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Complex Pipelining: Motivation 

Instruction pipelining becomes complex when we 
want high performance in the presence of 
 

• Multi-cycle operations, for example: 
• Long latency divides, or 
• Full or partially pipelined floating-point units 

 
• Variable latency operations, for example: 

• Memory systems with variable access time 
 

• Replicated function units, for example: 
• Multiple floating point or memory units 
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CDC 6600 Seymour Cray, 1963 

• A fast pipelined machine with 60-bit words 
– 128 Kword main memory capacity, 32 banks 

• Ten functional units (parallel, unpipelined) 
– Floating Point: adder, 2 multipliers, divider 

– Integer: adder, 2 incrementers, ... 

• Hardwired control (not microprogrammed) 

• Dynamic scheduling of instructions using a 
scoreboard 

• Ten Peripheral Processors for Input/Output 
– a fast multi-threaded 12-bit integer ALU 

• Very fast clock, 10 MHz (FP add in 4 clocks) 

• >400,000 transistors,  750 sq. ft., 5 tons, 
150 kW, new freon-based cooling technology 

• Fastest machine in world for 5 years (until 
7600) 
– Over 100 sold ($7-10M each) 
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CDC 6600: Datapath 

Address Regs     Index Regs 
  8 x 18-bit        8 x 18-bit 

Operand Regs 
8 x 60-bit 

Inst. Stack 
8 x 60-bit 

IR 

10 Functional 
Units 

Central 
Memory 

result 
addr 

result 

operand 

oprnd 
addr 
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• Separate instructions to manipulate three types of reg. 
8 60-bit data registers (X)   
8 18-bit address registers (A)  
8 18-bit index registers (B) 

 

• All arithmetic and logic instructions are reg-to-reg  
 
 
 
• Only Load and Store instructions refer to memory! 
 
 
 
 Touching address registers 1 to 5 initiates a load   
                  6 to 7 initiates a store  

 - very useful for vector operations 

      6    3      3      3  

opcode   i      j      k     Ri  (Rj) op (Rk) 

 

CDC 6600:  
A Load/Store Architecture 

    6       3     3                  18  

opcode   i     j                disp                  Ri  M[(Rj) + disp] 
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CDC6600: Vector Addition 

B1    - n 
loop: JZE   B1, exit 

A1    B1 + a1 load X1 
A2    B1 + b1  load X2 
X6    X1 + X2 
A6    B1 + c1  store X6 
B1    B1 + 1 
jump loop 

 

Ai = address register 
Bi = index register 
Xi = data register 

more on vector processing later…  
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We will present complex 
pipelining issues more 
abstractly … 
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Floating Point ISA 

Interaction between the Floating point datapath 
and the Integer datapath is determined largely 
by the ISA 
 
MIPS ISA  

• separate register files for FP and Integer instructions 
the only interaction is via a set of move 
instructions  (some ISA’s don’t even permit this) 

• separate load/store for FPR’s and GPR’s but both 
   use GPR’s for address calculation  
• separate conditions for branches 

FP branches are defined in terms of condition codes 
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Floating Point Unit 

Much more hardware than an integer unit 
 
Single-cycle floating point unit is a bad idea - why? 

 
• it is common to have several floating point units 
 

• it is common to have different types of FPUs  
    Fadd, Fmul, Fdiv, ... 

 
• an FPU may be pipelined, partially pipelined or not 
  pipelined 

 
To operate several FPUs concurrently the register  
file needs to have more read and write ports 
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Functional Unit Characteristics 

fully 
pipelined 

partially 
pipelined 

Functional units have internal pipeline registers 
 

   operands are latched when an instruction  
enters a functional unit  

   inputs to a functional unit (e.g., register file) 
     can change during a long latency operation 

busy 1cyc 1cyc 1cyc accept 

busy 
2 cyc 2 cyc accept 
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Realistic Memory Systems  

Latency of access to the main memory is 
usually much higher than one cycle and often 
unpredictable 

Solving this problem is a central issue in computer 

architecture  

Common approaches to improving memory 
performance 

• separate instruction and data memory ports  
  no self-modifying code 

• caches  
single cycle except in case of a miss   stall 

• interleaved memory  
multiple memory accesses   bank conflicts 

• split-phase memory operations 
  out-of-order responses 
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Complex Pipeline Structure 

IF ID WB 

ALU Mem 

Fadd 

Fmul 

Fdiv 

Issue 

GPRs 
FPRs 
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Complex Pipeline Control Issues 

• Structural conflicts at the execution stage if some  
FPU or memory unit is not pipelined and takes 
more than one cycle 

 

• Structural conflicts at the write-back stage due to  
variable latencies of different function units 

 

• Out-of-order write hazards due to variable  
latencies of different function units 

 

• How to handle exceptions? 
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Complex In-Order Pipeline 

• Delay writeback so all 
operations have same         
latency to W stage 
– Write ports never 

oversubscribed (one inst. 
in & one inst. out every 
cycle) 

 

Commit 

Point 

PC 
Inst. 

Mem 
D Decode X1 X2 

Data 

Mem W + GPRs 

X2 W Fadd X3 

X3 

FPRs X1 

X2 Fmul X3 

X2 FDiv X3 

Unpipelined 

divider 

How to prevent increased 
writeback latency from 
slowing down single cycle 
integer operations?  

Bypassing 
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Complex In-Order Pipeline 

Commit 

Point 

PC 
Inst. 

Mem 
D Decode X1 X2 

Data 

Mem W + GPRs 

X2 W Fadd X3 

X3 

FPRs X1 

X2 Fmul X3 

X2 FDiv X3 

Unpipelined 

divider 

• Stall pipeline on long 
latency operations, e.g., 
divides, cache misses  

How should we handle 

data hazards for very 

long latency operations? 

• Speculate that exceptions 
won’t occur and detect 
them and recover in 
program order at commit 
point 

Exceptions? 
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Superscalar In-Order Pipeline 

• Fetch two instructions 
per cycle; issue both 
simultaneously if one is 
integer/memory and 
other is floating-point 

• Inexpensive way of 
increasing throughput 
– Examples: 

 Alpha 21064 (1992) 
 MIPS R5000 series (1996) 

• Can be extended to 
wider issue but register 
file ports and bypassing 
costs grow quickly 
– E.g., 4-issue UltraSPARC 

Commit 

Point 

2 
PC 

Inst. 

Mem 
D 

Dual 

Decode X1 X2 
Data 

Mem W + GPRs 

X2 W Fadd X3 

X3 

FPRs X1 

X2 Fmul X3 

X2 FDiv X3 

Unpipelined 

divider 
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Dependence Analysis: 
 

Needed to Exploit Instruction-level Parallelism  
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Data-dependence 
r3    (r1)  op  (r2)  Read-after-Write   
r5    (r3)  op  (r4) (RAW) hazard 

Types of Data Hazards  

Consider executing a sequence of  
  rk    (ri)  op  (rj)  
type of instructions 

Anti-dependence 
r3    (r1)  op  (r2)  Write-after-Read  
r1    (r4)  op  (r5) (WAR) hazard 

Output-dependence 
r3    (r1)  op  (r2)   Write-after-Write  
r3    (r6)  op  (r7)    (WAW) hazard 
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Detecting Data Hazards 

Range and Domain of instruction i 
R(i) = Registers (or other storage) modified by 

          instruction i 

D(i) = Registers (or other storage) read by 

          instruction i 

Suppose instruction j follows instruction i in the  
program order.  Executing instruction j before the 
effect of instruction i has taken place can cause a 

RAW hazard  if  R(i)   D(j)    

WAR hazard  if  D(i)   R(j)    

WAW hazard if  R(i)   R(j)    



Sanchez & Emer 
 

March 4, 2015 

L10-20 

Register vs. Memory 
Data Dependence 

• Data hazards due to register operands 
can be determined at the decode stage 
but 

 

• Data hazards due to memory operands 
can be determined only after computing 
the effective address 

 
store  M[(r1) +  disp1]  (r2)   

load  r3    M[(r4) +  disp2] 

 

Does (r1 + disp1) = (r4 + disp2) ? 
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Data Hazards: An Example 

I1  DIVD  f6,  f6, f4 
 
I2  LD  f2, 45(r3) 
 
I3  MULTD  f0, f2, f4 
 
I4  DIVD  f8, f6, f2 
 
I5 SUBD  f10, f0, f6 
 
I6  ADDD  f6, f8, f2 

RAW Hazards 

WAR Hazards 

WAW Hazards 
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Instruction Scheduling 

I6 

I2 

I4 

I1 

I5 

I3 

Valid orderings: 
in-order I1  I2  I3  I4  I5       I6 

 

out-of-order  
 

out-of-order 

I1  DIVD  f6,  f6, f4 
 
I2  LD  f2, 45(r3) 
 
I3  MULTD  f0, f2, f4 
 
I4  DIVD  f8, f6, f2 
 
I5 SUBD  f10, f0, f6 
 
I6  ADDD  f6, f8, f2 

I2  I1  I3  I4  I5 I6 

I1  I2 I3  I5  I4 I6 
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Out-of-order Completion 
In-order Issue 

             Latency 
I1  DIVD  f6,  f6, f4   4 
 
I2 LD  f2, 45(r3)   1 
 
I3 MULTD  f0, f2, f4  3 
 
I4 DIVD  f8, f6, f2  4 
 
I5 SUBD  f10, f0, f6  1 
 
I6 ADDD  f6, f8, f2  1 

in-order comp  1   2 
 
out-of-order comp 1   2 

1   2   3   4        3   5   4   6   5   6 

2   3   1   4   3   5   5   4   6   6 

What problems can out-of-order comp cause? Data hazards 



http://www.csg.csail.mit.edu/6.823 

Scoreboard: 
A Hardware Data Structure to 
Detect Hazards Dynamically 
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Complex Pipeline 

IF ID WB 

ALU Mem 

Fadd 

Fmul 

Fdiv 

Issue 

GPRs 
FPRs 

Can we solve write 
hazards without 
equalizing all pipeline 
depths and without 
bypassing? 
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When is it Safe to Issue an Instruction? 

• Approach: Stall issue until sure that issuing 
will cause no dependence problems… 
 

• Suppose a data structure keeps track of all 
the instructions in all the functional units 

 

• The following checks need to be made before 
the Issue stage can dispatch an instruction 

 

–  Is the required function unit available? 

–  Is the input data available?      RAW? 

–  Is it safe to write the destination?    WAR? WAW? 

–  Is there a structural conflict at the WB stage? 
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A Data Structure for Correct Issues 
Keeps track of the status of Functional Units 

The instruction i at the Issue stage consults this table 
 

FU available?   
RAW?   
WAR?   
WAW?   
 

An entry is added to the table if no hazard is detected; 
An entry is removed from the table after Write-Back 

  Name Busy  Op Dest Src1 Src2   
Int 
Mem  
Add1 
Add2 
Add3 
Mult1 
Mult2 
Div 

check the busy column 
search the dest column for i’s sources 
search the source columns for i’s destination 
search the dest column for i’s destination 



Sanchez & Emer 
 

March 4, 2015 

L10-28 

Simplifying the Data Structure  
Assuming In-order Issue 

• Suppose the instruction is not dispatched 
by the Issue stage  

• If a RAW hazard exists  

• or if the required FU is busy,  

• and if operands are latched by functional unit 
on issue 

 

Can the dispatched instruction cause a 
WAR hazard ? 

 

WAW hazard ? 

NO: Operands read at issue 

YES: Out-of-order completion 
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Simplifying the Data Structure ... 

• No WAR hazard  
  no need to keep src1 and src2 

 

• The Issue stage does not dispatch an 
instruction in case of a WAW hazard 
 a register name can occur at most once in the 

dest column 

 

• WP[reg#] : a bit-vector to record the 
registers for which writes are pending 
– These bits are set to true by the Issue stage 

and set to false by the WB stage 

Each pipeline stage in the FU's must carry the 
dest field and a flag to indicate if it is valid     
   “the (we, ws) pair” 
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Scoreboard for In-order Issues 

Busy[FU#] : a bit-vector to indicate FU’s availability. 

  (FU = Int, Add, Mult, Div) 
These bits are hardwired to FU's. 

 

WP[reg#] : a bit-vector to record the registers for which

  writes are pending.  
These bits are set to true by the Issue stage and set to 
false by the WB stage 

 

Issue checks the instruction (opcode dest src1 src2)  
against the scoreboard (Busy & WP) to dispatch 
 

FU available?   
RAW?   
WAR? 

WAW?   

Busy[FU#] 
WP[src1] or WP[src2] 
cannot arise 
WP[dest] 
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Scoreboard Dynamics 

I1   DIVD  f6,  f6, f4 
I2  LD  f2, 45(r3)  
I3  MULTD  f0, f2, f4 
I4  DIVD  f8, f6, f2 
I5  SUBD  f10, f0, f6 
I6  ADDD  f6, f8, f2 

Functional Unit Status       Registers Reserved  
Int(1) Add(1)  Mult(3)   Div(4)    WB for Writes 

 t0  I1              f6     f6 

 t1  I2   f2              f6  f6, f2 

 t2                       f6     f2    f6, f2  I2 

 t3  I3          f0          f6     f6, f0 

 t4              f0                 f6    f6, f0  I1 

 t5  I4                 f0 f8      f0, f8 

 t6               f8   f0    f0, f8  I3 

 t7  I5           f10      f8     f8, f10 

 t8            f8  f10    f8, f10  I5 

 t9                 f8    f8  I4 

t10 I6           f6    f6 

t11                        f6     f6  I6 
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Preview: Anatomy of a Modern 
Out-of-Order Superscalar Core 

• L09 (Today): 
Complex pipes w/ 
in-order issue 

• L10: Out-of-order 
exec & renaming 

• L11: Branch 
prediction 

• L12: Speculative 
execution and 
recovery 

• L13: Advanced 
Memory Ops 
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