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Administrivia 

• We’ve moved! 
– Lectures in 2-105 

– Recitations and quizzes in 37-212 

 

 

• Second TA: Mark Seifter 
 

 

• Self-assessment test due today 

• Lab 0 due Wed 
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And then there was IBM 701 

IBM 701 -- 30 machines were sold in 1953-54 
 
IBM 650  -- a cheaper, drum based machine, 
                  more than 120  were sold in 1954 
                  and there were orders for 750 more! 

Users stopped building their own machines. 

Why was IBM late getting into computers? 

IBM was making too much money! 
Even without computers, IBM revenues were 
doubling every 4 to 5 years in 40’s and 50’s. 
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Computers in mid 50’s 
• Hardware was expensive 

• Stores were small (1000 words) 

 No resident system-software!   

• Memory access time was 10 to 50 times slower 
than the processor cycle 

 Instruction execution time was totally dominated by the 
memory reference time. 

• The ability to design complex control circuits to 
execute an instruction was the central design 
concern as opposed to the speed of decoding or an 
ALU operation  

• Programmer’s view of the machine was inseparable 
from the actual hardware implementation  
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Accumulator-based computing 

• Single 
Accumulator   
– Calculator design 

carried over to 
computers 
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Why? 

 

Registers expensive 
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The Earliest Instruction Sets 
Burks, Goldstein & von Neumann  ~1946 

Typically less than 2 dozen instructions! 

LOAD  x  AC  M[x] 
STORE  x  M[x]  (AC) 
 
ADD  x  AC  (AC) + M[x] 
SUB  x 
 
MUL  x  Involved a quotient register 
DIV  x 
 
SHIFT LEFT   AC  2  (AC) 
SHIFT RIGHT 
 
JUMP  x  PC  x 
JGE  x  if (AC)  0 then PC  x 
 
LOAD ADR  x  AC  Extract address field(M[x]) 
STORE ADR x 
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Programming:  
Single Accumulator Machine 

LOOP LOAD  N 
JGE  DONE 
ADD  ONE 
STORE  N 

F1 LOAD  A 
F2 ADD  B 
F3 STORE  C 

JUMP  LOOP 
DONE HLT 

Ci   Ai + Bi,   1  i  n 

How to modify the addresses A, B and C ? 

A 

 

 
B 

 

 

C 

 

 

N 

ONE 

 

 

code 

-n 

1 

Problem? 
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Self-Modifying Code 

LOOP LOAD  N 
JGE  DONE 
ADD  ONE 
STORE  N 

F1 LOAD  A 
F2 ADD  B 
F3 STORE  C 

JUMP  LOOP 
DONE HLT 

modify the 
program 
for the next 
iteration 

Each iteration involves 
                    total   book- 
                             keeping 
instruction 
fetches     
 
operand  
fetches     
 
stores       

Ci   Ai + Bi,   1  i  n 

LOAD ADR F1 
ADD  ONE 
STORE ADR F1 
LOAD ADR F2 
ADD  ONE 
STORE ADR F2 
LOAD ADR F3 
ADD  ONE 
STORE ADR F3 
JUMP  LOOP 

DONE HLT 

17 
 
 

10 
 
5 

14 
 
 
8 
 
4 

Most of the executed 
instructions are for 
book keeping! 
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Processor-Memory Bottleneck: 
Early Solutions 

• Indexing capability  
– to reduce book keeping instructions 

 

• Fast local storage in the processor 
– 8-16 registers as opposed to one accumulator 
– to save on loads/stores 

 
• Complex instructions 

–  to reduce instruction fetches 

 
• Compact instructions 

– implicit address bits for operands 
– to reduce instruction fetch cost 

Memory 

Processor 
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Modify existing instructions 
LOAD x, IX  AC   M[x + (IX)] 
ADD x, IX  AC   (AC) + M[x + (IX)] 
... 
 

Add new instructions to manipulate index registers 
JZi  x, IX  if (IX)=0 then  PC   x 
                  else   IX   (IX) + 1 
LOADi x, IX  IX   M[x]   (truncated to fit IX) 
... 

Index Registers 
Tom Kilburn, Manchester University, mid 50’s 

One or more specialized registers to simplify 
address calculation 

Index registers have accumulator-like 
characteristics 
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Using Index Registers 

 LOADi N, IX 
LOOP JZi DONE, IX 

LOAD  LASTA, IX 
ADD  LASTB, IX 
STORE  LASTC, IX 
JUMP  LOOP 

DONE HALT 

• Program does not modify itself 

• Efficiency has improved dramatically (ops / iter) 
       with index regs   without index regs       

instruction fetch    17 (14) 
operand fetch    10 (8) 
store       5 (4) 

• Costs?  

A 

LASTA 

Ci   Ai + Bi,   1  i  n 

5(2) 
2 
1 

- Complex control 
- Index register computations (ALU-like circuitry) 
- 1 to 2 bits longer Instructions 

N starts with -n 
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Operations on Index Registers 

To increment index register by k 
AC  (IX)  new instruction 
AC  (AC) + k 
IX   (AC)  new instruction 

also the AC must be saved and restored 
 

It may be better to increment IX directly  
INCi  k, IX   IX  (IX) + k 

 

More instructions to manipulate index register 
STOREi  x, IX  M[x]  (IX) (extended to fit a word) 

... 

IX begins to look like an accumulator   several index registers 
several accumulators   General Purpose Registers 
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Support for Subroutine Calls 

A special subroutine jump instruction 
 

A:  JSR F  M[F]  A + 1 and 
    jump to F + 1 

F: 

Subroutine F 

return 

call F 
a1 
a2 

b1 
b2 

call F 

Main 
Program 
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Indirect Addressing and 
Subroutine Calls 

    A   JSR     F 
          arg 
          result 
A+3  

Caller 
Events: 

Indirect addressing almost eliminates the 
need to write self-modifying code (location 
F still needs to be modified) 

    F 
F+1 
 
 
  S1  LOAD (F) 

  inc F  
 
 
  S2  STORE(F) 

   inc F 
 

 
 
  S3  JUMP (F) 

 

Subroutine 

fetch  
arg 

store 
result 

Indirect addressing 
LOAD (x)  means AC  M[M[x]] 
... 

Problems?  

A+1 

Execute A 

Execute S1 

Execute S2 

Execute S3 

A+2 

A+3 

recursive procedure calls 
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Recursive Procedure Calls and 
Reentrant Codes 

PC 

SP 

registers Pure Code 

Data  

Stack 

memory 

Indirect Addressing through a register 
LOAD  R1, (R2) 
 

Load register R1 with the contents of the  
word whose address is contained in register R2  
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Evolution of Addressing Modes 
1. Single accumulator, absolute address 

LOAD x 

2. Single accumulator, index registers 

LOAD x, IX 

3. Indirection 

LOAD (x) 

4. Multiple accumulators, index registers, indirection 

LOAD R, IX, x       

or LOAD R, IX, (x) the meaning? 

        R   M[M[x] + (IX)]   

    or R   M[M[x + (IX)]]  

5. Indirect through registers 

LOAD RI, (RJ) 

6. The works 

LOAD RI, RJ, (RK)          RJ = index, RK = base addr 
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Variety of Instruction Formats 

• Three address formats: One destination and 
up to two operand sources per instruction 

 
 (Reg op Reg)  to Reg  RI    (RJ)  op (RK) 
 (Reg op Mem) to Reg  RI    (RJ)  op M[x] 

 
– x can be specified directly or via a register 
– effective address calculation for x could include    

indexing, indirection, ... 
 
 

• Two address formats: the destination is 
same as one of the operand sources 

 
 (Reg op Reg)  to Reg  RI    (RI)  op (RJ) 
 (Reg op Mem) to Reg  RI     (RI)  op M[x] 
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More Instruction Formats 

• One address formats: Accumulator 
machines 
– Accumulator is always other implicit operand 

 

• Zero address formats: operands on a 
stack 

 
 add  M[sp-1]   M[sp] + M[sp-1]  
 load M[sp]   M[M[sp]] 
  
– Stack can be in registers or in memory  

– usually top of stack cached in registers 
 

Many different formats are possible! 

C 

B 

A 
SP 

Register 

Memory 
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Data formats:       

 Bytes, Half words, words and double words 

Some issues 

• Byte addressing 

   Big Endian  0 1 2 3 

  vs. Little Endian   3 2 1 0 

 

• Word alignment  

Suppose the memory is organized in 32-bit words. 

Can a word address begin only at 0, 4, 8, .... ? 

Data Formats and Memory Addresses 

     0         1           2          3          4           5           6          7  
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Some Tradeoffs 

• Should all addressing modes be provided for 
every operand?   regular vs. irregular instruction formats 

 

• Separate instructions to manipulate 

Accumulators, Index registers, Base registers     large number of instructions 
 

• Instructions contained implicit memory 
references -- several contained more than one   very complex control 

 

Great variety of instruction sets 
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The first definition of the 
Instruction Set Abstraction: 

IBM 360  
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The IBM 650 (1953-4) 

[From 650 Manual, © IBM] 

Magnetic Drum 

(1,000 or 2,000 

10-digit decimal 

words) 

20-digit 

accumulator 

Active instruction 

(including next 

program counter) 

Digit-serial 

ALU 
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Programmer’s view of a machine: 
IBM 650 

A drum machine with 44 instructions 
 
Instruction:      60 1234 1009 

• “Load the contents of location 1234 into the 
distribution; put it also into the upper accumulator; 
set lower accumulator to zero; and then go to 
location 1009 for the next instruction.” 

 
• Programmer’s view of the machine was 

inseparable from the actual hardware 
implementation  

• Good programmers optimized the 
placement of instructions on the drum to 
reduce latency! 
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Compatibility Problem at IBM 

By early 60’s, IBM had 4 incompatible lines of 
computers! 

701  7094 
650   7074 
702   7080 
1401   7010 

 

Each system had its own 
• Instruction set 
• I/O system and Secondary Storage:  
    magnetic tapes, drums and disks 
• assemblers, compilers, libraries,... 
• market niche 
  business, scientific, real time, ... 

 IBM 360 
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IBM 360 : Design Premises  
Amdahl, Blaauw and Brooks, 1964 

The design must lend itself to growth and 
successor machines 
 

• General method for connecting I/O devices 

• Total performance - answers per month rather than bits 
per microsecond  programming aids 

• Machine must be capable of supervising itself without 
manual intervention 

• Built-in hardware fault checking and locating aids to 
reduce down time 

• Simple to assemble systems with redundant I/O devices, 
memories etc. for fault tolerance 

• Some problems required floating point words larger than 
36 bits 
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Processor State and Data Types 

• If the processing of an instruction can be interrupted 
then the hardware must save and restore the state in 
a transparent manner 

The information held in the processor at the end of 
an instruction to provide the processing context for 
the next instruction.  

Program Counter, Accumulator, . . . 

Programmer’s machine model is a contract 
between the hardware and software 

• The information held in the processor will be 
interpreted as having data types manipulated by the 
instructions.  
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Instruction set 

Some things an ISA must specify: 
• A way to reference registers and memory 
• The computational operations available 
• How to control the sequence of instructions 

 
• A binary representation for all of the above 
 

The control for changing the information held in the 
processor are specified by the instructions available 
in the instruction set architecture or ISA. 

ISA must satisfy the needs of the software: 
 - assembler, compiler, OS, VM 
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IBM 360: A General-Purpose 
Register (GPR) Machine 

• Processor State 

– 16 General-Purpose 32-bit Registers 

• may be used as index and base register 

• Register 0 has some special properties  

– 4 Floating Point 64-bit Registers 

– A Program Status Word (PSW)  

• PC, Condition codes, Control flags 

• Data Formats 
– 8-bit bytes, 16-bit half-words, 32-bit words,  64-bit 

double-words 

– 24-bit addresses 

• A 32-bit machine with 24-bit addresses 

– No instruction contains a 24-bit address ! 
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IBM 360: Some Addressing Modes 

 R   (R) op M[(X) + (B) + D] 
  a 24-bit address is formed by adding the 
  12-bit displacement (D) to a base register (B)  
  and an Index register (X), if desired  

opcode R1 

8 4 4 

R2 RR R1(R1) op (R2) 

opcode R X B D 

8 4 4 12 4 

RD 

The most common formats for arithmetic & logic  
instructions, as well as Load and Store instructions  
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IBM 360: Character String Operations 

opcode     length B1      D1     B2          D2 

8 4 12 8 4 12 

SS format: store to store instructions 
M[(B1) + D1]   M[(B1) + D1]  op  M[(B2) + D2] 

     iterate “length” times 

Most operations on decimal and character strings  
use this format  

 
MVC move characters 
MP multiply two packed decimal strings 
CLC compare two character strings 
... 

Multiple memory operations per instruction 
complicates exception & interrupt handling 
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IBM 360: Branches & Condition Codes 

• Arithmetic and logic instructions set condition codes 
– equal to zero 

– greater than zero  

– overflow 

– carry... 

• I/O instructions also set condition codes 
– channel busy 

• Conditional branch instructions are based on testing 
condition code registers (CC’s) 
– RX and  RR formats 

• BC_  branch conditionally 

• BAL_  branch and link, i.e., R15  (PC)+1 

   for subroutine calls 

             CC’s must be part of the PSW 
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IBM 360: Precise Interrupts 

• IBM 360 ISA (Instruction Set Architecture) 
preserves sequential execution model 

 

• Programmers view of machine was that 
each instruction either completed or 
signaled a fault before the next instruction 
began execution 

 

• Exception/interrupt behavior identical 
across family of implementations 
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IBM 360: Initial Implementations (1964) 

          Model 30 . . .   Model 70 

Memory Capacity 8K - 64 KB   256K - 512 KB 

Memory Cycle  2.0µs   ...       1.0µs   

Datapath  8-bit   64-bit 

Circuit Delay  30 nsec/level  5 nsec/level 

Registers  in Main Store  in Transistor 

Control Store  Read only 1sec Dedicated circuits 

• Six implementations (Models, 30, 40, 50, 60, 62, 70) 

• 50X performance difference cross models 

• ISA completely hid the underlying technological 
differences between various models. 

  

       With minor modifications, IBM 360 ISA is still in use 
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IBM 360: Forty-Six years later… 
zEnterprise196 Microprocessor 
• 1.4 billion transistors, Quad core design 

• Up to 96 cores (80 visible to OS) in one 
multichip module 

• 5.2 GHz, IBM 45nm SOI CMOS technology 

• 64-bit virtual addressing 
– original 360 was 24-bit; 370 was a 31-bit 

extension 

• Superscalar, out-of-order 
– Up to 72 instructions in flight 

• Variable length instruction pipeline: 15-17 
stages 

• Each core has 2 integer units, 2 load-store 
units and 2 floating point units 

• 8K-entry Branch Target Buffer 
– Very large buffer to support commercial workload 

• Four Levels of caches: 
– 64KB L1 I-cache, 128KB L1 D-cache 

– 1.5MB L2 cache per core 

– 24MB shared on-chip L3 cache 

– 192MB shared off-chip L4 cache 

 

[ September 2010 ] 
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Instruction Set Architecture 
(ISA) versus Implementation 
•  ISA is the hardware/software interface 

– Defines set of programmer visible state 

– Defines data types 

– Defines instruction semantics (operations, sequencing) 

– Defines instruction format (bit encoding) 

– Examples: MIPS, Alpha, x86, IBM 360, VAX, ARM, JVM 
 

•  Many possible implementations of one ISA 
– 360 implementations: model 30 (c. 1964), zEnterprise196 (c. 

2010) 

– x86 implementations: 8086 (c. 1978), 80186, 286, 386, 486, 
Pentium, Pentium Pro, Pentium-4, Core i7,  AMD Athlon, AMD 
Opteron, Transmeta Crusoe, SoftPC 

– MIPS implementations: R2000, R4000, R10000, ... 

– JVM: HotSpot, PicoJava, ARM Jazelle, ... 

L03-36 
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Next lecture:  
 
Implementing an ISA 
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