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CPU-Memory Bottleneck

MemoryCPU

Performance of high-speed computers is usually

limited by memory bandwidth & latency

• Latency (time for a single access)
Memory access time >> Processor cycle time

• Bandwidth (number of accesses per unit time)
if fraction m of instructions access memory,

1+m memory references / instruction

 CPI = 1 requires 1+m memory refs / cycle
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Memory Technology

• Early machines used a variety of memory technologies
– Manchester Mark I used CRT Memory Storage
– EDVAC used a mercury delay line

• Core memory was first large scale reliable main memory
– invented by Forrester in late 40s at MIT for Whirlwind project
– Bits stored as magnetization polarity on small ferrite cores threaded onto 2 

dimensional grid of wires

• First commercial DRAM was Intel 1103
– 1Kbit of storage on single chip
– charge on a capacitor used to hold value

• Semiconductor memory quickly replaced core in 1970s
– Intel formed to exploit market for semiconductor memory

• Flash memory
– Slower, but denser than DRAM. Also non-volatile, but with wearout issues

• Phase change memory (PCM) looking promising for the future
– Slightly slower, but much denser than DRAM and non-volatile
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DRAM Architecture
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• Bits stored in 2-dimensional arrays on chip

• Modern chips have around 4 logical banks on each chip

– each logical bank physically implemented as many smaller arrays
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DRAM timing
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DRAM Spec:
CL, tRCD, tRP, tRAS,  e.g., 9-9-9-24
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6-Transistor SRAM Cell

bit bit

word
(row select)

10

0 1

Basic Static RAM Cell

• Write:

1. Drive bit lines (bit=1, bitbar=0)

2. Select row

• Read:

1. Precharge bit and bitbar to Vdd

2. Select row

3. Cell pulls one line low

4. Column sense amp detects difference between bit & bitbar

bit bit

word

Often replaced with
pullup to save area

1
0
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Processor-DRAM Gap (latency)

Four-issue 2GHz superscalar accessing 100ns DRAM could 
execute 800 instructions during time for one memory access!
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Little’s Law

Throughput (T) = Number in Flight (N) / Latency (L)

MemoryCPU
Table of 

accesses in 
flight

Example:
--- Assume infinite bandwidth memory
--- 100 cycles / memory reference
--- 1 + 0.2 memory references / instruction

 Table size = 1.2 * 100  = 120 entries 

120 independent memory operations in flight!
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Multilevel Memory

Strategy: Reduce average latency using 
small, fast memories called caches.

Caches are a mechanism to reduce memory 
latency based on the empirical observation 
that the patterns of memory references 
made by a processor are often highly 
predictable:

PC

…                           96

loop: ADD r2, r1, r1               100

SUBI r3, r3, #1              104

BNEZ r3, loop 108

… 112
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Typical Memory Reference Patterns
Address

Time

Instruction

fetches

Stack

accesses

Data

accesses

n loop iterations

subroutine 

call
subroutine 

return

argument access

scalar accesses
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Common Predictable Patterns

Two predictable properties of memory references:

– Temporal Locality: If a location is referenced it 
is likely to be referenced again in the near 
future.

– Spatial Locality: If a location is referenced it is 
likely that locations near it will be referenced in 
the near future.
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Memory Hierarchy

• size: Register << SRAM << DRAM    why?
• latency: Register << SRAM << DRAM    why?
• bandwidth: on-chip >> off-chip         why?

On a data access:
hit (data  fast memory)  low latency access
miss (data  fast memory)  long latency access (DRAM)

Small,
Fast 

Memory
(RF, SRAM)

CPU
Big, Slow 
Memory
(DRAM)

A B

holds frequently used data
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Management of Memory Hierarchy

• Small/fast storage, e.g., registers

– Address usually specified in instruction

– Generally implemented directly as a register file

• but hardware might do things behind software’s back, 
e.g., stack management, register renaming

• Large/slower storage, e.g., memory

– Address usually computed from values in register

– Generally implemented as a cache hierarchy

• hardware decides what is kept in fast memory

• but software may provide “hints”, e.g., don’t cache or 
prefetch
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Inside a Cache

CACHEProcessor Main
Memory 

Address Address

DataData

Address
Tag

Data Block

Data
Byte

Data
Byte

Data
Byte

Line100

304

6848

copy of main memory
location 100

copy of main memory
location 101

416

How many bits are needed in tag?

Enough to uniquely identify block
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Cache Algorithm (Read)

Look at Processor Address, search cache tags to find 
match.  Then either

Found in cache
a.k.a.  HIT

Return copy
of data from
cache

Not in cache
a.k.a. MISS

Read block of data from
Main Memory

Wait … 

Return data to processor
and update cache

Q: Which line do we replace?
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Direct-Mapped Cache

Tag Data BlockV

=

OffsetTag Index

t k b

t

HIT Data Word or Byte

2k

lines

Block number Block offset 

What is a bad reference pattern?

Strided at size of cache
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Direct Map Address Selection
higher-order vs. lower-order address bits

Tag Data BlockV

=

OffsetIndex

tk
b

t

HIT Data Word or Byte

2k

lines

Tag

Why might this be undesirable?

Spatially local blocks conflict
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Hashed Address Selection

Tag Data BlockV

=

Offset

t
b

t

HIT Data Word or Byte

2k

lines

Address

Hash

What are the tradeoffs of hashing?

Good: Regular strides don’t conflict
Bad: Hash adds latency

Tag is larger
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2-Way Set-Associative Cache
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Set-Associative RAM-Tag Cache

Not energy-efficient

–A tag and data word is 
read from every way

Two-phase approach

–First read tags, then 
just read data from 
selected way

–More energy-efficient

–Doubles latency in L1

–OK, for L2 and above, 
why?

=? =?

Tag  Status    Data Tag  Status    Data

Tag        Index        Offset
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Placement Policy

Set Number

Cache

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2 
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12 
can be placed

0 1 2 3 4 5 6 7

Direct
Mapped
only into
block 4

(12 mod 8)

Fully
Associative
Anywhere

0     1      2     3

(2-way) Set
Associative
anywhere in

set 0
(12 mod 4)
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Fully Associative Cache
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Improving Cache Performance

Average memory access time =
Hit time + Miss rate x Miss penalty

To improve performance:
• reduce the hit time
• reduce the miss rate (e.g., larger, better policy)
• reduce the miss penalty (e.g., L2 cache)

What is the simplest design strategy?

Biggest cache that doesn’t increase hit time past 1-2 cycles 

(approx 8-32KB in modern technology)

[design issues more complex with out-of-order superscalar processors]
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Causes for Cache Misses

• Compulsory:  

first-reference to a block a.k.a. cold start misses
- misses that would occur even with infinite cache

• Capacity:
cache is too small to hold all data the program needs

- misses that would occur even under perfect
placement & replacement policy

• Conflict:
misses from collisions due to block-placement strategy

- misses that would not occur with full associativity
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Effect of Cache Parameters on Performance

Larger
capacity 

cache

Higher 
associativity 

cache

Larger block 
size cache *

Compulsory misses

Capacity misses

Conflict misses

Hit latency

Miss latency

?

* Assume substantial spatial locality
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Block-level Optimizations

• Tags are too large, i.e., too much overhead

– Simple solution: Larger blocks, but miss penalty 
could be large.

• Sub-block placement (aka sector cache)

– A valid bit added to units smaller than the full block, 
called sub-blocks

– Only read a sub-block on a miss

– If a tag matches, is the word in the cache?

100

300

204

1             1              1             1  

1 1              0             0

0             1              0             1
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Replacement Policy

Which block from a set should be evicted?

• Random

• Least Recently Used (LRU)
• LRU cache state must be updated on every access
• true implementation only feasible for small sets (2-way)
• pseudo-LRU binary tree was often used for 4-8 way

• First In, First Out (FIFO) a.k.a. Round-Robin
• used in highly associative caches

• Not Least Recently Used (NLRU)
• FIFO with exception for most recently used block or blocks

• One-bit LRU
• Each way represented by a bit. Set on use, replace first unused.
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Re-reference interval prediction
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C A F Btag

RRI

B C A FH F E F

C A F Btag

RRIP

miss Time

0        1        2       3        4         5       6

4 5 0 3

Best candidate?

A

0 1 0 0

References:

One-bit LRURRIP3 0 12
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Multiple replacement policies
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0: Policy A
1: Policy B

Counter

+1

>0

-1

0: Policy A Missed
1: Policy B Missed

Policy A
Policy B

S
e
ts

Cache

Miss

How do we decide 
which policy to use?

Use the best replacement policy for a program
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Multilevel Caches

• A memory cannot be large and fast

• Add level of cache to reduce miss penalty
– Each level can have longer latency than level above

– So, increase sizes of cache at each level

CPU L1 L2 DRAM

Metrics:

Local miss rate = misses in cache/ accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions
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Inclusion Policy

• Inclusive multilevel cache: 
– Inner cache holds copies of data in outer cache

– External access need only check outer cache

– Most common case  

• Exclusive multilevel caches:
– Inner cache may hold data not in outer cache

– Swap lines between inner/outer caches on miss

– Used in AMD Athlon with 64KB primary and 256KB 
secondary cache

Why choose one type or the other?
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Victim Caches (HP 7200)

Victim cache is a small associative back up cache, added to a direct 
mapped cache, which holds recently evicted lines
• First look up in direct mapped cache
• If miss, look in victim cache
• If hit in victim cache, swap hit line with line now evicted from L1
• If miss in victim cache, L1 victim -> VC, VC victim->?
Fast hit time of direct mapped but with reduced conflict misses

L1 Data 
Cache

Unified L2 
Cache

RF

CPU

Evicted data from L1

Evicted data from VC

where ?

Hit data (miss in L1)
Victim Cache
FA, 4 blocks
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Way Predicting Caches
(MIPS R10000 L2 cache)

• Use processor address to index into way 
prediction table

• Look in predicted way at given index, then:

HIT MISS

Return copy

of data from

cache

Look in other way

Read block of data from 

next level of cache

MISS

SLOW HIT

(change entry in 

prediction table)
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Way Predicting Instruction Cache 
(Alpha 21264-like)

PC

addr inst
Primary
Instruction
Cache

0x4
Add

Sequential Way

Branch Target Way

way

Jump target

Jump 
control
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Typical memory hierarchies
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Thank you !

Next lecture – virtual memory


