On-Chip Networks II: Router Microarchitecture & Routing

Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T.

http://www.csg.csail.mit.edu/6.823

Sanchez & Emer

Reminder: Packets, Flits, Phits

- Packet: Basic unit of routing and sequencing
 - Limited size (e.g. 64 bits 64 KB)
- Flit (flow control digit): Basic unit of bandwidth/storage allocation
 - All flits in packet follow the same path
- Phit (physical transfer digit): data transferred in single clock

April 6, 2015

Sanchez & Emer

Reminder: Packet-Based Buffered Flow Control (no flits)

• Virtual cut-through: Do not wait for whole packet

Lower latency

Buffers allocated in packets → large buffers & low utilization Channels allocated in packets

 \rightarrow unfairness & low utilization

Wormhole Flow Control (Flit-Based)

- Operates like cut-through but with buffers allocated to flits rather than packets
- When a packet blocks, just block wherever the flits of the packet are at that time

Buffers allocated in flits → smaller buffers

Channels still allocated in packets → channels blocked mid-packet can't be used

Virtual-Channel (VC) Flow Control

- When a packet blocks, instead of holding on to channel, hold on to virtual channel
- Virtual channel = channel state + flit buffers
- Multiple virtual channels reduce blocking
- Ex: Wormhole (=1 VC/channel) vs 2 VCs/channel

Virtual-Channel (VC) Flow Control

- When a packet blocks, instead of holding on to channel, hold on to virtual channel
- Virtual channel = channel state + flit buffers
- Multiple virtual channels reduce blocking
- Ex: Wormhole (=1 VC/channel) vs 2 VCs/channel

Time-Space View: Virtual-Channel

- Advantages?
- Disadvantages?

Significantly reduces blocking

More complex router, fair VC allocation required

Interconnection Network Architecture

- *Topology*: How to connect the nodes up? (processors, memories, router line cards, ...)
- *Routing*: Which path should a message take?
- *Flow control*: How is the message actually forwarded from source to destination?
- *Router microarchitecture*: How to build the routers?
- *Link microarchitecture*: How to build the links?

Router Microarchitecture

Ring-based Interconnect

L16-11

Ring Stop

Ring Flow Control: Priorities

Rotary Rule – <u>traffic in ring has priority</u>

Ring Flow Control: Bounces

What if traffic on the ring cannot get delivered, e.g., if output FIFO is full?

One alternative: Continue on ring (bounce)

What are the consequences of such bounces?

Traffic on ring no longer FIFO

General Interconnect Tilera, Knights Landing...

What's In A Router?

• It's a system as well

- Logic State machines, Arbiters, Allocators
 - Control data movement through router
 - Idle, Routing, Waiting for resources, Active
- Memory Buffers
 - Store flits before forwarding them
 - SRAMs, registers, processor memory
- Communication Switches
 - Transfer flits from input to output ports
 - Crossbars, multiple crossbars, fully-connected, bus

Virtual-channel Router

Router Pipeline vs. Processor Pipeline

- Logical stages:
 - BW
 - RC
 - VA
 - SA
 - BR
 - ST
 - LT
- Different flits go through different stages
- Different routers have different variants
 - E.g. speculation, lookaheads, bypassing
- Different implementations of each pipeline stage

- Logical stages:
 - IF
 - ID
 - EX
 - MEM
 - WB
- Different instructions go through different stages
- Different processors have different variants
 - E.g. speculation, ISA
- Different implementations of each pipeline stage

Baseline Router Pipeline

- Route computation performed once per packet
- Virtual channel allocated once per packet
- Body and tail flits inherit this info from head flit

L16-19

Allocators In Routers

• VC Allocator

- Input VCs requesting for a range of output VCs
- Example: A packet of VC0 arrives at East input port. It's destined for west output port, and would like to get any of the VCs of that output port.

• Switch Allocator

- Input VCs of an input port request for different output ports (e.g., One's going North, another's going West)
- "Greedy" algorithms used for efficiency
- What happens if allocation fails on a given cycle?

VC & Switch Allocation Stalls

April 6, 2015

Pipeline Optimizations: Lookahead Routing [Galles, SGI Spider Chip]

 At current router, perform route computation for next router

BW RC	VA NRC	SA	ST	LT
----------	-----------	----	----	----

- Head flit already carries output port for next router
- RC just has to read output \rightarrow fast, can be overlapped with BW
- Precomputing route allows flits to compete for VCs immediately after BW
- Routing computation for the next hop (NRC) can be computed in parallel with VA

• Or simplify RC (e.g., X-Y routing is very fast)

Pipeline Optimizations: Speculative Switch Allocation [Peh&Dally, 2001]

- Assume that Virtual Channel Allocation stage will be successful
 - Valid under low to moderate loads
- If both successful, VA and SA are done in parallel

- If VA unsuccessful (no virtual channel returned)
 Must repeat VA/SA in next cycle
- Prioritize non-speculative requests

Routing

http://www.csg.csail.mit.edu/6.823

Sanchez & Emer

Properties of Routing Algorithms

• Deterministic/Oblivious

- route determined by (source, dest),
- not intermediate state (i.e. traffic)
- Adaptive
 - route influenced by traffic along the way
- Minimal
 - only selects shortest paths
- Deadlock-free
 - no traffic pattern can lead to a situation where no packets move forward

Network Deadlock

- Flow A holds <u>u</u> and <u>v</u> but cannot make progress until it acquires channel <u>w</u>
- Flow B holds channels <u>w</u> and <u>x</u> but cannot make progress until it acquires channel <u>u</u>

Dimension-Order Routing

XY-order

YX-order

Uses 2 out of 4 turns

Uses 2 out of 4 turns

XY is deadlock free, YX is deadlock free, what about XY+YX?

Sanchez & Emer

- One way of looking at whether a routing algorithm is deadlock free is to look at the turns allowed.
- Deadlocks may occur if turns can form a cycle

Allowing more turns

Allowing more turns may allow adaptive routing, but also deadlock

Turn Model [Glass and Ni, 1994]

- A systematic way of generating deadlock-free routes with small number of prohibited turns
- Deadlock-free if routes conform to at least ONE of the turn models (acyclic channel dependence graph)

Can create a channel dependency graph (CDG) of the network.

Vertices in the **CDG** represent network links 180° turns, e.g.,

Disallowing

 $AB \rightarrow BA$

The channel dependency graph D derived from the network topology may contain many cycles

Flow routed through links AB, BE, EF Flow routed through links EF, FA, AB Deadlock!

Key Insight

If routes of flows conform to acyclic CDG, then there will be no possibility of deadlock!

Disallow/Delete certain edges in CDG

Edges in CDG correspond to turns in network!

Acyclic CDG-> Deadlock-free routes

April 6, 2015

Sanchez & Emer

West-first \rightarrow Deadlock-free routes

Resource Conflicts \rightarrow Deadlock

Routing deadlocks in wormhole routing result from Structural hazard at router resources, e.g., buffers.

How can structural hazards be avoided?

Adding more resources

Virtual Channels

• Virtual channels can be used to avoid deadlock by restricting VC allocation

CDG and Virtual Channels

April 6, 2015

Randomized Routing: Valiant

 Route each packet through a randomly chosen intermediate node

A packet, going from node SA to node DA, is first routed from SA to a randomly chosen intermediate node IA, before going from IA to final destination DA.

It helps load-balance the network and has a good worst-case performance at the expense of <u>locality</u>.

ROMM: Randomized, Oblivious Multi-phase Minimal Routing

To retain locality, choose intermediate node in the <u>minimal quadrant</u>

Equivalent to randomly selecting among the various minimal paths from source to destination