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CPU-Memory Bottleneck 

Memory CPU 

Performance of high-speed computers is usually 

limited by memory latency, bandwidth, and energy 

• Latency (time for a single access) 
Memory access time >> Processor cycle time 

• Bandwidth (number of accesses per unit time) 
if fraction m of instructions access memory, 

 1+m memory references / instruction 

 CPI = 1 requires 1+m memory refs / cycle 

even if we can hide latency, bandwidth limits throughput! 

energy/access >> energy/compute op for large memories 
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Memory Technology 

• Early machines used a variety of memory technologies 
– Manchester Mark I used CRT Memory Storage 
– EDSAC used a mercury delay line 

 

• Core memory was first large-scale reliable main memory 
– Invented by Forrester in late 40s at MIT for Whirlwind project 
– Bits stored as magnetization polarity on small ferrite cores threaded onto 2 

dimensional grid of wires 
 

• First commercial dynamic RAM (DRAM) was Intel 1103 
– 1Kbit of storage on single chip 
– charge on a capacitor used to hold value 

 

• Semiconductor memory quickly replaced core in 1970s 
– Intel formed to exploit market for semiconductor memory 

 

• Flash memory 
– Slower, but denser than DRAM. Also non-volatile, but with wearout issues 

 

• Emerging memory technologies looking promising for the future 
– e.g., phase-change memory (PCM) is slightly slower than DRAM, but much denser 

and non-volatile 
 

L06- 3 



 Sanchez & Emer 
 

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823  

DRAM Architecture 
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• Bits stored in 2-dimensional arrays on chip 

• Modern chips have around 4 logical banks on each chip 

– Each logical bank physically implemented as many smaller arrays 

Dense 
Needs refresh 
Reads are 

destructive 
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DRAM Timing 
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DRAM Spec: 
   CL, tRCD, tRP, tRAS,  e.g., 12-12-12-30 
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6-Transistor SRAM Cell 

bitline bitline 

wordline 

1 0 

0 1 

Static RAM Cell 

• Write: 

1. Drive bitlines (bit=1, bit=0) 

2. Select wordline 

• Read: 

1. Precharge bit and bit to Vdd 

2. Select wordline 

3. Cell pulls one line low 

4. Column sense amp detects difference between bit & bit 

bitline bitline 

wordline 

1 
0 
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Processor-DRAM Latency Gap 
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Four-issue 4GHz superscalar accessing 60ns DRAM could 
execute 960 instructions during time for one memory access! 
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Little’s Law 

Throughput (T) = Number in Flight (N) / 
Latency (L) 

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823  

Memory Processor 
Table of 

accesses in  
flight 

Example:  
--- Assume infinite-bandwidth memory 
--- 100 cycles / memory reference 
--- 1 + 0.2 memory references / instruction 
  Table size = 1.2 * 100  = 120 entries  

 

120 independent memory operations in flight! 
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Multilevel Memory 

Strategy: Reduce average latency & energy by using 
caches, small and fast memories that retain 
recently-accessed data. 

Caches work thanks to locality of reference, the 
empirical observation that the patterns of memory 
references made by a processor are often highly 
predictable: 

                            PC                

             …                 96 
loop: ADD r2, r1, r1  100 

  SUBI r3, r3, #1  104 

  BNEZ r3, loop   108 

               …          112 
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Typical Memory Reference Patterns 
Address 

Time 

Instruction 

   fetches 

Stack 

accesses 

Data 

accesses 

n loop iterations 

subroutine 

call 
subroutine 

return 

argument access 

scalar accesses 
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Common Predictable Patterns 

 

Two predictable properties of memory references: 

 

– Temporal Locality: If a location is referenced it 
is likely to be referenced again in the near 
future. 
 

– Spatial Locality: If a location is referenced it is 
likely that locations near it will be referenced in 
the near future. 
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Memory Hierarchy 

• size:  Register << SRAM << DRAM    why? 
• latency:  Register << SRAM << DRAM    why? 
• bandwidth:  on-chip >> off-chip         why? 

 

On a data access: 
hit (data  fast memory)      low latency access 
miss (data  fast memory)  long latency access (DRAM) 

Small, 
Fast Memory 
(Regs, SRAM) 

CPU 
Big, Slow 
Memory 
(DRAM) 

A B 

holds frequently used data 
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Management of Memory Hierarchy 

• Small/fast storage, e.g., registers 

– Address usually specified in instruction 

– Generally implemented directly as a register file 

• but hardware might do things behind software’s back, 
e.g., stack management, register renaming 

 

• Large/slower storage, e.g., memory 

– Address usually computed from values in register 

– Generally implemented as a cache hierarchy 

• hardware decides what is kept in fast memory 

• but software may provide “hints”, e.g., don’t cache or 
prefetch 
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Inside a Cache 

CACHE Processor  Main 
Memory  

Address Address 

Data Data 

  Address 
     Tag 

Data Block 

Data 
Byte 

Data 
Byte 

Data 
Byte 

Line 100 

304 

6848 

copy of main memory 
location 100 

copy of main memory 
location 101 

 416 

How many bits are needed in tag? 

Enough to uniquely identify block 
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Cache Algorithm (Read) 

   Look at Processor Address, search cache tags to find 
match.  Then either 

Found in cache 
a.k.a.  HIT 

Return copy 
of data from 
cache 

Not in cache 
a.k.a. MISS 

Read block of data from 
Main Memory 
 
Wait …  
 
Return data to processor 
and update cache 

Q: Which line do we replace? 
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Direct-Mapped Cache 
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  Tag Data Block   V 

 = 

Offset   Tag Index 

 t  k  b 

 t 

HIT Data Word or Byte 

  2k 

lines 

Block number Block offset  

What is a bad reference pattern? 
Strided at size of cache 
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Direct-Mapped Address Selection 
higher-order vs. lower-order address bits 
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Why might this be undesirable? 

Spatially local blocks conflict 
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Hashed Address Selection 
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  Tag Data Block   V 

 = 

Offset 
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lines 

Address 

Hash 

What are the tradeoffs of hashing? 

Good:  Regular strides don’t conflict 
Bad:  Hash adds latency 
 Tag is larger 
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2-Way Set-Associative Cache 
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Set-Associative RAM-Tag Cache 

Parallel lookup: 

–Tag and data word is 
read from every way 

–Not energy efficient 

Serial lookup: 

–First read tags, then 
just read data from 
selected way 

–More energy efficient 

–Doubles latency in L1 

–OK, for L2 and above, 
why? 

=? =? 

Tag  Status    Data Tag  Status    Data 

 Tag        Index        Offset 
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Placement Policy 
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Set Number 

Cache 

0 1 2 3 4 5 6 7 8 9 

1 1 1 1 1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9 

2 2 2 2 2 2 2 2 2 2 
0 1 2 3 4 5 6 7 8 9 

3 3 
0 1 

Memory 

Block Number 

block 12  
can be placed 

0 1 2 3 4 5 6 7 

      Direct 
    Mapped 
    only into 
     block 4  
(12 mod 8) 

     Fully 
Associative 
Anywhere 

0     1      2     3 

(2-way) Set 
Associative 
anywhere in 
    set 0 
(12 mod 4) 
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Fully-Associative Cache 
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Improving Cache Performance 

Average memory access time = 
  Hit time + Miss rate x Miss penalty 
 
To improve performance: 

• reduce the hit time 
• reduce the miss rate (e.g., larger, better policy) 
• reduce the miss penalty (e.g., L2 cache) 

 
What is the simplest design strategy? 

Biggest cache that doesn’t increase hit time past 1-2 cycles 

(approx 8-32KB in modern technology) 

[design issues more complex with out-of-order superscalar processors] 
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Causes for Cache Misses 

• Compulsory:   

first-reference to a block a.k.a. cold start misses 
 - misses that would occur even with infinite cache 

 
• Capacity:   

cache is too small to hold all data the program needs 
 - misses that would occur even with fully-associative cache 

 
• Conflict: 

misses from collisions due to limited associativity 
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Effect of Cache Parameters on Performance 

Larger 
capacity 

cache 

Higher 
associativity 

cache 

Larger block 
size cache 

Compulsory misses 

Capacity misses 

Conflict misses 

Hit latency 

Miss latency 

? 
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Block-level Optimizations 

• Tags are too large, i.e., too much overhead 

– Simple solution: Larger blocks, but miss penalty 
could be large. 

• Sub-block placement (aka sector cache) 

– A valid bit added to units smaller than the full block, 
called sub-blocks 

– Only read a sub-block on a miss 

– If a tag matches, is the word in the cache? 

 

100 

300 

204 

1             1              1             1   

1         1              0             0 

0             1              0             1 
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Replacement Policy 
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Which block from a set should be evicted? 
 

• Random 
 

• Least Recently Used (LRU) 
• LRU cache state must be updated on every access 
• true implementation only feasible for small sets (2-way) 
• pseudo-LRU binary tree was often used for 4-8 way 
 

• First In, First Out (FIFO) a.k.a. Round-Robin 
• used in highly associative caches 

 
• Not Least Recently Used (NLRU) 

• FIFO with exception for most recently used block or blocks 
 

• One-bit LRU 
• Each way represented by a bit. Set on use, replace first unused. 
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Re-Reference Interval Prediction 
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C A F B tag 

RRI 

B C A F H F E F 

C A F B tag 

RRIP 

miss Time 

0        1        2       3        4         5       6 

4 5 0 3 

Best candidate? 

A 

0 1 0 0 

References: 

One-bit LRU RRIP 3 0 1 2 
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Multiple Replacement Policies 
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0: Policy A 
  1: Policy B 

Counter 

+1 

>0 

-1 

0: Policy A Missed 
  1: Policy B Missed 

Policy A 
Policy B 

S
e
ts

 

Cache 

Miss 

How do we decide 
which policy to use? 

Use the best replacement policy for a program 
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Multilevel Caches 

• A memory cannot be large and fast 

• Add level of cache to reduce miss penalty 
– Each level can have longer latency than level above 

– So, increase sizes of cache at each level 

 

CPU L1 L2 DRAM 

Metrics: 

     Local miss rate = misses in cache/ accesses to cache 

     Global miss rate = misses in cache / CPU memory accesses 

     Misses per instruction = misses in cache / number of instructions 
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Inclusion Policy 

• Inclusive multilevel cache:  
– Inner cache data must also be in the outer cache 

– External accesses need only check outer cache 

– Most common case   
  

• Non-inclusive multilevel cache: 
– Inner cache may hold data not in outer cache 

– On a miss, both inner and outer level store a copy of the data 

 

• Exclusive multilevel caches: 
– Inner cache data is not outer cache 

– Swap lines between inner/outer caches on miss 

– Used in AMD Athlon with 64KB primary and 256KB secondary 
cache 

 

Why choose one type or the other? 
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Write Policy 

• Write-through: Propagate writes to the next 
level in the hierarchy 
– Keeps next-level cache / memory updated 

– Simple, high-bandwidth 

 

• Write-back: Writes not propagated to next 
level until we replace the block 
– Contents of next-level cache / memory can be stale 

– Complex, lower bandwidth 
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Victim Caches (HP 7200) 

Victim cache: A small associative cache, added to a direct-mapped 
cache, which holds recently evicted lines 
• First look up in direct-mapped cache 
• If miss, look in victim cache 
• If hit in victim cache, swap hit line with line now evicted from L1 
• If miss in victim cache, L1 victim -> VC, VC victim->? 
Fast hit time of direct-mapped but with reduced conflict misses 

L1 Data 
Cache 

Unified L2 
Cache 

CPU 

Evicted data from L1 

Evicted data from VC 

where ? 

Hit data (miss in L1) 
Victim Cache 
FA, 4 blocks 
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Way Predicting Caches 
(MIPS R10000 L2 cache) 

• Use processor address to index into way 
prediction table 

• Look in predicted way at given index, 
then: 
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HIT MISS 

Return copy 

of data from 

cache 

Look in other way 

 

 

 

Read block of data from 

next level of cache 

MISS 

SLOW HIT 

(change entry in 

prediction table) 
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Way Predicting Instruction Cache  
(Alpha 21264-like) 

  

PC 

addr inst 
Primary 
Instruction 
Cache 

0x4 
Add 

Sequential Way 

Branch Target Way 

way 

Jump target 

Jump  
control 
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Typical Memory Hierarchies 
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Thank you ! 

 

Next lecture – virtual memory 


