
http://www.csg.csail.mit.edu/6.823

Daniel Sanchez
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Complex Pipelining:

Out-of-Order Execution, Register

Renaming and Exceptions

Sanchez & Emer March 12, 2014

L11-2

CDC 6600-style Scoreboard

IF I
D

WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

Instructions are issued in order;

An instruction is issued only if
– It cannot cause a RAW hazard

if operands are read
immediately then no need to
remember sources of
instructions in the execute
phases

– It cannot cause a WAW hazard
There can be at most

instruction in the execute
phase that can write in a

particular register

Busy[FU#]: Indicates FU’s availability
These bits are hardwired to FU's.

WP[reg#]: Records if a write is pending
for a register

Set to true by the Issue stage and
set to false by the WB stage

Scoreboard:
Two bit-vectors

Sanchez & Emer

Reminder: Scoreboard Dynamics

I1 DIVD f6, f6, f4
I2 LD f2, 45(r3)
I3 MULTD f0, f2, f4
I4 DIVD f8, f6, f2
I5 SUBD f10, f0, f6
I6 ADDD f6, f8, f2

Functional Unit Status
Int(1) Add(1) Mult(3) Div(4) WB WP

 t0 I1 f6 f6

 t1 I2 f2 f6 f6, f2

 t2 f6 f2 f6, f2 I2

 t3 I3 f0 f6 f6, f0

 t4 f0 f6 f6, f0 I1

 t5 I4 f0 f8 f0, f8

 t6 f8 f0 f0, f8 I3

 t7 I5 f10 f8 f8, f10

 t8 f8 f10 f8, f10 I5

 t9 f8 f8 I4

t10 I6 f6 f6

t11 f6 f6 I6

Issue

time

WB

time

Issue checks:
WP[dest]?
WP[src1] or WP[src2]?
Busy[FU#]?

March 12, 2014

L11-3

Sanchez & Emer March 12, 2014

L11-4

In-Order Issue Limitations: an example

 latency
1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

3 4

5

6

In-order restriction prevents instruction 4
from being dispatched

Sanchez & Emer March 12, 2014

L11-5

Out-of-Order Issue

• Issue stage buffer holds multiple instructions waiting to issue.

• Decode adds next instruction to buffer if there is space and
the instruction does not cause a WAR or WAW hazard.

• Can issue any instruction in buffer whose RAW hazards are
satisfied (for now at most one dispatch per cycle). A
writeback (WB) may enable more instructions.

IF ID WB

ALU Mem

Fadd

Fmul

Issue

How can we address the delay caused by a RAW dependence
associated with the next in-order instruction?

Find something
else to do!

Sanchez & Emer March 12, 2014

L11-6

In-Order Issue Limitations: an example

 latency
1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

3 4

5

6

Out-of-order: 1 (2,1) 4 4 2 3 . . 3 5 . . . 5 6 6

Out-of-order execution did not allow any significant improvement!

Sanchez & Emer March 12, 2014

L11-7

Instruction-level Parallelism via Renaming

 latency
1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6
Out-of-order: 1 (2,1) 4 4 5 . . . 2 (3,5) 3 6 6

1 2

3 4

5

6

X

Renaming eliminates WAR and WAW hazards
(renaming  additional storage)

F4’,

F4’

Sanchez & Emer March 12, 2014

L11-8

How many Instructions can
be in the pipeline

Which feature of an ISA limits the number of
instructions in the pipeline?

Out-of-order dispatch by itself does not provide
any significant performance improvement !

Sanchez & Emer March 12, 2014

L11-9

Little’s Law

Throughput (T) = Number in Flight (N) / Latency (L)

WB Issue Execution

Example:
4 floating point registers
8 cycles per floating point operation
  ½ issues per cycle!

Sanchez & Emer March 12, 2014

L11-10

Overcoming the Lack of
Register Names

Floating Point pipelines often cannot be kept filled
with small number of registers.
 IBM 360 had only 4 Floating Point Registers

Can a microarchitecture use more registers than
specified by the ISA without loss of ISA
compatibility ?

Yes, Robert Tomasulo of IBM suggested an ingenious
solution in 1967 based on on-the-fly register renaming

Sanchez & Emer March 12, 2014

L11-11

Register Renaming

• Decode does register renaming and adds instructions to
the issue stage reorder buffer (ROB)

  renaming makes WAR or WAW hazards impossible

• Any instruction in ROB whose RAW hazards have been
satisfied can be dispatched.

   Out-of-order or dataflow execution

IF ID WB

ALU Mem

Fadd

Fmul

Issue

Sanchez & Emer March 12, 2014

L11-12

Dataflow execution

Instruction slot is candidate for execution when:
•It holds a valid instruction (“use” bit is set)
•It has not already started execution (“exec” bit is clear)
•Both operands are available (p1 and p2 are set)

Reorder buffer

t1
t2
.
.
.

tn

ptr2
next to

deallocate

 prt1
next

available

Ins# use exec op p1 src1 p2 src2

Sanchez & Emer March 12, 2014

L11-13

Renaming & Out-of-order Issue
An example

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer

Ins# use exec op p1 src1 p2 src2
t1
t2

t
3

t
4

t
5

.

.

data (vi) / tag(ti)

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

t1

 1 1 0 LD

t2

 2 1 0 LD

 5 1 0 DIV 1 v1 0 t4

 4 1 0 SUB 1 v1 1 v1

t4

 3 1 0 MUL 0 t2 1 v1

t3

t5

v1

 1 1 1 LD 0

 4 1 1 SUB 1 v1 1 v1 4 0

v4

 5 1 0 DIV 1 v1 1 v4

 2 1 1 LD 2 0

 3 1 0 MUL 1 v2 1 v1

Sanchez & Emer March 12, 2014

L11-14

Data-Driven Execution

Renaming
table &
reg file

Reorder
buffer

Load
 Unit

FU FU
Store
 Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 t1
t2
.
.
tn

• Instruction template (i.e., tag t) is allocated by the
 Decode stage, which also stores the tag in the reg file
• When an instruction completes, its tag is deallocated

Replacing the
tag by its value
is an expensive
operation

Sanchez & Emer March 12, 2014

L11-15

Simplifying Allocation/Deallocation

Instruction buffer is managed circularly
•“exec” bit is set when instruction begins execution
•When an instruction completes its “use” bit is marked free
• ptr2 is incremented only if the “use” bit is marked free

Reorder buffer

t1
t2
.
.
.

tn

ptr2
next to

deallocate

 prt1
next

available

Ins# use exec op p1 src1 p2 src2

Sanchez & Emer March 12, 2014

L11-16

IBM 360/91 Floating Point Unit
R. M. Tomasulo, 1967

Mult

 p data p data 1
2

 p data 1
2
3
4
5
6

data load
buffers
(from
memory)

1
2
3
4

Adder

 p data p data 1
2
3

Floating
Point
Reg

store buffers
(to memory)

...

instructions

Common bus ensures that data is made
available immediately to all the instructions
waiting for it

distribute
instruction
templates
by
functional
units

< t, result >

 p data

Sanchez & Emer March 12, 2014

L11-17

Effectiveness?

Renaming and Out-of-order execution was first
implemented in 1969 in IBM 360/91 but did not
show up in the subsequent models until mid-
nineties.
 Why?

1. Effective on a very small class of programs
2. Did not address the memory latency problem which
 turned out be a much bigger issue than FU latency
3. Made exceptions imprecise

 One more problem needed to be solved

Control transfers

More on this in the next lecture

Sanchez & Emer March 12, 2014

L11-18

Precise Exceptions

Exceptions can be viewed as an implicit conditional subroutine
call that is inserted between two instructions.

Therefore, it must appear as if the exception is taken between
two instructions (say Ii and Ii+1)

• the effect of all instructions up to and including Ii is complete
• no effect of any instruction after Ii has taken place

The handler either aborts the program or restarts it at Ii+1 .

Exceptions are relatively unlikely events that need special
processing, but where adding explicit control flow instructions is
not desired, e.g., divide by 0, page fault

Sanchez & Emer March 12, 2014

L11-19

Effect on Exceptions
Out-of-order Completion

I1 DIVD f6, f6, f4
I2 LD f2, 45(r3)
I3 MULTD f0, f2, f4
I4 DIVD f8, f6, f2
I5 SUBD f10, f0, f6
I6 ADDD f6, f8, f2

out-of-order comp 1 2 2 3 1 4 3 5 5 4 6 6

Consider exceptions

Precise exceptions are difficult to implement at high speed
 - want to start execution of later instructions before
 exception checks finished on earlier instructions

restore f2 restore f10

Sanchez & Emer March 12, 2014

L11-20

Exceptions

• Exceptions create a dependence on the value of the next PC

• Options for handling this dependence:

• How can we handle rollback on mis-speculation

• Note: earlier exceptions must override later ones

Delay state update until commit on speculated instructions

• Stall
• Bypass
• Find something else to do
• Change the architecture
• Speculate!

No
No
No
Sometimes: Alpha, Multiflow
Most common approach!

Sanchez & Emer March 12, 2014

L11-21

Fetch: Instruction bits retrieved
from cache.

Phases of Instruction Execution

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute: Instructions and operands sent to
execution units .
When execution completes, all results and
exception flags are available.

Decode: Instructions placed in appropriate
issue (aka “dispatch”) stage buffer

Reorder
Buffer Commit: Instruction irrevocably updates

architectural state (aka “graduation” or
“completion”).

PC

In order

In-order

Out of
order

Sanchez & Emer March 12, 2014

L11-22

Exception Handling
(In-Order Five-Stage Pipeline)

 Hold exception flags in pipeline until commit point (M stage)

•If exception at commit:
• update Cause/EPC registers
• kill all stages
• fetch at handler PC

Inject external interrupts at commit point

Asynchronous
Interrupts

PC
Inst.
Mem D Decode E M

Data
Mem W +

Kill D
Stage

Kill F
Stage

Kill E
Stage

Kill
Writeback

Select
Handler
PC

Commit
Point

Illegal
Opcode

Overflow Data Addr
Except

PC Address
Exceptions

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

Cause

EPC

Sanchez & Emer March 12, 2014

L11-23

In-Order Commit for Precise Exceptions

• Instructions fetched and decoded into instruction
 reorder buffer in-order
• Execution is out-of-order ( out-of-order completion)
• Commit (write-back to architectural state, i.e., regfile &
 memory, is in-order

Temporary storage needed to hold results before commit
(shadow registers and store buffers)

Fetch Decode

Execute

Commit Reorder Buffer

In-order In-order Out-of-order

Kill
Kill Kill

Exception? Inject handler PC

Sanchez & Emer March 12, 2014

L11-24

Extensions for Precise Exceptions

Reorder buffer

ptr2
next to
commit

ptr1
next

available

• add <pd, dest, data, cause> fields in the instruction template
• commit instructions to reg file and memory in program
 order  buffers can be maintained circularly
• on exception, clear reorder buffer by resetting ptr1=ptr2
 (stores must wait for commit before updating memory)

Inst# use exec op p1 src1 p2 src2 pd dest data cause

Sanchez & Emer March 12, 2014

L11-25

Rollback and Renaming

Register file does not contain renaming tags any more.
How does the decode stage find the tag of a source register?

Search the “dest” field in the reorder buffer

Register File
(now holds only
committed state)

Reorder
buffer

Load
 Unit

FU FU FU
Store
 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Sanchez & Emer March 12, 2014

L11-26

Renaming Table

Register
File

Reorder
buffer

Load
 Unit

FU FU FU
Store
 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table

Renaming table is a cache to speed up register name lookup.
It needs to be cleared after each exception taken.
When else are valid bits cleared? Control transfers

r1 t v

r2

tag
valid bit

Sanchez & Emer March 12, 2014

L11-27

Physical Register Files

• Reorder buffers are space inefficient – a
data value may be stored in multiple
places in the reorder buffer

• idea – keep all data values in a physical
register file
– Tag represents the name of the data value and

name of the physical register that holds it

– Reorder buffer contains only tags

Thus, 64 data values may be replaced by
8-bit tags for a 256 element physical
register file

More on this in later lectures …

Sanchez & Emer March 12, 2014

L11-28

Branch Penalty

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Reorder
Buffer Commit

PC

Fetch

Branch executed

Next fetch
started

How many instructions
need to be killed on a
misprediction?

Modern processors may
have > 10 pipeline stages
between nextPC calculation
and branch resolution !

next lecture:

Branch prediction &
Speculative execution

