
http://www.csg.csail.mit.edu/6.823

Complex Pipelining

Joel Emer
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Sanchez & Emer

March 4, 2015

L10-2

Complex Pipelining: Motivation

Instruction pipelining becomes complex when we
want high performance in the presence of

• Multi-cycle operations, for example:
• Long latency divides, or
• Full or partially pipelined floating-point units

• Variable latency operations, for example:

• Memory systems with variable access time

• Replicated function units, for example:
• Multiple floating point or memory units

Sanchez & Emer

March 4, 2015

L10-3

CDC 6600 Seymour Cray, 1963

• A fast pipelined machine with 60-bit words
– 128 Kword main memory capacity, 32 banks

• Ten functional units (parallel, unpipelined)
– Floating Point: adder, 2 multipliers, divider

– Integer: adder, 2 incrementers, ...

• Hardwired control (not microprogrammed)

• Dynamic scheduling of instructions using a
scoreboard

• Ten Peripheral Processors for Input/Output
– a fast multi-threaded 12-bit integer ALU

• Very fast clock, 10 MHz (FP add in 4 clocks)

• >400,000 transistors, 750 sq. ft., 5 tons,
150 kW, new freon-based cooling technology

• Fastest machine in world for 5 years (until
7600)
– Over 100 sold ($7-10M each)

Sanchez & Emer

March 4, 2015

L10-4

CDC 6600: Datapath

Address Regs Index Regs
 8 x 18-bit 8 x 18-bit

Operand Regs
8 x 60-bit

Inst. Stack
8 x 60-bit

IR

10 Functional
Units

Central
Memory

result
addr

result

operand

oprnd
addr

Sanchez & Emer

March 4, 2015

L10-5

• Separate instructions to manipulate three types of reg.
8 60-bit data registers (X)
8 18-bit address registers (A)
8 18-bit index registers (B)

• All arithmetic and logic instructions are reg-to-reg

• Only Load and Store instructions refer to memory!

 Touching address registers 1 to 5 initiates a load
 6 to 7 initiates a store

 - very useful for vector operations

 6 3 3 3

opcode i j k Ri (Rj) op (Rk)

CDC 6600:
A Load/Store Architecture

 6 3 3 18

opcode i j disp Ri M[(Rj) + disp]

Sanchez & Emer

March 4, 2015

L10-6

CDC6600: Vector Addition

B1 - n
loop: JZE B1, exit

A1 B1 + a1 load X1
A2 B1 + b1 load X2
X6 X1 + X2
A6 B1 + c1 store X6
B1 B1 + 1
jump loop

Ai = address register
Bi = index register
Xi = data register

more on vector processing later…

http://www.csg.csail.mit.edu/6.823

We will present complex
pipelining issues more
abstractly …

Sanchez & Emer

March 4, 2015

L10-8

Floating Point ISA

Interaction between the Floating point datapath
and the Integer datapath is determined largely
by the ISA

MIPS ISA

• separate register files for FP and Integer instructions
the only interaction is via a set of move
instructions (some ISA’s don’t even permit this)

• separate load/store for FPR’s and GPR’s but both
 use GPR’s for address calculation
• separate conditions for branches

FP branches are defined in terms of condition codes

Sanchez & Emer

March 4, 2015

L10-9

Floating Point Unit

Much more hardware than an integer unit

Single-cycle floating point unit is a bad idea - why?

• it is common to have several floating point units

• it is common to have different types of FPUs
 Fadd, Fmul, Fdiv, ...

• an FPU may be pipelined, partially pipelined or not
 pipelined

To operate several FPUs concurrently the register
file needs to have more read and write ports

Sanchez & Emer

March 4, 2015

L10-10

Functional Unit Characteristics

fully
pipelined

partially
pipelined

Functional units have internal pipeline registers

 operands are latched when an instruction
enters a functional unit

 inputs to a functional unit (e.g., register file)
 can change during a long latency operation

busy 1cyc 1cyc 1cyc accept

busy
2 cyc 2 cyc accept

Sanchez & Emer

March 4, 2015

L10-11

Realistic Memory Systems

Latency of access to the main memory is
usually much higher than one cycle and often
unpredictable

Solving this problem is a central issue in computer

architecture

Common approaches to improving memory
performance

• separate instruction and data memory ports
 no self-modifying code

• caches
single cycle except in case of a miss stall

• interleaved memory
multiple memory accesses bank conflicts

• split-phase memory operations
 out-of-order responses

Sanchez & Emer

March 4, 2015

L10-12

Complex Pipeline Structure

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

Sanchez & Emer

March 4, 2015

L10-13

Complex Pipeline Control Issues

• Structural conflicts at the execution stage if some
FPU or memory unit is not pipelined and takes
more than one cycle

• Structural conflicts at the write-back stage due to
variable latencies of different function units

• Out-of-order write hazards due to variable
latencies of different function units

• How to handle exceptions?

Sanchez & Emer

March 4, 2015

L10-14

Complex In-Order Pipeline

• Delay writeback so all
operations have same
latency to W stage
– Write ports never

oversubscribed (one inst.
in & one inst. out every
cycle)

Commit

Point

PC
Inst.

Mem
D Decode X1 X2

Data

Mem W + GPRs

X2 W Fadd X3

X3

FPRs X1

X2 Fmul X3

X2 FDiv X3

Unpipelined

divider

How to prevent increased
writeback latency from
slowing down single cycle
integer operations?

Bypassing

Sanchez & Emer

March 4, 2015

L10-15

Complex In-Order Pipeline

Commit

Point

PC
Inst.

Mem
D Decode X1 X2

Data

Mem W + GPRs

X2 W Fadd X3

X3

FPRs X1

X2 Fmul X3

X2 FDiv X3

Unpipelined

divider

• Stall pipeline on long
latency operations, e.g.,
divides, cache misses

How should we handle

data hazards for very

long latency operations?

• Speculate that exceptions
won’t occur and detect
them and recover in
program order at commit
point

Exceptions?

Sanchez & Emer

March 4, 2015

L10-16

Superscalar In-Order Pipeline

• Fetch two instructions
per cycle; issue both
simultaneously if one is
integer/memory and
other is floating-point

• Inexpensive way of
increasing throughput
– Examples:

 Alpha 21064 (1992)
 MIPS R5000 series (1996)

• Can be extended to
wider issue but register
file ports and bypassing
costs grow quickly
– E.g., 4-issue UltraSPARC

Commit

Point

2
PC

Inst.

Mem
D

Dual

Decode X1 X2
Data

Mem W + GPRs

X2 W Fadd X3

X3

FPRs X1

X2 Fmul X3

X2 FDiv X3

Unpipelined

divider

http://www.csg.csail.mit.edu/6.823

Dependence Analysis:

Needed to Exploit Instruction-level Parallelism

Sanchez & Emer

March 4, 2015

L10-18

Data-dependence
r3 (r1) op (r2) Read-after-Write
r5 (r3) op (r4) (RAW) hazard

Types of Data Hazards

Consider executing a sequence of
 rk (ri) op (rj)
type of instructions

Anti-dependence
r3 (r1) op (r2) Write-after-Read
r1 (r4) op (r5) (WAR) hazard

Output-dependence
r3 (r1) op (r2) Write-after-Write
r3 (r6) op (r7) (WAW) hazard

Sanchez & Emer

March 4, 2015

L10-19

Detecting Data Hazards

Range and Domain of instruction i
R(i) = Registers (or other storage) modified by

 instruction i

D(i) = Registers (or other storage) read by

 instruction i

Suppose instruction j follows instruction i in the
program order. Executing instruction j before the
effect of instruction i has taken place can cause a

RAW hazard if R(i) D(j)

WAR hazard if D(i) R(j)

WAW hazard if R(i) R(j)

Sanchez & Emer

March 4, 2015

L10-20

Register vs. Memory
Data Dependence

• Data hazards due to register operands
can be determined at the decode stage
but

• Data hazards due to memory operands
can be determined only after computing
the effective address

store M[(r1) + disp1] (r2)

load r3 M[(r4) + disp2]

Does (r1 + disp1) = (r4 + disp2) ?

Sanchez & Emer

March 4, 2015

L10-21

Data Hazards: An Example

I1 DIVD f6, f6, f4

I2 LD f2, 45(r3)

I3 MULTD f0, f2, f4

I4 DIVD f8, f6, f2

I5 SUBD f10, f0, f6

I6 ADDD f6, f8, f2

RAW Hazards

WAR Hazards

WAW Hazards

Sanchez & Emer

March 4, 2015

L10-22

Instruction Scheduling

I6

I2

I4

I1

I5

I3

Valid orderings:
in-order I1 I2 I3 I4 I5 I6

out-of-order

out-of-order

I1 DIVD f6, f6, f4

I2 LD f2, 45(r3)

I3 MULTD f0, f2, f4

I4 DIVD f8, f6, f2

I5 SUBD f10, f0, f6

I6 ADDD f6, f8, f2

I2 I1 I3 I4 I5 I6

I1 I2 I3 I5 I4 I6

Sanchez & Emer

March 4, 2015

L10-23

Out-of-order Completion
In-order Issue

 Latency
I1 DIVD f6, f6, f4 4

I2 LD f2, 45(r3) 1

I3 MULTD f0, f2, f4 3

I4 DIVD f8, f6, f2 4

I5 SUBD f10, f0, f6 1

I6 ADDD f6, f8, f2 1

in-order comp 1 2

out-of-order comp 1 2

1 2 3 4 3 5 4 6 5 6

2 3 1 4 3 5 5 4 6 6

What problems can out-of-order comp cause? Data hazards

http://www.csg.csail.mit.edu/6.823

Scoreboard:
A Hardware Data Structure to
Detect Hazards Dynamically

Sanchez & Emer

March 4, 2015

L10-25

Complex Pipeline

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

Can we solve write
hazards without
equalizing all pipeline
depths and without
bypassing?

Sanchez & Emer

March 4, 2015

L10-26

When is it Safe to Issue an Instruction?

• Approach: Stall issue until sure that issuing
will cause no dependence problems…

• Suppose a data structure keeps track of all
the instructions in all the functional units

• The following checks need to be made before
the Issue stage can dispatch an instruction

– Is the required function unit available?

– Is the input data available? RAW?

– Is it safe to write the destination? WAR? WAW?

– Is there a structural conflict at the WB stage?

Sanchez & Emer

March 4, 2015

L10-27

A Data Structure for Correct Issues
Keeps track of the status of Functional Units

The instruction i at the Issue stage consults this table

FU available?
RAW?
WAR?
WAW?

An entry is added to the table if no hazard is detected;
An entry is removed from the table after Write-Back

 Name Busy Op Dest Src1 Src2
Int
Mem
Add1
Add2
Add3
Mult1
Mult2
Div

check the busy column
search the dest column for i’s sources
search the source columns for i’s destination
search the dest column for i’s destination

Sanchez & Emer

March 4, 2015

L10-28

Simplifying the Data Structure
Assuming In-order Issue

• Suppose the instruction is not dispatched
by the Issue stage

• If a RAW hazard exists

• or if the required FU is busy,

• and if operands are latched by functional unit
on issue

Can the dispatched instruction cause a
WAR hazard ?

WAW hazard ?

NO: Operands read at issue

YES: Out-of-order completion

Sanchez & Emer

March 4, 2015

L10-29

Simplifying the Data Structure ...

• No WAR hazard
 no need to keep src1 and src2

• The Issue stage does not dispatch an
instruction in case of a WAW hazard
 a register name can occur at most once in the

dest column

• WP[reg#] : a bit-vector to record the
registers for which writes are pending
– These bits are set to true by the Issue stage

and set to false by the WB stage

Each pipeline stage in the FU's must carry the
dest field and a flag to indicate if it is valid
 “the (we, ws) pair”

Sanchez & Emer

March 4, 2015

L10-30

Scoreboard for In-order Issues

Busy[FU#] : a bit-vector to indicate FU’s availability.

 (FU = Int, Add, Mult, Div)
These bits are hardwired to FU's.

WP[reg#] : a bit-vector to record the registers for which

 writes are pending.
These bits are set to true by the Issue stage and set to
false by the WB stage

Issue checks the instruction (opcode dest src1 src2)
against the scoreboard (Busy & WP) to dispatch

FU available?
RAW?
WAR?

WAW?

Busy[FU#]
WP[src1] or WP[src2]
cannot arise
WP[dest]

Sanchez & Emer

March 4, 2015

L10-31

Scoreboard Dynamics

I1 DIVD f6, f6, f4
I2 LD f2, 45(r3)
I3 MULTD f0, f2, f4
I4 DIVD f8, f6, f2
I5 SUBD f10, f0, f6
I6 ADDD f6, f8, f2

Functional Unit Status Registers Reserved
Int(1) Add(1) Mult(3) Div(4) WB for Writes

 t0 I1 f6 f6

 t1 I2 f2 f6 f6, f2

 t2 f6 f2 f6, f2 I2

 t3 I3 f0 f6 f6, f0

 t4 f0 f6 f6, f0 I1

 t5 I4 f0 f8 f0, f8

 t6 f8 f0 f0, f8 I3

 t7 I5 f10 f8 f8, f10

 t8 f8 f10 f8, f10 I5

 t9 f8 f8 I4

t10 I6 f6 f6

t11 f6 f6 I6

Sanchez & Emer

Preview: Anatomy of a Modern
Out-of-Order Superscalar Core

• L09 (Today):
Complex pipes w/
in-order issue

• L10: Out-of-order
exec & renaming

• L11: Branch
prediction

• L12: Speculative
execution and
recovery

• L13: Advanced
Memory Ops

March 4, 2015

L10-32

I-Cache

Fetch Unit

Instruction Buffer

Decode/Rename

Dispatch

Branch

Predict

Int Int FP FP L/S L/S

Reservation Stations

Write Buffer

Retire

D-Cache

In
 O

rd
e

r
In

 O
rd

e
r

O
u

t
O

f
O

rd
e

r

Reorder Buffer

