
http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

Daniel Sanchez

Computer Science & Artificial Intelligence Lab
M.I.T.

Graphics Processing Units

(GPUs)

April 14, 2014

L18-1

Sanchez & Emer

Why Study GPUs?

• Most successful commodity accelerator

• GPUs combine two useful strategies to increase
efficiency
– Massive parallelism

– Specialization

• Illustrates tension between performance and
programmability in accelerators

April 14, 2014

L18-2

Sanchez & Emer

Graphics Processors Timeline

• Till mid-90s

– VGA controllers used to accelerate some display functions

• Mid-90s to mid-2000s

– Fixed-function accelerators for the OpenGL and DirectX APIs

– 3D graphics: triangle setup & rasterization, texture mapping
& shading

• Modern GPUs

– Programmable multiprocessors optimized for data-parallelism

• OpenGL/DirectX and general purpose languages (CUDA,
OpenCL, …)

– Some fixed-function hardware (texture, raster ops, …)

L18-3

April 14, 2014

Sanchez & Emer

GPUs in Modern Systems

• Discrete GPUs
– PCIe-based accelerator

– Separate GPU memory

• Integrated GPUs
– CPU and GPU on same die

– Shared main memory and
last-level cache

• Pros/cons?

April 14, 2014

L18-4

Apple A7, 28nm
TSMC, 102mm2

Intel Ivy Bridge, 22nm 160mm2

GPU

Nvidia Kepler

Sanchez & Emer

Our Focus

• GPUs as programmable multicores

– Software model

– Hardware architecture

• Good high-level mental model

– GPU = Multicore chip with highly-threaded vector cores

– Not 100% accurate, but helpful as a SW developer

• Will use Nvidia programming model (CUDA) and
terminology (like Hennessy & Patterson)

– If interested, ask me about pointers for AMD/ATI
equivalents

L18-5

April 14, 2014

Sanchez & Emer

CUDA GPU Thread Model

• Single-program multiple data
(SPMD) model

• Each thread has local memory

• Parallel threads packed in blocks

– Access to per-block shared
memory

– Can synchronize with barrier

• Grids include independent blocks

– May execute concurrently

L18-6

April 14, 2014

Sanchez & Emer

Code Example: DAXPY

• CUDA code launches 256 threads per block

• CUDA vs vector terminology:

– Thread = 1 iteration of scalar loop (1 element in vector loop)

– Block = Body of vectorized loop (with VL=256 in this
example)

– Grid = Vectorizable loop

C Code CUDA Code

7

April 14, 2014

Sanchez & Emer

GPU Kernel Execution

Transfer input data from
CPU to GPU memory

Launch kernel (grid)

Wait for kernel to finish
(if synchronous)

Transfer results to CPU
memory

April 14, 2014

L18-8

CPU

Mem

GPU

Mem

3

1

2

4

1

3

2

4

• Data transfers can dominate execution time

• Integrated GPUs with unified address space  no

copies

Sanchez & Emer

GPU ISA and Compilation

• GPU microarchitecture and instruction set
change very frequently

• To achieve compatibility:
– Compiler produces intermediate pseudo-assembler

language (e.g., Nvidia PTX)

– GPU driver JITs kernel, tailoring it to specific
microarchitecture

• In practice, little performance portability
– Code is often tuned to specific GPU architecture

April 14, 2014

L18-9

Sanchez & Emer

GPU Architecture Overview

• A highly multithreaded multicore chip

• Example: Nvidia Kepler GK110

April 14, 2014

L18-10

• 15 cores or streaming
multiprocessors (SMX)

• 1.5MB Shared L2 cache
• 6 memory channels
• Fixed-function logic for

graphics (texture units,
raster ops, …)

• Scalability  change
number of cores and
memory channels

• Scheduling mostly
controlled by hardware

Sanchez & Emer

Instruction & Thread Scheduling:
Thread + Data Parallelism

• In theory, all threads can be independent

• For efficiency, 32 threads packed in warps

– Warp: set of parallel threads that execute the
same instruction

• Warp = a thread of vector instructions

• Warps introduce data parallelism

– 1 warp instruction keeps cores busy for
multiple cycles

• Individual threads may be inactive

– Because they branched differently

– This is the equivalent of conditional execution
(but implicit)

– Loss of efficiency if not data parallel

• Software thread blocks mapped to warps

– When HW resources are available

L18-11

April 14, 2014

Sanchez & Emer

Streaming Multiprocessor
Execution Overview

• Each SM supports 10s of
warps (e.g., 64 in Kepler)

• Fetch 1 instr/cycle

• Issue 1 ready instr/cycle
– Simple scoreboarding: all

warp elements must be ready

• Instruction broadcast to all
lanes

• Multithreading is the main
latency-hiding mechanism

April 14, 2014

L18-12

Sanchez & Emer

Context Size vs Number of
Contexts

• SMs support a variable number of contexts based
on required registers and shared memory
– Few large contexts  Fewer register spills

– Many small contexts  More latency tolerance

– Choice left to the compiler

– Constraint: All warps of a thread block must be scheduled on
same SM

• Example: Kepler supports up to 64 warps
– Max: 64 warps @ <=32 registers/thread

– Min: 8 warps @ 255 registers/thread

April 14, 2014

L18-13

Sanchez & Emer

Example: Kepler Streaming
Multiprocessor

• Execution units
– 192 simple FUs (int and

single-precision FP)

– 64 double-precision FUs

– 32 load-store FUs

– 32 special-function FUs
(e.g., sqrt, sin, cos, …)

• Memory structures
– 64K 32-bit registers

– 64KB data memory, split
between shared memory
(scratchpad) and L1

– 48KB read-only
data/texture cache

L18-14

April 14, 2014

Sanchez & Emer

Kepler Warp Scheduler &
Instruction Dispatch

• Up to 64 warps per SM

• 32 threads per warp
– 64K registers/SMX

– Up to 255 registers per thread
(if 8 warps)

• Scheduling
– 4 schedulers select 1 warp/cycle

– 2 independent instructions issued
per warp

– Total throughput = 4 * 2 * 32 =
256 ops per cycle

• Register scoreboarding
– To track ready instructions

– Simplified using static latencies
from compiler

L18-15

April 14, 2014

Sanchez & Emer

Handling Branch Divergence

• Similar to vector processors, but masks are
handled internally
– Per-warp stack stores PCs and masks of non-taken paths

• On a conditional branch
– Push the current mask onto the stack

– Push the mask and PC for the non-taken path

– Set the mask for the taken path

• At the end of the taken path
– Pop mask and PC for the non-taken path and execute

• At the end of the non-taken path
– Pop the original mask before the branch instruction

• If a mask is all zeros, skip the block

April 14, 2014

L18-16

Sanchez & Emer

Example: Branch Divergence

Push mask 1111

Push mask 0011

Set mask 1100

Push mask 1100

Push mask 0100

Set mask 1000

Pop mask 0100

Pop mask 0011

Pop mask 1111

April 14, 2014

L18-17

if (m[i] != 0) {

 if (a[i] > b[i]) {

 y[i] = a[i] - b[i];

 } else {

 y[i] = b[i] - a[i];

 }

} else {

 y[i] = 0;

}

3

1

2

4

5

3

1

2

4

5

Assume 4 threads/warp,

initial mask 1111

Sanchez & Emer

Memory Access Divergence

• All loads are gathers, all stores are scatters

• SM address coalescing unit detects sequential and
strided patterns, coalesces memory requests

• Writing efficient GPU code requires most accesses
to not conflict, even though programming model
allows arbitrary patterns!

April 14, 2014

L18-18

Sanchez & Emer

Memory System

• Per-SM caches and memories
– Instruction and constant data caches

– Multi-banked shared memory (scratchpad)

– No inter-SM coherence

• Bandwidth-optimized main memory
– Interleaved addresses

– Aggressive access scheduling

– Lossless and lossy compression (e.g., for textures)

• Per-thread private and global memories mapped to DRAM
– Rely on multithreading to hide long latencies

• Recent GPUs feature a small shared L2
– Reduce energy, amplify bandwidth

– Faster atomic operations

April 14, 2014

L18-19

Sanchez & Emer

Synchronization

• Barrier synchronization within a thread block
(__syncthreads())
– Tracking simplified by grouping threads into warps

– Counter tracks number of warps that have arrived to barrier

• Atomic operations to global memory
– Read-modify-write operations (add, exchange, compare-and-

swap, …)
– More on these in Lecture 22

– Performed at the memory controller or at the L2

• Limited inter-block synchronization!
– Can’t wait for other blocks to finish

April 14, 2014

L18-20

Sanchez & Emer

Example: Kepler Memory Hierarchy

• Each SM has 64KB of memory
– Split between shared mem and L1

cache
• 16/48, 32/32, 48/16

– 256B per access

• 48KB read-only data cache

• 1.5MB shared L2
– Supports synchronization operations

(atomicCAS, atomicADD, …)
– How many bytes/thread?

• GDDR5 main memory
– 384-bit interface (6x 64-bit

channels) @ 1.75 GHz (x4 T/cycle)
– 336 GB/s peak bandwidth

L18-21

April 14, 2014

Sanchez & Emer

Hardware Scheduling

• HW unit schedules grids
on SMX

– Priority-based scheduling

• 32 active grids

– More queued/paused

• Grids can be launched by
CPU or GPU
– Work from multiple CPU

threads and processes

L18-22

April 14, 2014

Sanchez & Emer

System-Level Issues

• Memory management
– First GPUs had no virtual memory

– Recent support for basic virtual memory (protection
among grids, no paging)

– Host-to-device copies with separate memories (discrete
GPUs)

• Scheduling
– Each kernel is non-preemptive (but can be aborted)

– Resource management and scheduling left to GPU driver,
opaque to OS

April 14, 2014

L18-23

Sanchez & Emer

Vector vs GPU Terminology

[H&P5, Fig 4.25]

April 14, 2014

L18-24

