
http://www.csg.csail.mit.edu/6.823

Joel Emer
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Cache Organization

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

CPU-Memory Bottleneck

MemoryCPU

Performance of high-speed computers is usually

limited by memory bandwidth & latency

• Latency (time for a single access)
Memory access time >> Processor cycle time

• Bandwidth (number of accesses per unit time)
if fraction m of instructions access memory,

1+m memory references / instruction

 CPI = 1 requires 1+m memory refs / cycle

L07- 2

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Memory Technology

• Early machines used a variety of memory technologies
– Manchester Mark I used CRT Memory Storage
– EDVAC used a mercury delay line

• Core memory was first large scale reliable main memory
– invented by Forrester in late 40s at MIT for Whirlwind project
– Bits stored as magnetization polarity on small ferrite cores threaded onto 2

dimensional grid of wires

• First commercial DRAM was Intel 1103
– 1Kbit of storage on single chip
– charge on a capacitor used to hold value

• Semiconductor memory quickly replaced core in 1970s
– Intel formed to exploit market for semiconductor memory

• Flash memory
– Slower, but denser than DRAM. Also non-volatile, but with wearout issues

• Phase change memory (PCM) looking promising for the future
– Slightly slower, but much denser than DRAM and non-volatile

L07- 3

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

DRAM Architecture

R
o
w

 A
d
d
re

s
s

D
e
c
o
d
e
r

Col.
1

Col.
2M

Row 1

Row 2N

Column Decoder &
Sense Amplifiers

M

N

N+M

bit lines
word lines

Memory cell
(one bit)

DData

• Bits stored in 2-dimensional arrays on chip

• Modern chips have around 4 logical banks on each chip

– each logical bank physically implemented as many smaller arrays

L07- 4

Sanchez & Emer

DRAM timing

Februrary 26, 2014 http://www.csg.csail.mit.edu/6.823

L07- 5

DRAM Spec:
CL, tRCD, tRP, tRAS, e.g., 9-9-9-24

Sanchez & Emer

6-Transistor SRAM Cell

bit bit

word
(row select)

10

0 1

Basic Static RAM Cell

• Write:

1. Drive bit lines (bit=1, bitbar=0)

2. Select row

• Read:

1. Precharge bit and bitbar to Vdd

2. Select row

3. Cell pulls one line low

4. Column sense amp detects difference between bit & bitbar

bit bit

word

Often replaced with
pullup to save area

1
0

Februrary 26, 2014 http://www.csg.csail.mit.edu/6.823

L07- 6

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Processor-DRAM Gap (latency)

Four-issue 2GHz superscalar accessing 100ns DRAM could
execute 800 instructions during time for one memory access!

L07- 7

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Little’s Law

Throughput (T) = Number in Flight (N) / Latency (L)

MemoryCPU
Table of

accesses in
flight

Example:
--- Assume infinite bandwidth memory
--- 100 cycles / memory reference
--- 1 + 0.2 memory references / instruction

 Table size = 1.2 * 100 = 120 entries

120 independent memory operations in flight!

L07- 8

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Multilevel Memory

Strategy: Reduce average latency using
small, fast memories called caches.

Caches are a mechanism to reduce memory
latency based on the empirical observation
that the patterns of memory references
made by a processor are often highly
predictable:

PC

… 96

loop: ADD r2, r1, r1 100

SUBI r3, r3, #1 104

BNEZ r3, loop 108

… 112

L07- 9

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Typical Memory Reference Patterns
Address

Time

Instruction

fetches

Stack

accesses

Data

accesses

n loop iterations

subroutine

call
subroutine

return

argument access

scalar accesses

L07- 10

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Common Predictable Patterns

Two predictable properties of memory references:

– Temporal Locality: If a location is referenced it
is likely to be referenced again in the near
future.

– Spatial Locality: If a location is referenced it is
likely that locations near it will be referenced in
the near future.

L07- 11

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Memory Hierarchy

• size: Register << SRAM << DRAM why?
• latency: Register << SRAM << DRAM why?
• bandwidth: on-chip >> off-chip why?

On a data access:
hit (data  fast memory)  low latency access
miss (data  fast memory)  long latency access (DRAM)

Small,
Fast

Memory
(RF, SRAM)

CPU
Big, Slow
Memory
(DRAM)

A B

holds frequently used data

L07- 12

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Management of Memory Hierarchy

• Small/fast storage, e.g., registers

– Address usually specified in instruction

– Generally implemented directly as a register file

• but hardware might do things behind software’s back,
e.g., stack management, register renaming

• Large/slower storage, e.g., memory

– Address usually computed from values in register

– Generally implemented as a cache hierarchy

• hardware decides what is kept in fast memory

• but software may provide “hints”, e.g., don’t cache or
prefetch

L07- 13

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Inside a Cache

CACHEProcessor Main
Memory

Address Address

DataData

Address
Tag

Data Block

Data
Byte

Data
Byte

Data
Byte

Line100

304

6848

copy of main memory
location 100

copy of main memory
location 101

416

How many bits are needed in tag?

Enough to uniquely identify block

L07- 14

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Cache Algorithm (Read)

Look at Processor Address, search cache tags to find
match. Then either

Found in cache
a.k.a. HIT

Return copy
of data from
cache

Not in cache
a.k.a. MISS

Read block of data from
Main Memory

Wait …

Return data to processor
and update cache

Q: Which line do we replace?

L07- 15

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Direct-Mapped Cache

Tag Data BlockV

=

OffsetTag Index

t k b

t

HIT Data Word or Byte

2k

lines

Block number Block offset

What is a bad reference pattern?

Strided at size of cache

L07- 16

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Direct Map Address Selection
higher-order vs. lower-order address bits

Tag Data BlockV

=

OffsetIndex

tk
b

t

HIT Data Word or Byte

2k

lines

Tag

Why might this be undesirable?

Spatially local blocks conflict

L07- 17

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Hashed Address Selection

Tag Data BlockV

=

Offset

t
b

t

HIT Data Word or Byte

2k

lines

Address

Hash

What are the tradeoffs of hashing?

Good: Regular strides don’t conflict
Bad: Hash adds latency

Tag is larger

L07- 18

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

2-Way Set-Associative Cache

Tag Data BlockV

=

Block
Offset

Tag Index

t
k

b

HIT

Tag Data BlockV

Data
Word
or Byte

=

t

L07- 19

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Set-Associative RAM-Tag Cache

Not energy-efficient

–A tag and data word is
read from every way

Two-phase approach

–First read tags, then
just read data from
selected way

–More energy-efficient

–Doubles latency in L1

–OK, for L2 and above,
why?

=? =?

Tag Status Data Tag Status Data

Tag Index Offset

L07- 20

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Placement Policy

Set Number

Cache

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12
can be placed

0 1 2 3 4 5 6 7

Direct
Mapped
only into
block 4

(12 mod 8)

Fully
Associative
Anywhere

0 1 2 3

(2-way) Set
Associative
anywhere in

set 0
(12 mod 4)

L07- 21

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Fully Associative Cache

Tag Data BlockV

=

B
lo

c
k

O
ff

s
e
t

T
a
g

t

b

HIT

Data
Word
or Byte

=

=

t

L07- 22

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Improving Cache Performance

Average memory access time =
Hit time + Miss rate x Miss penalty

To improve performance:
• reduce the hit time
• reduce the miss rate (e.g., larger, better policy)
• reduce the miss penalty (e.g., L2 cache)

What is the simplest design strategy?

Biggest cache that doesn’t increase hit time past 1-2 cycles

(approx 8-32KB in modern technology)

[design issues more complex with out-of-order superscalar processors]

L07- 23

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Causes for Cache Misses

• Compulsory:

first-reference to a block a.k.a. cold start misses
- misses that would occur even with infinite cache

• Capacity:
cache is too small to hold all data the program needs

- misses that would occur even under perfect
placement & replacement policy

• Conflict:
misses from collisions due to block-placement strategy

- misses that would not occur with full associativity

L07- 24

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Effect of Cache Parameters on Performance

Larger
capacity

cache

Higher
associativity

cache

Larger block
size cache *

Compulsory misses

Capacity misses

Conflict misses

Hit latency

Miss latency

?

* Assume substantial spatial locality

L07- 25

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Block-level Optimizations

• Tags are too large, i.e., too much overhead

– Simple solution: Larger blocks, but miss penalty
could be large.

• Sub-block placement (aka sector cache)

– A valid bit added to units smaller than the full block,
called sub-blocks

– Only read a sub-block on a miss

– If a tag matches, is the word in the cache?

100

300

204

1 1 1 1

1 1 0 0

0 1 0 1

L07- 26

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Replacement Policy

Which block from a set should be evicted?

• Random

• Least Recently Used (LRU)
• LRU cache state must be updated on every access
• true implementation only feasible for small sets (2-way)
• pseudo-LRU binary tree was often used for 4-8 way

• First In, First Out (FIFO) a.k.a. Round-Robin
• used in highly associative caches

• Not Least Recently Used (NLRU)
• FIFO with exception for most recently used block or blocks

• One-bit LRU
• Each way represented by a bit. Set on use, replace first unused.

L07- 27

Sanchez & Emer

Re-reference interval prediction

Februrary 26, 2014 http://www.csg.csail.mit.edu/6.823

C A F Btag

RRI

B C A FH F E F

C A F Btag

RRIP

miss Time

0 1 2 3 4 5 6

4 5 0 3

Best candidate?

A

0 1 0 0

References:

One-bit LRURRIP3 0 12

L07- 28

Sanchez & Emer

Multiple replacement policies

Februrary 26, 2014 http://www.csg.csail.mit.edu/6.823

0: Policy A
1: Policy B

Counter

+1

>0

-1

0: Policy A Missed
1: Policy B Missed

Policy A
Policy B

S
e
ts

Cache

Miss

How do we decide
which policy to use?

Use the best replacement policy for a program

L07- 29

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Multilevel Caches

• A memory cannot be large and fast

• Add level of cache to reduce miss penalty
– Each level can have longer latency than level above

– So, increase sizes of cache at each level

CPU L1 L2 DRAM

Metrics:

Local miss rate = misses in cache/ accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions

L07- 30

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Inclusion Policy

• Inclusive multilevel cache:
– Inner cache holds copies of data in outer cache

– External access need only check outer cache

– Most common case

• Exclusive multilevel caches:
– Inner cache may hold data not in outer cache

– Swap lines between inner/outer caches on miss

– Used in AMD Athlon with 64KB primary and 256KB
secondary cache

Why choose one type or the other?

L07- 31

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Victim Caches (HP 7200)

Victim cache is a small associative back up cache, added to a direct
mapped cache, which holds recently evicted lines
• First look up in direct mapped cache
• If miss, look in victim cache
• If hit in victim cache, swap hit line with line now evicted from L1
• If miss in victim cache, L1 victim -> VC, VC victim->?
Fast hit time of direct mapped but with reduced conflict misses

L1 Data
Cache

Unified L2
Cache

RF

CPU

Evicted data from L1

Evicted data from VC

where ?

Hit data (miss in L1)
Victim Cache
FA, 4 blocks

L07- 32

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Way Predicting Caches
(MIPS R10000 L2 cache)

• Use processor address to index into way
prediction table

• Look in predicted way at given index, then:

HIT MISS

Return copy

of data from

cache

Look in other way

Read block of data from

next level of cache

MISS

SLOW HIT

(change entry in

prediction table)

L07- 33

Sanchez & EmerFebrurary 26, 2014 http://www.csg.csail.mit.edu/6.823

Way Predicting Instruction Cache
(Alpha 21264-like)

PC

addr inst
Primary
Instruction
Cache

0x4
Add

Sequential Way

Branch Target Way

way

Jump target

Jump
control

L07- 34

Sanchez & Emer

Typical memory hierarchies

Februrary 26, 2014 http://www.csg.csail.mit.edu/6.823

L07- 35

http://www.csg.csail.mit.edu/6.823

Thank you !

Next lecture – virtual memory

