
http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

Daniel Sanchez
Computer Science & Artificial Intelligence Lab

M.I.T.

Vector Computers

April 9, 2014

L17-1

Sanchez & Emer

Supercomputers

Definition of a supercomputer:

• Fastest machine in world at given task

• A device to turn a compute-bound problem into an I/O
bound problem

• Any machine costing $30M+

• Any machine designed by Seymour Cray

CDC6600 (Cray, 1964) regarded as first supercomputer

April 9, 2014

L17-2

Sanchez & Emer

Supercomputer Applications

 Typical application areas

• Military research (nuclear weapons, cryptography)
• Scientific research
• Weather forecasting
• Oil exploration
• Industrial design (car crash simulation)
• Bioinformatics
• Cryptography

All involve huge computations on large data sets

In 70s-80s, Supercomputer  Vector Machine

April 9, 2014

L17-3

Sanchez & Emer

Loop Unrolled Code Schedule

loop: ld f1, 0(r1)

 ld f2, 8(r1)

 ld f3, 16(r1)

 ld f4, 24(r1)

 add r1, 32

 fadd f5, f0, f1

 fadd f6, f0, f2

 fadd f7, f0, f3

 fadd f8, f0, f4

 sd f5, 0(r2)

 sd f6, 8(r2)

 sd f7, 16(r2)

 sd f8, 24(r2)

add r2, 32

 bne r1, r3, loop

Schedule

Int1 Int 2 M1 M2 FP+ FPx

loop: ld f1

ld f2

ld f3

ld f4 add r1 fadd f5

fadd f6

fadd f7

fadd f8

sd f5

sd f6

sd f7

sd f8 add r2 bne

April 9, 2014

L17-4

Sanchez & Emer

Vector Supercomputers

Epitomized by Cray-1, 1976:

• Scalar Unit
– Load/Store Architecture

• Vector Extension
– Vector Registers

– Vector Instructions

• Implementation
– Hardwired Control

– Highly Pipelined Functional Units

– Interleaved Memory System

– No Data Caches

– No Virtual Memory

April 9, 2014

L17-5

Sanchez & Emer

Cray-1 (1976)

April 9, 2014

L17-6

Sanchez & Emer

Cray-1 (1976)

Single Port
Memory

16 banks of
64-bit words

+
8-bit SECDED

80MW/sec
data
load/store

320MW/sec
instruction
buffer refill

4 Instruction
Buffers

64-bitx16 NIP

LIP

CIP

(A0)

((Ah) + j k m)

64
T Regs

(A0)

((Ah) + j k m)

64
B Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si

Tjk

Ai

Bjk

FP Add

FP Mul

FP Recip

Int Add

Int Logic

Int Shift

Pop Cnt

Sj

Si

Sk

Addr Add

Addr Mul

Aj

Ai

Ak

processor cycle 12.5 ns (80MHz)

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length 64 Element
Vector Registers

memory bank
cycle 50 ns

April 9, 2014

L17-7

Sanchez & Emer

Vector Programming Model

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions

ADDV v3, v1, v2 v3

v2
v1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLR Vector Length Register

April 9, 2014

L17-8

Sanchez & Emer

Vector Programming Model

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLR Vector Length Register

v1
Vector Load and

Store Instructions

LV v1, r1, r2

Base, r1 Stride, r2
Memory

Vector Register

April 9, 2014

L17-9

Sanchez & Emer

Vector Code Example

Scalar Code

 LI R4, 64

loop:

 L.D F0, 0(R1)

 L.D F2, 0(R2)

 ADD.D F4, F2, F0

 S.D F4, 0(R3)

 DADDIU R1, 8

 DADDIU R2, 8

 DADDIU R3, 8

 DSUBIU R4, 1

 BNEZ R4, loop

Vector Code

 LI VLR, 64

 LV V1, R1

 LV V2, R2

 ADDV.D V3, V1, V2

 SV V3, R3

C code

for (i=0; i<64; i++)

 C[i] = A[i] + B[i];

April 9, 2014

L17-10

Sanchez & Emer

Vector Instruction Set Advantages

• Compact

– one short instruction encodes N operations

• Expressive, tells hardware that these N operations:

– are independent

– use the same functional unit

– access disjoint registers

– access registers in same pattern as previous instructions

– access a contiguous block of memory
 (unit-stride load/store)

– access memory in a known pattern
(strided load/store)

• Scalable

– can run same code on more parallel pipelines (lanes)

April 9, 2014

L17-11

Sanchez & Emer

Vector Arithmetic Execution

• Use deep pipeline (=> fast
clock) to execute element
operations

• Simplifies control of deep
pipeline because elements in
vector are independent (=> no
hazards!)

V
1

V
2

V
3

V3 <- v1 * v2

Six stage multiply pipeline

April 9, 2014

L17-12

Sanchez & Emer

Vector Instruction Execution

ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined

functional units

April 9, 2014

L17-13

Sanchez & Emer

Vector Unit Structure

Lane

Functional
 Unit

Vector
Registers

Memory Subsystem

Elements
0, 4, 8, …

Elements
1, 5, 9, …

Elements
2, 6, 10, …

Elements
3, 7, 11, …

April 9, 2014

L17-14

Sanchez & Emer

Vector Memory System

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address
Generator

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency

• Bank busy time: Cycles between accesses to same bank

April 9, 2014

L17-15

Sanchez & Emer

load

Vector Instruction Parallelism

Can overlap execution of multiple vector instructions
– example machine has 32 elements per vector register and 8 lanes

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle

April 9, 2014

L17-16

Sanchez & Emer

Vector Chaining

• Vector version of register bypassing
– introduced with Cray-1

Memory

V
1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

April 9, 2014

L17-17

Sanchez & Emer

Vector Chaining Advantage

• With chaining, can start dependent instruction as soon as first
result appears

Load

Mul

Add

Load

Mul

Add Time

• Without chaining, must wait for last element of result to be
written before starting dependent instruction

April 9, 2014

L17-18

Sanchez & Emer

A Modern Vector Super:
NEC SX-6 (2003)

• CMOS Technology
– 500 MHz CPU, fits on single chip

– SDRAM main memory (up to 64GB)

• Scalar unit
– 4-way superscalar

– with out-of-order and speculative execution

– 64KB I-cache and 64KB data cache

• Vector unit
– 8 foreground VRegs + 64 background VRegs (256x64-bit elements/VReg)

– 1 multiply unit, 1 divide unit, 1 add/shift unit, 1 logical unit, 1 mask unit

– 8 lanes (8 GFLOPS peak, 16 FLOPS/cycle)

– 1 load & store unit (32x8 byte accesses/cycle)

– 32 GB/s memory bandwidth per processor

• SMP structure
– 8 CPUs connected to memory through crossbar

– 256 GB/s shared memory bandwidth (4096 interleaved banks)

April 9, 2014

L17-19

Sanchez & Emer

Multimedia Extensions

• Short vectors added to existing general-purpose ISAs

• Initially, 64-bit registers split into 2x32b or 4x16b or 8x8b

• Limited instruction set:
– No vector length control

– No strided load/store or scatter/gather

– Unit-stride loads must be aligned to 64-bit boundary

• Limited vector register length:
– Requires superscalar dispatch to keep multiply/add/load units busy

– Loop unrolling to hide latencies increases register pressure

• Trend towards fuller vector support in microprocessors
– e.g. x86: MMX  SSEx (128 bits)  AVX (256 bits)  AVX-512 (512 bits)

April 9, 2014

L17-20

Sanchez & Emer

Vector Stripmining
Problem: Vector registers have finite length

Solution: Break loops into pieces that fit in registers, “Stripmining”
 ANDI R1, N, 63 # N mod 64

 MTC1 VLR, R1 # Do remainder

loop:

 LV V1, RA

 DSLL R2, R1, 3 # Multiply by 8

 DADDU RA, RA, R2 # Bump pointer

 LV V2, RB

 DADDU RB, RB, R2

 ADDV.D V3, V1, V2

 SV V3, RC

 DADDU RC, RC, R2

 DSUBU N, N, R1 # Subtract elements

 LI R1, 64

 MTC1 VLR, R1 # Reset full length

 BGTZ N, loop # Any more to do?

for (i=0; i<N; i++)

 C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder

April 9, 2014

L17-21

Sanchez & Emer

Vector Conditional Execution
Problem: Want to vectorize loops with conditional code:

for (i=0; i<N; i++)

 if (A[i]>0) then

 A[i] = B[i];

Solution: Add vector mask (or flag) registers

– vector version of predicate registers, 1 bit per element

…and maskable vector instructions
– vector operation becomes NOP at elements where mask bit is clear

Code example:

CVM # Turn on all elements

LV vA, rA # Load entire A vector

SGTVS.D vA, F0 # Set bits in mask register where A>0

LV vA, rB # Load B vector into A under mask

SV vA, rA # Store A back to memory under mask
April 9, 2014

L17-22

Sanchez & Emer

Masked Vector Instructions

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation
– scan mask vector and only execute

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data port Write Enable

A[7] B[7] M[7]=1

Simple Implementation
– execute all N operations, turn off result

writeback according to mask

April 9, 2014

L17-23

Sanchez & Emer

Vector Scatter/Gather

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)

 A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)
LV vD, rD # Load indices in D vector

LVI vC, rC, vD # Load indirect from rC base

LV vB, rB # Load B vector

ADDV.D vA, vB, vC # Do add

SV vA, rA # Store result

April 9, 2014

L17-24

Sanchez & Emer

Vector Scatter/Gather

Scatter example:

for (i=0; i<N; i++)

 A[B[i]]++;

Is following a correct translation?

LV vB, rB # Load indices in B vector

LVI vA, rA, vB # Gather initial A values

ADDV vA, vA, 1 # Increment

SVI vA, rA, vB # Scatter incremented values

April 9, 2014

L17-25

Sanchez & Emer

Larrabee/Xeon Phi: x86 with vectors

• Short in-order instruction pipeline

• Separate scalar and vector units and register sets
– Vector unit: 16 32-bit ops/clock

• Fast access to L1 cache

• L1 connects to core’s portion of the L2 cache

Decode

Scalar
Registers

Scalar
Execute

Vector
Registers

Vector
Execute

L1
Cache

Vector
Registers

Vector
Registers

L1
Cache

April 9, 2014

L17-26

Sanchez & Emer

Larrabee Vector Architecture

• Data types
– Int32, Float32 and Float64 data

• Vector operations
– Two input/one output operations

– Full complement of arithmetic and media operations

• Fused multiply-add (three input arguments)

– Mask registers select lanes to write

– Swizzle the vector elements on register read

• Memory access
– Vector load/store including scatter/gather

– Data replication on read from memory

– Numeric type conversion on memory read

April 9, 2014

L17-27

Sanchez & Emer

Larrabee Motivation

Data in chart taken from Seiler, L., Carmean, D., et al. 2008. Larrabee:

A many-core x86 architecture for visual computing.

CPU cores 2 out of order 10 in-order

Instructions per issue 4 per clock 2 per clock

VPU lanes per core 4-wide SSE 16-wide

L2 cache size 4 MB 4 MB

Single-stream 4 per clock 2 per clock

Vector throughput 8 per clock 160 per clock

Design experiment: not a real 10-core chip!

20 times the multiply-add operations per clock

April 9, 2014

L17-28

http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

Next: GPUs

Thank you !

April 9, 2014

L17-29

