneck in processor performance, and as such compilers will try to 

move the loads as early as possible in the program to “hide” their latency. However, in 

the preceding code sequence, an optimizing compiler cannot move the load earlier in the 

program. Explain why in one or two sentences. 
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Question 2 (6 points): 

 

Show how this program would work on a single-issue in-order pipeline that tracks 

dependencies with a simple scoreboard. Instructions are issued (i.e., dispatched for 

execution) in order, but can complete out of order. Assume infinite functional units and 

full bypassing. Fill in the remainder of the table below. 

 

Instruction Issue Cycle Completion Cycle 

I1: DIV R3, R1, 8 1 11 

I2: BNEZ R9 2 4 

I3: ST R2, 0(R3) 11 n/a 

I4: LD R1, 8(R4) 12 20 

I5: ADD R5, R1, 8 20  

I6: SUB R10, R6, R7   

I7: MUL R8, R9, R10   

I8: BEQZ R8   
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Question 3 (6 points): 

 

Assuming a single-issue out-of-order processor, show at which cycles instructions are 

issued (i.e., dispatched for execution) and complete. Assume that instructions are 

dispatched in program order if multiple are ready in the same cycle, and do not speculate 

on data dependencies. Again assume infinite functional units and full bypassing. 

 

Instruction Issue Cycle Completion Cycle 

I1: DIV R3, R1, 8 1 11 

I2: BNEZ R9   

I3: ST R2, 0(R3)   

I4: LD R1, 8(R4)   

I5: ADD R5, R1, 8   

I6: SUB R10, R6, R7   

I7: MUL R8, R9, R10   

I8: BEQZ R8   

 

 

 

In one or two sentences, what is the advantage of an out-of-order architecture vs. the in-

order pipeline for this code sequence? 

 

 

 

 

 

 

 

Question 4 (5 points): 

 

Suppose the out-of-order processor chose to execute the load first, before all other 

instructions in the code sequence. What events could cause the load to be aborted, and 

what mechanisms are required to detect mis-speculation and roll back? Ignore exceptions 

in your answer.  
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Question 5 (6 points): 

 

Write VLIW code for this instruction sequence, assuming that the VLIW format is: 

 

Memory operation ALU operation ALU operation / Branch 

 

Try to make your VLIW code as efficient as possible, including re-ordering any 

instructions that do not have dependencies. For this VLIW code just use standard MIPS 

instructions to fill slots without predication or new, VLIW-specific instructions. (That is, 

simply schedule the instructions already provided.) Assume that the VLIW architecture 

has a scoreboard that stalls when a result is used before it is ready (e.g., on a cache miss). 

 

   

   

   

   

   

   

   

   

 

 

 

In one or two sentences, what is the advantage/disadvantage of a VLIW architecture for 

this code sequence vs. the out-of-order pipeline? 

 

 

 

 

 

 

 

Josh Fisher points out that if it has a scoreboard, it’s not a true VLIW. How would the 

code sequence change if we didn’t have a scoreboard? 
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Question 6 (5 points): 

 

VLIW architectures rely heavily on the compiler to expose instruction-level parallelism 

in the program, so hiding load latency is a major challenge. VLIW compilers developed a 

technique called trace scheduling that merges multiple basic blocks into a single code 

sequence with software checks to ensure correctness. We profile our program and find 

that the first branch (I2) is almost never taken, so merging both basic blocks is a good 

idea.  

 

If we use trace scheduling to move the load (I4) to be the first instruction, what 

conditions must software check to ensure correctness of the load for this code sequence? 

Ignore exceptions in your answer.  
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Question 7 (6 points): 
 

To mitigate load latency, you decide to implement a prefetch instruction. 

PREFETCH Imm(rs) takes a single argument, an address, and hints to the processor 

that the given address may be used soon. Crucially, PREFETCH is side-effect free—the 

processor can choose to ignore PREFETCH’s without affecting program behavior. 

 

Now consider the following simplified code sequence: 

 
DIV R3, R1, 8 

ST R2, 0(R3) 

LD R1, 8(R4) 

ADD R5, R1, 8 

 

The diagram below shows how this code executes on an in-order issue processor with 

scoreboarding. Show how performance can be improved using PREFETCH. 

  

 

Cycle In-order In-order w/ Prefetch 

1 DIV  

2   

3   

4   

5   

6   

7   

8   

9   

10   

11 ST  

12 LD  

13   

14   

15   

16   

17   

18   

19   

20 ADD  

21   

22 Complete  
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Question 8 (6 points): 

 

In lecture we discussed an alternative instruction, “load-speculate”: 
LD.S rt, Imm(rs) 

Load-speculate will fetch the value from memory but if the access faults it instead returns 

zero and does not cause an exception. Unlike prefetch, it gives not just the address but the 

source address and the destination register, which receives a value from memory. A load-

speculate is followed in the program by a “load-check”: 
CHK.S rt, cleanup 

Load-check checks if the register was written by a LD.S that should have caused an 

exception (e.g., due to a page fault). If it was, then CHK.S branches to somewhere else to 

service the exception and handle any necessary cleanup. CHK.S executes in 1 cycle. 

 

Show how to use LD.S/CHK.S to speed up the code even further than was possible with 

PREFETCH. Assume scoreboarding and infinite functional units. Assume that in this case 

the compiler knows that the load (I4) can be scheduled before the store (I3) safely. Do 

not show cleanup code. 

 

 

Cycle In-order In-order+LD.S+CHK.S 

1 DIV  

2   

3   

4   

5   

6   

7   

8   

9   

10   

11 ST  

12 LD  

13   

14   

15   

16   

17   

18   

19   

20 ADD  

21   

22 Complete  
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Part B: Exploiting Parallelism (35 points) 

 

Consider the following C code sequence: 

 
const int size = 64 * 1024; 

int a[SIZE], b[SIZE], c[SIZE]; 

for (int i = 0; i < SIZE; i++) { 

 if (a[i] > b[i]) { 

  c[i] = a[i] + b[i]; 

} 

} 

 

This is a repetitive computation with a simple dependency graph. If we look at the MIPS 

assembly code, we see that a large percentage of the instructions are doing bookkeeping. 

We’d like to reduce this overhead. 

 
  // R1 points to a, R2 points to b, R3 points to c 

// R6 is i 

  ADD R6, R0, SIZE 

Loop: LD R4, 0(R1) 

  LD R5, 0(R2) 

  SUB R8, R4, R5 

  BGEZ R8, Skip 

  ADD R4, R5, R4 

  ST R4, 0(R3) 

Skip: ADD R1, R1, 4 

  ADD R2, R2, 4 

  ADD R3, R3, 4 

  SUB R6, R6, 1 

  BNEZ R6, Loop 

 

Question 1 (5 points): 

 

Circle the MIPS instructions in the assembly above that perform “useful work” rather 

than bookkeeping. 
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Question 2 (5 points): 

 

If the loads in the preceding code take four cycles, then this code sequence will stall and 

performance will suffer. Explain how an in-order, fine-grain multithreaded processor 

with two threads could mitigate this effect? 

 

 

 

 

 

 

 

 

 

 

 

 

 

How would the program need to change for multhreading? (You do not need to write the 

code.) 

  



Name ____________________________ 

 

Page 11 of 16 

 

Question 3 (10 points): 

 

An alternative approach is to hide the load latency within a single thread by using loop 

unrolling. Loads take four cycles and adds take one cycle. Write a loop unrolled VLIW 

version of the preceding code using the same VLIW instruction format as in Part A: 

 

Memory operation ALU operation ALU operation / Branch 

 

Unroll the fewest number of loop iterations necessary to cover the load’s latency. 

Whatever degree of unrolling you choose, assume it divides the array size. Also assume 

that predication is allowed: 

 

(p1) instruction executes the instruction if predicate register p1 is set. 

cmp.gt p1, r1, r2 sets predicate register p1 if r1 is greater than r2. 

 

Finally, R1 points to a, R2 points to b, R3 points to c, and R6 is i. 

 

NOTE: The back of this page has additional space. 
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Additional space: 
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Question 4 (10 points): 

 

Write a vector version using vector instructions and the vector mask register. Assume that 

the vector machine can do up to 64 operations per instruction, and note that SIZE is a 

multiple of 64. 

 

VLR register stores the vector length. 

LV v1, r1, Imm  loads vector register v1 with memory starting at address r1 and 

stride Imm.  SV v1, r1, Imm  behaves similarly for stores. 

ADDV v1, v2, v3 adds v2 and v3 and puts the result in v1. 

SGTVV v1, v2 sets the vector mask register for each vector element in v1 greater than 

the corresponding element in v2 (mask set means the operation is enabled). 

CVM resets the vector mask register (turns on all elements). 

 
  // R1 points to a, R2 points to b, R3 points to c 

// R6 is i 

  ADD R6, R0, SIZE 

  LI VLR, 64 

Loop:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Skip: ADD R1, R1, 64*4 

  ADD R2, R2, 64*4 

  ADD R3, R3, 64*4 

  SUB R6, R6, 64 

  BNEZ R6, Loop 
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Question 5 (5 points): 

 

Is this program easy to map to GPUs? What inefficiencies may arise? Explain your 

answer in one or two sentences. 
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Part C: TLBs in Outer Space (20 points): 
 

You observe that page table entries exhibit a lot of spatial locality (consecutive pages are 

often accessed). To increase your processor’s TLB hit rate, you increase the block size of 

your TLB to hold several page table entries: 

 Each TLB entry holds 4 page table entries (PTEs). 

 Each page table entry is 19 bits containing: 

o A 16-bit physical page number (PPN). 

o Three protection bits: 

 Readable bit 

 Writeable bit 

 Used bit (for page replacement) 

 

NASA has hired you to design a processor for a manned mission to Mars. You need to 

make sure your TLB works in the hostile environment of outer space. 

 

Question 1 (10 points): 

 

One of NASA’s programs executes the following memory operations: 

 

Cycle Operation Instruction is ACE? 

0 Load from page A (TLB miss) Yes 

15 Load from page A Yes 

20 Load from page A Yes 

30 Load from page A No 

40 Load from page B (TLB miss, evicting block 

containing A from the TLB) 

Yes 

 

For which cycles is the PPN for page A itself ACE? 

 

Cycle 0-15 15-20 20-30 30-40 

Is ACE?     

 

What is the AVF of the PPNs in the TLB block (consider all PPNs in a block, but not tag 

or protection bits) over cycles 0-40? 
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Question 2 (10 points): 

 

Discuss the AVF of each protection bit (readable, writeable, used) for PTEs in the TLB. 

 

 

 

 

 

 

 

 

 

 

 

Consider the tag of the TLB. Is the AVF of these tag bits relatively high or relatively 

low? Explain why in one or two sentences. 

 

 

 

 

 

 

 

 

 

 

 

 

You want to protect the data in the TLB. Would you recommend using parity or 

SECDED (single error correction, double error detection)? Explain your answer in one or 

two sentences. 


