
http://www.csg.csail.mit.edu/6.823

Daniel Sanchez
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Cache Organization

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

CPU-Memory Bottleneck

Memory CPU

Performance of high-speed computers is usually

limited by memory latency, bandwidth, and energy

• Latency (time for a single access)
Memory access time >> Processor cycle time

• Bandwidth (number of accesses per unit time)
if fraction m of instructions access memory,

 1+m memory references / instruction

 CPI = 1 requires 1+m memory refs / cycle

even if we can hide latency, bandwidth limits throughput!

energy/access >> energy/compute op for large memories

L06- 2

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Memory Technology

• Early machines used a variety of memory technologies
– Manchester Mark I used CRT Memory Storage
– EDSAC used a mercury delay line

• Core memory was first large-scale reliable main memory
– Invented by Forrester in late 40s at MIT for Whirlwind project
– Bits stored as magnetization polarity on small ferrite cores threaded onto 2

dimensional grid of wires

• First commercial dynamic RAM (DRAM) was Intel 1103
– 1Kbit of storage on single chip
– charge on a capacitor used to hold value

• Semiconductor memory quickly replaced core in 1970s
– Intel formed to exploit market for semiconductor memory

• Flash memory
– Slower, but denser than DRAM. Also non-volatile, but with wearout issues

• Emerging memory technologies looking promising for the future
– e.g., phase-change memory (PCM) is slightly slower than DRAM, but much denser

and non-volatile

L06- 3

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

DRAM Architecture

R
o
w

 A
d
d
re

s
s

D
e
c
o
d
e
r

Col.
1

Col.
2M

Row 1

Row 2N

Sense Amplifiers &
Row Buffer

M

N

Addr
bus

bit lines
word lines

Memory cell
(one bit)

D Data

• Bits stored in 2-dimensional arrays on chip

• Modern chips have around 4 logical banks on each chip

– Each logical bank physically implemented as many smaller arrays

Dense
Needs refresh
Reads are

destructive

L06- 4

 Sanchez & Emer

DRAM Timing

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

DRAM Spec:
 CL, tRCD, tRP, tRAS, e.g., 12-12-12-30

L06- 5

 Sanchez & Emer

6-Transistor SRAM Cell

bitline bitline

wordline

1 0

0 1

Static RAM Cell

• Write:

1. Drive bitlines (bit=1, bit=0)

2. Select wordline

• Read:

1. Precharge bit and bit to Vdd

2. Select wordline

3. Cell pulls one line low

4. Column sense amp detects difference between bit & bit

bitline bitline

wordline

1
0

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

L06- 6

No refresh
Non-destructive-reads

no row buffer
Lower density

 Sanchez & Emer

Processor-DRAM Latency Gap

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Four-issue 4GHz superscalar accessing 60ns DRAM could
execute 960 instructions during time for one memory access!

L06- 7

 Sanchez & Emer

Little’s Law

Throughput (T) = Number in Flight (N) /
Latency (L)

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Memory Processor
Table of

accesses in
flight

Example:
--- Assume infinite-bandwidth memory
--- 100 cycles / memory reference
--- 1 + 0.2 memory references / instruction
 Table size = 1.2 * 100 = 120 entries

120 independent memory operations in flight!

L06- 8

 Sanchez & Emer

Multilevel Memory

Strategy: Reduce average latency & energy by using
caches, small and fast memories that retain
recently-accessed data.

Caches work thanks to locality of reference, the
empirical observation that the patterns of memory
references made by a processor are often highly
predictable:

 PC

 … 96
loop: ADD r2, r1, r1 100

 SUBI r3, r3, #1 104

 BNEZ r3, loop 108

 … 112

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

L06- 9

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Typical Memory Reference Patterns
Address

Time

Instruction

 fetches

Stack

accesses

Data

accesses

n loop iterations

subroutine

call
subroutine

return

argument access

scalar accesses

L06- 10

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Common Predictable Patterns

Two predictable properties of memory references:

– Temporal Locality: If a location is referenced it
is likely to be referenced again in the near
future.

– Spatial Locality: If a location is referenced it is
likely that locations near it will be referenced in
the near future.

L06- 11

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Memory Hierarchy

• size: Register << SRAM << DRAM why?
• latency: Register << SRAM << DRAM why?
• bandwidth: on-chip >> off-chip why?

On a data access:
hit (data fast memory) low latency access
miss (data fast memory) long latency access (DRAM)

Small,
Fast Memory
(Regs, SRAM)

CPU
Big, Slow
Memory
(DRAM)

A B

holds frequently used data

L06- 12

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Management of Memory Hierarchy

• Small/fast storage, e.g., registers

– Address usually specified in instruction

– Generally implemented directly as a register file

• but hardware might do things behind software’s back,
e.g., stack management, register renaming

• Large/slower storage, e.g., memory

– Address usually computed from values in register

– Generally implemented as a cache hierarchy

• hardware decides what is kept in fast memory

• but software may provide “hints”, e.g., don’t cache or
prefetch

L06- 13

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Inside a Cache

CACHE Processor Main
Memory

Address Address

Data Data

 Address
 Tag

Data Block

Data
Byte

Data
Byte

Data
Byte

Line 100

304

6848

copy of main memory
location 100

copy of main memory
location 101

 416

How many bits are needed in tag?

Enough to uniquely identify block

L06- 14

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Cache Algorithm (Read)

 Look at Processor Address, search cache tags to find
match. Then either

Found in cache
a.k.a. HIT

Return copy
of data from
cache

Not in cache
a.k.a. MISS

Read block of data from
Main Memory

Wait …

Return data to processor
and update cache

Q: Which line do we replace?

L06- 15

 Sanchez & Emer

Direct-Mapped Cache

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

 Tag Data Block V

 =

Offset Tag Index

 t k b

 t

HIT Data Word or Byte

 2k

lines

Block number Block offset

What is a bad reference pattern?
Strided at size of cache

L06- 16

 Sanchez & Emer

Direct-Mapped Address Selection
higher-order vs. lower-order address bits

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

 Tag Data Block V

 =

Offset Index

 t k
 b

 t

HIT Data Word or Byte

 2k

lines

Tag

Why might this be undesirable?

Spatially local blocks conflict

L06- 17

 Sanchez & Emer

Hashed Address Selection

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

 Tag Data Block V

 =

Offset

 t
 b

 t

HIT Data Word or Byte

 2k

lines

Address

Hash

What are the tradeoffs of hashing?

Good: Regular strides don’t conflict
Bad: Hash adds latency
 Tag is larger

L06- 18

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

2-Way Set-Associative Cache

 Tag Data Block V

 =

Block
Offset

 Tag Index

 t
 k

 b

HIT

 Tag Data Block V

Data
Word
or Byte

 =

 t

L06- 19

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Set-Associative RAM-Tag Cache

Parallel lookup:

–Tag and data word is
read from every way

–Not energy efficient

Serial lookup:

–First read tags, then
just read data from
selected way

–More energy efficient

–Doubles latency in L1

–OK, for L2 and above,
why?

=? =?

Tag Status Data Tag Status Data

 Tag Index Offset

L06- 20

 Sanchez & Emer

Placement Policy

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Set Number

Cache

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12
can be placed

0 1 2 3 4 5 6 7

 Direct
 Mapped
 only into
 block 4
(12 mod 8)

 Fully
Associative
Anywhere

0 1 2 3

(2-way) Set
Associative
anywhere in
 set 0
(12 mod 4)

L06- 21

 Sanchez & Emer

Fully-Associative Cache

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

 Tag Data Block V

 =

B
lo

c
k

O
ff

s
e
t

T
a
g

 t

 b

HIT

Data
Word
or Byte

 =

 =

 t

L06- 22

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Improving Cache Performance

Average memory access time =
 Hit time + Miss rate x Miss penalty

To improve performance:

• reduce the hit time
• reduce the miss rate (e.g., larger, better policy)
• reduce the miss penalty (e.g., L2 cache)

What is the simplest design strategy?

Biggest cache that doesn’t increase hit time past 1-2 cycles

(approx 8-32KB in modern technology)

[design issues more complex with out-of-order superscalar processors]

L06- 23

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Causes for Cache Misses

• Compulsory:

first-reference to a block a.k.a. cold start misses
 - misses that would occur even with infinite cache

• Capacity:

cache is too small to hold all data the program needs
 - misses that would occur even with fully-associative cache

• Conflict:

misses from collisions due to limited associativity

L06- 24

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Effect of Cache Parameters on Performance

Larger
capacity

cache

Higher
associativity

cache

Larger block
size cache

Compulsory misses

Capacity misses

Conflict misses

Hit latency

Miss latency

?

L06- 25

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Block-level Optimizations

• Tags are too large, i.e., too much overhead

– Simple solution: Larger blocks, but miss penalty
could be large.

• Sub-block placement (aka sector cache)

– A valid bit added to units smaller than the full block,
called sub-blocks

– Only read a sub-block on a miss

– If a tag matches, is the word in the cache?

100

300

204

1 1 1 1

1 1 0 0

0 1 0 1

L06- 26

 Sanchez & Emer

Replacement Policy

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Which block from a set should be evicted?

• Random

• Least Recently Used (LRU)
• LRU cache state must be updated on every access
• true implementation only feasible for small sets (2-way)
• pseudo-LRU binary tree was often used for 4-8 way

• First In, First Out (FIFO) a.k.a. Round-Robin
• used in highly associative caches

• Not Least Recently Used (NLRU)

• FIFO with exception for most recently used block or blocks

• One-bit LRU
• Each way represented by a bit. Set on use, replace first unused.

L06- 27

 Sanchez & Emer

Re-Reference Interval Prediction

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

C A F B tag

RRI

B C A F H F E F

C A F B tag

RRIP

miss Time

0 1 2 3 4 5 6

4 5 0 3

Best candidate?

A

0 1 0 0

References:

One-bit LRU RRIP 3 0 1 2

L06- 28

 Sanchez & Emer

Multiple Replacement Policies

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

0: Policy A
 1: Policy B

Counter

+1

>0

-1

0: Policy A Missed
 1: Policy B Missed

Policy A
Policy B

S
e
ts

Cache

Miss

How do we decide
which policy to use?

Use the best replacement policy for a program

L06- 29

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Multilevel Caches

• A memory cannot be large and fast

• Add level of cache to reduce miss penalty
– Each level can have longer latency than level above

– So, increase sizes of cache at each level

CPU L1 L2 DRAM

Metrics:

 Local miss rate = misses in cache/ accesses to cache

 Global miss rate = misses in cache / CPU memory accesses

 Misses per instruction = misses in cache / number of instructions

L06- 30

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Inclusion Policy

• Inclusive multilevel cache:
– Inner cache data must also be in the outer cache

– External accesses need only check outer cache

– Most common case

• Non-inclusive multilevel cache:
– Inner cache may hold data not in outer cache

– On a miss, both inner and outer level store a copy of the data

• Exclusive multilevel caches:
– Inner cache data is not outer cache

– Swap lines between inner/outer caches on miss

– Used in AMD Athlon with 64KB primary and 256KB secondary
cache

Why choose one type or the other?

L06- 31

 Sanchez & Emer

Write Policy

• Write-through: Propagate writes to the next
level in the hierarchy
– Keeps next-level cache / memory updated

– Simple, high-bandwidth

• Write-back: Writes not propagated to next
level until we replace the block
– Contents of next-level cache / memory can be stale

– Complex, lower bandwidth

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

L06- 32

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Victim Caches (HP 7200)

Victim cache: A small associative cache, added to a direct-mapped
cache, which holds recently evicted lines
• First look up in direct-mapped cache
• If miss, look in victim cache
• If hit in victim cache, swap hit line with line now evicted from L1
• If miss in victim cache, L1 victim -> VC, VC victim->?
Fast hit time of direct-mapped but with reduced conflict misses

L1 Data
Cache

Unified L2
Cache

CPU

Evicted data from L1

Evicted data from VC

where ?

Hit data (miss in L1)
Victim Cache
FA, 4 blocks

L06- 33

 Sanchez & Emer

Way Predicting Caches
(MIPS R10000 L2 cache)

• Use processor address to index into way
prediction table

• Look in predicted way at given index,
then:

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

HIT MISS

Return copy

of data from

cache

Look in other way

Read block of data from

next level of cache

MISS

SLOW HIT

(change entry in

prediction table)

L06- 34

 Sanchez & Emer

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

Way Predicting Instruction Cache
(Alpha 21264-like)

PC

addr inst
Primary
Instruction
Cache

0x4
Add

Sequential Way

Branch Target Way

way

Jump target

Jump
control

L06- 35

 Sanchez & Emer

Typical Memory Hierarchies

Februrary 25, 2015 http://www.csg.csail.mit.edu/6.823

L06- 36

http://www.csg.csail.mit.edu/6.823

Thank you !

Next lecture – virtual memory

