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Computer System Architecture  

6.823 Quiz #4 

May 14
th

, 2014 

Professors Daniel Sanchez and Joel Emer 
 

 

This is a closed book, closed notes exam. 

 

 80 Minutes 

  15 Pages 

 
Notes: 

 Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 

 Please carefully state any assumptions you make. 

 Show your work to receive full credit. 

 Please write your name on every page in the quiz. 

 You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. 

 

 

 

  

 

 

Part A ________       25 Points 

Part B ________       55 Points 

Part C ________       20 Points 

 

 

 

TOTAL        ________  100 Points
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Part A: Network Effects (25 pts) 

 
You are choosing between several network topologies for your on-chip network, shown 

below. 

 

Ring: 

 
 

Mesh: 

 
 

Binary tree: 

 
 

Legend: 
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Question 1 (10 points): 

 

Your first task is to evaluate these topologies along several important dimensions. Fill in 

the table below as a function of the number of nodes in the network, N. You can safely 

assume N is an even power of 2, giving a complete mesh and binary tree. For partial 

credit, give the asymptotic growth instead. 

 

 Ring Mesh Tree 

Number 

of links 

   

Diameter 

 

   

Average 

distance 

   

Bisection 

bandwidth 
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In a sudden flash of inspiration, you decide to use the following topology: 

 

 
 

Having decided upon a topology, you now want to make sure your system works 

properly. All links are bidirectional. 

 

Question 2 (5 points): 

 

Show how deadlock could arise in the network by drawing an example on the graph 

above. Explain your answer in one or two sentences. 
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Question 3 (10 points): 

 

Draw the channel dependency graph (CDG) for your topology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Show an example of how to eliminate routes to prevent deadlock on the CDG. 
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Part Deux: Synchronicity (55 points) 

 
(Same as Handout #14.) You are writing a queue to be used in a multi-producer/single-

consumer application. (Producer threads write messages that are read by one consumer.) 

We assume here a queue with infinite space. The basic code is shown below. 

 

TST rs, Imm(rt) is the test-and-set instruction, which atomically loads the value at 

Imm(rt) into rs, and if the value is zero, updates the memory location at Imm(rt) to 

1. This atomic instruction is useful for implementing locks: a value of 1 at the memory 

location indicates that someone holds the lock, and a value of 0 means the lock is free. 

 

Producer pushes a message onto queue: (memory operations in bold) 
 

void push(int** tail_ptr, int* tail_write_lock, int message) { 

while (lock_try(tail_write_lock) == false); 

**tail_ptr = message; 

*tail_ptr++; 

lock_release(tail_write_lock); 

} 

 

# R1 – contains address of data to enqueue 

# R2 – contains the address of the tail pointer of queue 

# R3 – address of tail pointer write lock 

P1 SpinLock:TST R4, 0(R3)  # try to acquire tail write lock 

P2  BNEZ R4, R4, SpinLock 

P3  LD R4, 0(R2)  # get tail pointer 

P4  ST R1, 0(R4)  # write message to tail 

P5  ADD R4, R4, 4  # update tail pointer 

P6  ST R4, 0(R2) 

P7  ST R0, 0(R3)   # release lock 

 

Consumer pops a message off queue: (memory operations in bold) 
 

int pop(int** head_ptr, int** tail_ptr) { 

while (*head_ptr == *tail_ptr); 

int message = **head_ptr; 

*head_ptr++; 

return message; 

} 

 

# R1 – will receive address contained in message 

# R2 – contains the address of the head pointer of queue 

# R3 – contains the address of the tail pointer of the queue  

C1 Retry: LD R4, 0(R2)  # get head pointer 

C2  LD R5, 0(R3)  # get tail pointer 

C3  SUB R5, R4, R5  # is there a message? 

C4  BNEZ R5, Pop 

C5  JMP Retry 

C6 Pop: LD R1, 0(R4)  # read message from queue 

C7  ADD R4, R4, 4  # update head pointer 

C8  ST R4, 0(R2) 
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Question 1 (10 points): 

 

You are trying to port this code to an architecture that does not have the TST instruction 

(but, happily, the rest of the ISA is unchanged). Instead the new architecture has load-

reserve/store-conditional instructions. Implement TST rs, 0(rt) using load-

reserve/store-conditional: 
 

LR rs, Imm(rt): 

 rs  Memory[(rt) + Imm] 

 Track address (rt) + Imm 

 

SC rs, Imm(rt): 

 If (rt) + Imm modified: 

  rs  0     # Fail 

 Else: 

  Memory[(rt) + Imm] = (rs) # Succeed 

  rs  1 
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Question 2 (10 points): 

 

This new architecture is also not sequentially consistent. Give an example of memory 

orderings between the producer and consumer that would result in incorrect behavior. 

Explain your answer fully or you will not receive credit.  

 

Your answer should look something like: 
P1, P3, P4, C1, C2, P6, P7, C1, C2, C6, C8 

(Except that this is a sequentially consistent ordering, so it is not a correct answer.) 
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Question 3 (10 points): 

 

Show where memory fences should be added to the producer and consumer code to 

ensure correctness with a weak consistency model. Explain your answer fully. 

 
P1 SpinLock:TST R4, 0(R3)  # try to acquire tail write lock 

 

 

P2  BNEZ R4, R4, SpinLock 

 

 

P3  LD R4, 0(R2)  # get tail pointer 

 

 

P4  ST R1, 0(R4)  # write message to tail 

 

 

P5  ADD R4, R4, 4  # update tail pointer 

 

 

P6  ST R4, 0(R2) 

 

 

P7  ST R0, 0(R3)   # release lock 

 

 

 
 

 

C1 Retry: LD R4, 0(R2)  # get head pointer 

 

 

C2  LD R5, 0(R3)  # get tail pointer 

 

 

C3  SUB R5, R4, R5  # is there a message? 

 

 

C4  BNEZ R5, Pop 

 

 

C5  JMP Retry 

 

 

C6 Pop: LD R1, 0(R4)  # read message from queue 

 

 

C7  ADD R4, R4, 4  # update head pointer 

 

 

C8  ST R4, 0(R2) 
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Question 4 (5 points): 

 

Let’s next consider performance with a single producer thread and consumer thread. The 

following happens repeatedly: 

1. The producer executes all instructions to push a message on the queue. 

2. The consumer executes all instructions to pop a message off the queue. 

Assume data, head, and tail pointers all lie in different, non-conflicting cache blocks. 

 

First, after a few messages have been sent through the queue, will the consumer ever miss 

reading the head pointer? Will the producer ever miss reading the tail write lock, or fail to 

acquire the tail write lock? Explain in one or two sentences. 

 

 

 

 

 

Question 5 (5 points): 

 

We’ll now focus on the tail pointer only. Assuming a MSI invalidate coherence protocol, 

show the state of the tail pointer in the producer and consumer cache after each operation 

in the sequence below. Show any data or permissions transfers, e.g. “MemoryC” or “C 

invalidates P”. 

 

Operation Producer tail 

pointer state 

Consumer tail 

pointer state 

Transfers 

 I I  

P1 TST try lock    

P3 LD tail_ptr    

P4 ST message    

P6 ST new_tail    

P7 ST release lock    

C1 LD head_ptr    

C2 LD tail_ptr    

C6 LD message    

C7 ST new_head    

P1 TST try lock    

P3 LD tail_ptr    

P4 ST message    

P6 ST new_tail    

P7 ST release lock    

C1 LD head_ptr    

C2 LD tail_ptr    

C6 LD message    

C7 ST new_head    

 

How many state transitions occur per message in the steady state?  
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Question 6 (5 points): 

 

Stay focused on the tail pointer only. Assume an update coherence protocol where the 

state of each line is either valid (V) or invalid (I). Show the state of the tail pointer in the 

producer and consumer cache after each operation in the sequence below in the steady 

state. Show any data or permissions transfers, e.g. “MemoryC” or “C invalidates P”. 

 

Operation Producer tail 

pointer state 

Consumer tail 

pointer state 

Transfers 

 I I  

P1 TST try lock    

P3 LD tail_ptr    

P4 ST message    

P6 ST new_tail    

P7 ST release lock    

C1 LD head_ptr    

C2 LD tail_ptr    

C6 LD message    

C7 ST new_head    

P1 TST try lock    

P3 LD tail_ptr    

P4 ST message    

P6 ST new_tail    

P7 ST release lock    

C1 LD head_ptr    

C2 LD tail_ptr    

C6 LD message    

C7 ST new_head    

  

How many state transitions occur per message in the steady state? 
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Question 7 (10 points): 

 

Your new architecture supports “remote access” for cached lines. This lets you assign a 

“home cache” for lines so that all memory operations will be sent over the network to 

operate remotely on the line without allocating it in the requesting cache. 

 

For example, if line 0x100 is homed to processor A, and processor B writes 0x100, then 

processor A’s cache will be updated and processor B’s will be unchanged. 

 

Assume the tail pointer is mapped to the producer’s cache, and the cache uses an MSI 

invalidate protocol (similar to Question 5). Once again, show the state of the tail pointer 

for the sequence of operations in the steady state and data/permission transfers: 

 
Operation Producer tail 

pointer state 

Consumer tail 

pointer state 

Transfers 

 I I  

P1 TST try lock    

P3 LD tail_ptr    

P4 ST message    

P6 ST new_tail    

P7 ST release lock    

C1 LD head_ptr    

C2 LD tail_ptr    

C6 LD message    

C7 ST new_head    

P1 TST try lock    

P3 LD tail_ptr    

P4 ST message    

P6 ST new_tail    

P7 ST release lock    

C1 LD head_ptr    

C2 LD tail_ptr    

C6 LD message    

C7 ST new_head    

 

How many state transitions occur per message in the steady state? 
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Part III: The Truth Will Set You Free (20 points) 
 

Question 1 – Peanuts (5 points): 

 

Snoopy coherence protocols rely on broadcast communication to detect sharing and 

updates. These are conventionally implemented using bus networks that allow for one 

message to be sent at a time to all nodes on the network. 

 

Ben Bitdiddle is implementing a bus-based snoopy coherence protocol. One fifth of 

instructions access memory, and one quarter of these miss in the core’s local cache 

(either because the line is invalid or doesn’t have necessary permissions). Assuming each 

memory operation consists of a request and acknowledgement, the network traffic per 

core is therefore: 
1

5
×

1

4
× 2 =

1

10

messages

instruction
. Assume all messages fit within a single 

network flit. 

 

Assuming a fixed IPC of 1, perfect bus arbitration, and infinite buffers, how many cores 

can the bus support? 
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Question 2 – …To rule them all (10 points): 

 

Ben needs to build a larger system than the bus network will allow, so he changes the 

system to use a unidirectional ring network. In this design, the core issuing the memory 

operation sends the request around the ring, and each node along the way either forwards 

the request or replaces it with its response. Assuming fixed IPC of 1 and a single-cycle 

per hop in the network, at how many cores will this design saturate? 
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Question 3 – Matryoshka (5 points): 

 

Ben next explores the tradeoffs in cache design between an inclusive cache, where the 

parent always has a copy of every line in the child’s cache, and non-inclusive caches, 

where this isn’t guaranteed. 

 

Give one advantage and one disadvantage of a non-inclusive cache design. 


