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Why Study GPUs? 

• Most successful commodity accelerator 

 

• GPUs combine two useful strategies to increase 
efficiency 
– Massive parallelism 

– Specialization 

 

• Illustrates tension between performance and 
programmability in accelerators 
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Graphics Processors Timeline 

• Till mid-90s 

– VGA controllers  used to accelerate some display functions 
 

• Mid-90s to mid-2000s 

– Fixed-function accelerators for the OpenGL and DirectX APIs 

– 3D graphics: triangle setup & rasterization, texture mapping 
& shading 

 

• Modern GPUs 

– Programmable multiprocessors optimized for data-parallelism 

• OpenGL/DirectX and general purpose languages (CUDA, 
OpenCL, …) 

– Some fixed-function hardware (texture, raster ops, …) 
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GPUs in Modern Systems 

• Discrete GPUs 
– PCIe-based accelerator 

– Separate GPU memory 

 

 

• Integrated GPUs 
– CPU and GPU on same die 

– Shared main memory and 
last-level cache 

 

 

 

• Pros/cons? 

April 14, 2014 

L18-4 

Apple A7, 28nm 
TSMC, 102mm2 

Intel Ivy Bridge, 22nm 160mm2 

GPU 

Nvidia Kepler 
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Our Focus 

• GPUs as programmable multicores 

– Software model 

– Hardware architecture 

 

• Good high-level mental model 

– GPU = Multicore chip with highly-threaded vector cores 

– Not 100% accurate, but helpful as a SW developer 

 

• Will use Nvidia programming model (CUDA) and 
terminology (like Hennessy & Patterson) 

– If interested, ask me about pointers for AMD/ATI 
equivalents 
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CUDA GPU Thread Model 

• Single-program multiple data 
(SPMD) model  

 

• Each thread has local memory 
 

• Parallel threads packed in blocks 

– Access to per-block shared 
memory 

– Can synchronize with barrier 

 

• Grids include independent blocks 

– May execute concurrently 
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Code Example: DAXPY 

• CUDA code launches 256 threads per block 

• CUDA vs vector terminology: 

– Thread = 1 iteration of scalar loop (1 element in vector loop) 

– Block = Body of vectorized loop (with VL=256 in this 
example) 

– Grid = Vectorizable loop 

C Code CUDA Code 

7 
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GPU Kernel Execution 

Transfer input data from 
CPU to GPU memory 

Launch kernel (grid) 

Wait for kernel to finish 
(if synchronous) 

Transfer results to CPU 
memory 
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• Data transfers can dominate execution time 

• Integrated GPUs with unified address space  no 

copies 
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GPU ISA and Compilation 

• GPU microarchitecture and instruction set 
change very frequently 

 

 

• To achieve compatibility: 
– Compiler produces intermediate pseudo-assembler 

language (e.g., Nvidia PTX) 

– GPU driver JITs kernel, tailoring it to specific 
microarchitecture 

 

 

• In practice, little performance portability 
– Code is often tuned to specific GPU architecture 
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GPU Architecture Overview 

• A highly multithreaded multicore chip 

• Example: Nvidia Kepler GK110 
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• 15 cores or streaming 
multiprocessors (SMX) 

• 1.5MB Shared L2 cache 
• 6 memory channels 
• Fixed-function logic for 

graphics (texture units, 
raster ops, …) 
 

• Scalability  change 
number of  cores and 
memory channels 
 

• Scheduling mostly 
controlled by hardware  
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Instruction & Thread Scheduling:  
Thread + Data Parallelism 

• In theory, all threads can be independent 

• For efficiency, 32 threads packed in warps 

– Warp: set of parallel threads that execute the 
same instruction 

• Warp = a thread of vector instructions 

• Warps introduce data parallelism  

– 1 warp instruction keeps cores busy for 
multiple cycles 

• Individual threads may be inactive 

– Because they branched differently 

– This is the equivalent of conditional execution 
(but implicit) 

– Loss of efficiency if not data parallel 

• Software thread blocks mapped to warps 

– When HW resources are available 
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Streaming Multiprocessor 
Execution Overview 

• Each SM supports 10s of 
warps (e.g., 64 in Kepler) 

 

• Fetch 1 instr/cycle 
 

• Issue 1 ready instr/cycle 
– Simple scoreboarding: all 

warp elements must be ready 

 

• Instruction broadcast to all 
lanes 

 

• Multithreading is the main 
latency-hiding mechanism 
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Context Size vs Number of 
Contexts 

• SMs support a variable number of contexts based 
on required registers and shared memory 
– Few large contexts  Fewer register spills 

– Many small contexts  More latency tolerance 

– Choice left to the compiler 

– Constraint: All warps of a thread block must be scheduled on 
same SM 

 

• Example: Kepler supports up to 64 warps 
– Max: 64 warps @ <=32 registers/thread 

– Min: 8 warps @ 255 registers/thread 
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Example: Kepler Streaming 
Multiprocessor 

• Execution units 
– 192 simple FUs (int and 

single-precision FP) 

– 64 double-precision FUs 

– 32 load-store FUs 

– 32 special-function FUs 
(e.g., sqrt, sin, cos, …) 

 

• Memory structures 
– 64K 32-bit registers 

– 64KB data memory, split 
between shared memory 
(scratchpad) and L1 

– 48KB read-only 
data/texture cache 
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Kepler Warp Scheduler & 
Instruction Dispatch 

• Up to 64 warps per SM 

• 32 threads per warp 
– 64K registers/SMX 

– Up to 255 registers per thread 
(if 8 warps) 

 

• Scheduling  
– 4 schedulers select 1 warp/cycle 

– 2 independent instructions issued 
per warp 

– Total throughput = 4 * 2 * 32 = 
256 ops per cycle 

 

• Register scoreboarding 
– To track ready instructions 

– Simplified using static latencies 
from compiler 
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Handling Branch Divergence 

• Similar to vector processors, but masks are 
handled internally 
– Per-warp stack stores PCs and masks of non-taken paths 

• On a conditional branch 
– Push the current mask onto the stack 

– Push the mask and PC for the non-taken path 

– Set the mask for the taken path 

• At the end of the taken path 
– Pop mask and PC for the non-taken path and execute 

• At the end of the non-taken path 
– Pop the original mask before the branch instruction 

• If a mask is all zeros, skip the block 
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Example: Branch Divergence 

Push mask 1111 

Push mask 0011 

Set mask   1100 

 

Push mask 1100 

Push mask 0100 

Set mask   1000 

 

Pop mask   0100 

 

Pop mask   0011 

 

Pop mask   1111 
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if (m[i] != 0) { 

  if (a[i] > b[i]) { 

    y[i] = a[i] - b[i]; 

  } else { 

    y[i] = b[i] - a[i]; 

  } 

} else { 

  y[i] = 0; 

} 
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Assume 4 threads/warp, 

initial mask 1111 
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Memory Access Divergence 

• All loads are gathers, all stores are scatters 

 

• SM address coalescing unit detects sequential and 
strided patterns, coalesces memory requests 

 

• Writing efficient GPU code requires most accesses 
to not conflict, even though programming model 
allows arbitrary patterns! 
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Memory System 

• Per-SM caches and memories 
– Instruction and constant data caches 

– Multi-banked shared memory (scratchpad) 

– No inter-SM coherence 

 

• Bandwidth-optimized main memory 
– Interleaved addresses 

– Aggressive access scheduling 

– Lossless and lossy compression (e.g., for textures) 

 

• Per-thread private and global memories mapped to DRAM 
– Rely on multithreading to hide long latencies 

 

• Recent GPUs feature a small shared L2 
– Reduce energy, amplify bandwidth 

– Faster atomic operations 
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Synchronization 

• Barrier synchronization within a thread block 
(__syncthreads()) 
– Tracking simplified by grouping threads into warps 

– Counter tracks number of warps that have arrived to barrier 

 

• Atomic operations to global memory 
– Read-modify-write operations (add, exchange, compare-and-

swap, …) 
– More on these in Lecture 22 

– Performed at the memory controller or at the L2 

 

• Limited inter-block synchronization! 
– Can’t wait for other blocks to finish 
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Example: Kepler Memory Hierarchy 

• Each SM has 64KB of memory 
– Split between shared mem and L1 

cache 
• 16/48, 32/32, 48/16 

– 256B per access 

• 48KB read-only data cache 
 

• 1.5MB shared L2 
– Supports synchronization operations 

(atomicCAS, atomicADD, …) 
– How many bytes/thread? 

 

• GDDR5 main memory 
– 384-bit interface (6x 64-bit 

channels) @ 1.75 GHz (x4 T/cycle) 
– 336 GB/s peak bandwidth 
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Hardware Scheduling 

• HW unit schedules grids 
on SMX  

– Priority-based scheduling 

 

• 32 active grids 

– More queued/paused 

 

• Grids can be launched by 
CPU or GPU 
– Work from multiple CPU 

threads and processes 
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System-Level Issues 

• Memory management 
– First GPUs had no virtual memory 

– Recent support for basic virtual memory (protection 
among grids, no paging) 

– Host-to-device copies with separate memories (discrete 
GPUs) 

 

• Scheduling 
– Each kernel is non-preemptive (but can be aborted) 

– Resource management and scheduling left to GPU driver, 
opaque to OS 

April 14, 2014 

L18-23 



Sanchez & Emer 

Vector vs GPU Terminology 

[H&P5, Fig 4.25] 
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