
http://www.csg.csail.mit.edu/6.823

L02-1

Daniel Sanchez
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Influence of Technology and
Software on Instruction Sets:
Up to the dawn of IBM 360

February 10, 2014

Sanchez & Emer

Administrivia

• We’ve moved!
– Lectures in 2-105

– Recitations and quizzes in 37-212

• Second TA: Mark Seifter

• Self-assessment test due today

• Lab 0 due Wed

February 10, 2014

L02-2

Sanchez & Emer

L02-3

And then there was IBM 701

IBM 701 -- 30 machines were sold in 1953-54

IBM 650 -- a cheaper, drum based machine,
 more than 120 were sold in 1954
 and there were orders for 750 more!

Users stopped building their own machines.

Why was IBM late getting into computers?

IBM was making too much money!
Even without computers, IBM revenues were
doubling every 4 to 5 years in 40’s and 50’s.

February 10, 2014

Sanchez & Emer

L02-4

Computers in mid 50’s
• Hardware was expensive

• Stores were small (1000 words)

 No resident system-software!

• Memory access time was 10 to 50 times slower
than the processor cycle

 Instruction execution time was totally dominated by the
memory reference time.

• The ability to design complex control circuits to
execute an instruction was the central design
concern as opposed to the speed of decoding or an
ALU operation

• Programmer’s view of the machine was inseparable
from the actual hardware implementation

February 10, 2014

Sanchez & Emer

Accumulator-based computing

• Single
Accumulator
– Calculator design

carried over to
computers

L02-5

Why?

Registers expensive

February 10, 2014

Sanchez & Emer

L02-6

The Earliest Instruction Sets
Burks, Goldstein & von Neumann ~1946

Typically less than 2 dozen instructions!

LOAD x AC  M[x]
STORE x M[x]  (AC)

ADD x AC  (AC) + M[x]
SUB x

MUL x Involved a quotient register
DIV x

SHIFT LEFT AC  2  (AC)
SHIFT RIGHT

JUMP x PC  x
JGE x if (AC)  0 then PC  x

LOAD ADR x AC  Extract address field(M[x])
STORE ADR x

February 10, 2014

Sanchez & Emer

L02-7

Programming:
Single Accumulator Machine

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

Ci  Ai + Bi, 1  i  n

How to modify the addresses A, B and C ?

A

B

C

N

ONE

code

-n

1

Problem?

February 10, 2014

Sanchez & Emer

L02-8

Self-Modifying Code

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

modify the
program
for the next
iteration

Each iteration involves
 total book-
 keeping
instruction
fetches

operand
fetches

stores

Ci  Ai + Bi, 1  i  n

LOAD ADR F1
ADD ONE
STORE ADR F1
LOAD ADR F2
ADD ONE
STORE ADR F2
LOAD ADR F3
ADD ONE
STORE ADR F3
JUMP LOOP

DONE HLT

17

10

5

14

8

4

Most of the executed
instructions are for
book keeping!

February 10, 2014

Sanchez & Emer

L02-9

Processor-Memory Bottleneck:
Early Solutions

• Indexing capability
– to reduce book keeping instructions

• Fast local storage in the processor
– 8-16 registers as opposed to one accumulator
– to save on loads/stores

• Complex instructions

– to reduce instruction fetches

• Compact instructions

– implicit address bits for operands
– to reduce instruction fetch cost

Memory

Processor

February 10, 2014

Sanchez & Emer

L02-10

Modify existing instructions
LOAD x, IX AC  M[x + (IX)]
ADD x, IX AC  (AC) + M[x + (IX)]
...

Add new instructions to manipulate index registers
JZi x, IX if (IX)=0 then PC  x
 else IX  (IX) + 1
LOADi x, IX IX  M[x] (truncated to fit IX)
...

Index Registers
Tom Kilburn, Manchester University, mid 50’s

One or more specialized registers to simplify
address calculation

Index registers have accumulator-like
characteristics

February 10, 2014

Sanchez & Emer

L02-11

Using Index Registers

 LOADi N, IX
LOOP JZi DONE, IX

LOAD LASTA, IX
ADD LASTB, IX
STORE LASTC, IX
JUMP LOOP

DONE HALT

• Program does not modify itself

• Efficiency has improved dramatically (ops / iter)
 with index regs without index regs

instruction fetch 17 (14)
operand fetch 10 (8)
store 5 (4)

• Costs?

A

LASTA

Ci  Ai + Bi, 1  i  n

5(2)
2
1

- Complex control
- Index register computations (ALU-like circuitry)
- 1 to 2 bits longer Instructions

N starts with -n

February 10, 2014

Sanchez & Emer

L02-13

Operations on Index Registers

To increment index register by k
AC  (IX) new instruction
AC  (AC) + k
IX  (AC) new instruction

also the AC must be saved and restored

It may be better to increment IX directly
INCi k, IX IX  (IX) + k

More instructions to manipulate index register
STOREi x, IX M[x]  (IX) (extended to fit a word)

...

IX begins to look like an accumulator  several index registers
several accumulators  General Purpose Registers

February 10, 2014

Sanchez & Emer

L02-14

Support for Subroutine Calls

A special subroutine jump instruction

A: JSR F M[F]  A + 1 and
 jump to F + 1

F:

Subroutine F

return

call F
a1
a2

b1
b2

call F

Main
Program

February 10, 2014

Sanchez & Emer

L02-15

Indirect Addressing and
Subroutine Calls

 A JSR F
 arg
 result
A+3

Caller
Events:

Indirect addressing almost eliminates the
need to write self-modifying code (location
F still needs to be modified)

 F
F+1

 S1 LOAD (F)

 inc F

 S2 STORE(F)

 inc F

 S3 JUMP (F)

Subroutine

fetch
arg

store
result

Indirect addressing
LOAD (x) means AC  M[M[x]]
...

Problems? 

A+1

Execute A

Execute S1

Execute S2

Execute S3

A+2

A+3

recursive procedure calls

February 10, 2014

Sanchez & Emer

L02-16

Recursive Procedure Calls and
Reentrant Codes

PC

SP

registers Pure Code

Data

Stack

memory

Indirect Addressing through a register
LOAD R1, (R2)

Load register R1 with the contents of the
word whose address is contained in register R2

February 10, 2014

Sanchez & Emer

L02-17

Evolution of Addressing Modes
1. Single accumulator, absolute address

LOAD x

2. Single accumulator, index registers

LOAD x, IX

3. Indirection

LOAD (x)

4. Multiple accumulators, index registers, indirection

LOAD R, IX, x

or LOAD R, IX, (x) the meaning?

 R  M[M[x] + (IX)]

 or R  M[M[x + (IX)]]

5. Indirect through registers

LOAD RI, (RJ)

6. The works

LOAD RI, RJ, (RK) RJ = index, RK = base addr

February 10, 2014

Sanchez & Emer

L02-18

Variety of Instruction Formats

• Three address formats: One destination and
up to two operand sources per instruction

 (Reg op Reg) to Reg RI  (RJ) op (RK)
 (Reg op Mem) to Reg RI  (RJ) op M[x]

– x can be specified directly or via a register
– effective address calculation for x could include

indexing, indirection, ...

• Two address formats: the destination is
same as one of the operand sources

 (Reg op Reg) to Reg RI  (RI) op (RJ)
 (Reg op Mem) to Reg RI  (RI) op M[x]

February 10, 2014

Sanchez & Emer

L02-19

More Instruction Formats

• One address formats: Accumulator
machines
– Accumulator is always other implicit operand

• Zero address formats: operands on a
stack

 add M[sp-1]  M[sp] + M[sp-1]
 load M[sp]  M[M[sp]]

– Stack can be in registers or in memory

– usually top of stack cached in registers

Many different formats are possible!

C

B

A
SP

Register

Memory

February 10, 2014

Sanchez & Emer

L02-20

Data formats:

 Bytes, Half words, words and double words

Some issues

• Byte addressing

 Big Endian 0 1 2 3

 vs. Little Endian 3 2 1 0

• Word alignment

Suppose the memory is organized in 32-bit words.

Can a word address begin only at 0, 4, 8, ?

Data Formats and Memory Addresses

 0 1 2 3 4 5 6 7

February 10, 2014

Sanchez & Emer

L02-21

Some Tradeoffs

• Should all addressing modes be provided for
every operand?  regular vs. irregular instruction formats

• Separate instructions to manipulate

Accumulators, Index registers, Base registers  large number of instructions

• Instructions contained implicit memory
references -- several contained more than one  very complex control

Great variety of instruction sets

February 10, 2014

http://www.csg.csail.mit.edu/6.823

L02-22

The first definition of the
Instruction Set Abstraction:

IBM 360

February 10, 2014

Sanchez & Emer

L02-23

The IBM 650 (1953-4)

[From 650 Manual, © IBM]

Magnetic Drum

(1,000 or 2,000

10-digit decimal

words)

20-digit

accumulator

Active instruction

(including next

program counter)

Digit-serial

ALU

February 10, 2014

Sanchez & Emer

L02-24

Programmer’s view of a machine:
IBM 650

A drum machine with 44 instructions

Instruction: 60 1234 1009

• “Load the contents of location 1234 into the
distribution; put it also into the upper accumulator;
set lower accumulator to zero; and then go to
location 1009 for the next instruction.”

• Programmer’s view of the machine was

inseparable from the actual hardware
implementation

• Good programmers optimized the
placement of instructions on the drum to
reduce latency!

February 10, 2014

Sanchez & Emer

L02-25

Compatibility Problem at IBM

By early 60’s, IBM had 4 incompatible lines of
computers!

701  7094
650  7074
702  7080
1401  7010

Each system had its own
• Instruction set
• I/O system and Secondary Storage:
 magnetic tapes, drums and disks
• assemblers, compilers, libraries,...
• market niche
 business, scientific, real time, ...

 IBM 360

February 10, 2014

Sanchez & Emer

L02-26

IBM 360 : Design Premises
Amdahl, Blaauw and Brooks, 1964

The design must lend itself to growth and
successor machines

• General method for connecting I/O devices

• Total performance - answers per month rather than bits
per microsecond  programming aids

• Machine must be capable of supervising itself without
manual intervention

• Built-in hardware fault checking and locating aids to
reduce down time

• Simple to assemble systems with redundant I/O devices,
memories etc. for fault tolerance

• Some problems required floating point words larger than
36 bits

February 10, 2014

Sanchez & Emer

L02-27

Processor State and Data Types

• If the processing of an instruction can be interrupted
then the hardware must save and restore the state in
a transparent manner

The information held in the processor at the end of
an instruction to provide the processing context for
the next instruction.

Program Counter, Accumulator, . . .

Programmer’s machine model is a contract
between the hardware and software

• The information held in the processor will be
interpreted as having data types manipulated by the
instructions.

February 10, 2014

Sanchez & Emer

L02-28

Instruction set

Some things an ISA must specify:
• A way to reference registers and memory
• The computational operations available
• How to control the sequence of instructions

• A binary representation for all of the above

The control for changing the information held in the
processor are specified by the instructions available
in the instruction set architecture or ISA.

ISA must satisfy the needs of the software:
 - assembler, compiler, OS, VM

February 10, 2014

Sanchez & Emer

L02-29

IBM 360: A General-Purpose
Register (GPR) Machine

• Processor State

– 16 General-Purpose 32-bit Registers

• may be used as index and base register

• Register 0 has some special properties

– 4 Floating Point 64-bit Registers

– A Program Status Word (PSW)

• PC, Condition codes, Control flags

• Data Formats
– 8-bit bytes, 16-bit half-words, 32-bit words, 64-bit

double-words

– 24-bit addresses

• A 32-bit machine with 24-bit addresses

– No instruction contains a 24-bit address !

February 10, 2014

Sanchez & Emer

L02-30

IBM 360: Some Addressing Modes

 R  (R) op M[(X) + (B) + D]
 a 24-bit address is formed by adding the
 12-bit displacement (D) to a base register (B)
 and an Index register (X), if desired

opcode R1

8 4 4

R2 RR R1(R1) op (R2)

opcode R X B D

8 4 4 12 4

RD

The most common formats for arithmetic & logic
instructions, as well as Load and Store instructions

February 10, 2014

Sanchez & Emer

L02-31

IBM 360: Character String Operations

opcode length B1 D1 B2 D2

8 4 12 8 4 12

SS format: store to store instructions
M[(B1) + D1]  M[(B1) + D1] op M[(B2) + D2]

 iterate “length” times

Most operations on decimal and character strings
use this format

MVC move characters
MP multiply two packed decimal strings
CLC compare two character strings
...

Multiple memory operations per instruction
complicates exception & interrupt handling

February 10, 2014

Sanchez & Emer

L02-32

IBM 360: Branches & Condition Codes

• Arithmetic and logic instructions set condition codes
– equal to zero

– greater than zero

– overflow

– carry...

• I/O instructions also set condition codes
– channel busy

• Conditional branch instructions are based on testing
condition code registers (CC’s)
– RX and RR formats

• BC_ branch conditionally

• BAL_ branch and link, i.e., R15  (PC)+1

 for subroutine calls

  CC’s must be part of the PSW

February 10, 2014

Sanchez & Emer

L02-33

IBM 360: Precise Interrupts

• IBM 360 ISA (Instruction Set Architecture)
preserves sequential execution model

• Programmers view of machine was that
each instruction either completed or
signaled a fault before the next instruction
began execution

• Exception/interrupt behavior identical
across family of implementations

February 10, 2014

Sanchez & Emer

L02-34

IBM 360: Initial Implementations (1964)

 Model 30 . . . Model 70

Memory Capacity 8K - 64 KB 256K - 512 KB

Memory Cycle 2.0µs ... 1.0µs

Datapath 8-bit 64-bit

Circuit Delay 30 nsec/level 5 nsec/level

Registers in Main Store in Transistor

Control Store Read only 1sec Dedicated circuits

• Six implementations (Models, 30, 40, 50, 60, 62, 70)

• 50X performance difference cross models

• ISA completely hid the underlying technological
differences between various models.

 With minor modifications, IBM 360 ISA is still in use

February 10, 2014

Sanchez & Emer

L02-35

IBM 360: Forty-Six years later…
zEnterprise196 Microprocessor
• 1.4 billion transistors, Quad core design

• Up to 96 cores (80 visible to OS) in one
multichip module

• 5.2 GHz, IBM 45nm SOI CMOS technology

• 64-bit virtual addressing
– original 360 was 24-bit; 370 was a 31-bit

extension

• Superscalar, out-of-order
– Up to 72 instructions in flight

• Variable length instruction pipeline: 15-17
stages

• Each core has 2 integer units, 2 load-store
units and 2 floating point units

• 8K-entry Branch Target Buffer
– Very large buffer to support commercial workload

• Four Levels of caches:
– 64KB L1 I-cache, 128KB L1 D-cache

– 1.5MB L2 cache per core

– 24MB shared on-chip L3 cache

– 192MB shared off-chip L4 cache

[September 2010]

February 10, 2014

L02-35

Sanchez & Emer

Instruction Set Architecture
(ISA) versus Implementation
• ISA is the hardware/software interface

– Defines set of programmer visible state

– Defines data types

– Defines instruction semantics (operations, sequencing)

– Defines instruction format (bit encoding)

– Examples: MIPS, Alpha, x86, IBM 360, VAX, ARM, JVM

• Many possible implementations of one ISA
– 360 implementations: model 30 (c. 1964), zEnterprise196 (c.

2010)

– x86 implementations: 8086 (c. 1978), 80186, 286, 386, 486,
Pentium, Pentium Pro, Pentium-4, Core i7, AMD Athlon, AMD
Opteron, Transmeta Crusoe, SoftPC

– MIPS implementations: R2000, R4000, R10000, ...

– JVM: HotSpot, PicoJava, ARM Jazelle, ...

L03-36

February 10, 2014

http://www.csg.csail.mit.edu/6.823

L02-37

Next lecture:

Implementing an ISA

February 10, 2014

