
http://www.csg.csail.mit.edu/6.823

Reliable Architectures

Joel Emer
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-2

Strike Changes State of a Single Bit

01

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-3

Impact of Neutron Strike on a Si Device

• Secondary source of upsets: alpha particles from packaging

Strikes release electron &
hole pairs that can be
absorbed by source &
drain to alter the state of
the device

+
- ++ +-
- -

Transistor Device

source drain

neutron strike

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-4

Cosmic Rays Come From Deep Space

Earth’s Surface

p

n
p

p

n

n

p

p

n

n

n

• Neutron flux is higher at higher altitudes

3x - 5x increase in Denver at 5,000 feet

100x increase in airplanes at 30,000+ feet

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-5

Physical Solutions are hard

• Shielding?
– No practical absorbent (e.g., approximately > 10 ft of concrete)

– This is unlike Alpha particles which are easily blocked

• Technology solution: SOI?
– Partially-depleted SOI of some help, effect on logic unclear

– Fully-depleted SOI may help, but is challenging to manufacture

• Circuit level solution?
– Radiation hardened circuits can provide 10x improvement with

significant penalty in performance, area, cost

– 2-4x improvement may be possible with less penalty

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-6

Triple Modular Redundancy
(Von Neumann, 1956)

V does a majority vote on the results

M

M

M

V Result

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-7

Dual Modular Redundancy
(eg., Binac, Stratus)

• Processing stops on mismatch
• Error signal used to decide which processor be used to

restore state to other

M

M

C Mismatch?

Error?

Error?

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-8

Pair and Spare Lockstep
(e.g., Tandem, 1975)

• Primary creates periodic checkpoints
• Backup restarts from checkpoint on mismatch

M

M

C Mismatch?

Primary

M

M

C Mismatch?

Backup

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-9

Redundant Multithreading
(e.g., Reinhardt, Mukherjee, 2000)

• Writes are checked

X W X X W X X W

X W X X W X X W

C Fault?

Leading Thread

Trailing Thread

C Fault? C Fault?

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-10

Component Protection

• Fujitsu SPARC in 130 nm technology (ISSCC 2003)
– 80% of 200k latches protected with parity

– versus very few latches protected in commodity microprocessors

Error?

ECC

1 1 0

Parity

Parity

1 1 0

ECC

0

1 1

… …

…

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-11

Strike on a bit (e.g., in register file)

Bit

Read?

Bit has error

protection?

yes no

detection &

correction
no no error

benign fault
no error

detection only

affects program

outcome?

True DUE False DUE

noyesyes no

affects program

outcome?

benign fault
no error

SDC

yes no

SDC = Silent Data Corruption, DUE = Detected Unrecoverable Error

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-12

Metrics

• Interval-based
– MTTF = Mean Time to Failure

– MTTR = Mean Time to Repair

– MTBF = Mean Time Between Failures = MTTF + MTTR

– Availability = MTTF / MTBF

• Rate-based
– FIT = Failure in Time = 1 failure in a billion hours

– 1 year MTTF = 109 / (24 * 365) FIT = 114,155 FIT

– SER FIT = SDC FIT + DUE FIT

Total of 158K FIT

+

Cache: 0 FIT

IQ: 100K FIT

FU: 58K FIT

+

Hypothetical Example

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-13

Cosmic Ray Strikes: Evidence & Reaction

• Publicly disclosed incidence

– Error logs in large servers, E. Normand, “Single Event Upset at
Ground Level,” IEEE Trans. on Nucl Sci, Vol. 43, No. 6, Dec 1996.

– Sun Microsystems found cosmic ray strikes on L2 cache with
defective error protection caused Sun’s flagship servers to crash,
R. Baumann, IRPS Tutorial on SER, 2000.

– Cypress Semiconductor reported in 2004 a single soft error
brought a billion-dollar automotive factory to a halt once a
month, Zielger & Puchner, “SER – History, Trends, and
Challenges,” Cypress, 2004.

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-14

Vulnerable Bits Growing with Moore’s Law

12x GAP

Typical SDC goal: 1000 year MTBF
Typical DUE goal: 10-25 year MTBF

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-15

Architectural Vulnerability Factor (AVF)

AVFbit = Probability Bit Matters

=

of Visible Errors

of Bit Flips from Particle Strikes

FITbit= intrinsic FITbit * AVFbit

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-16

Architectural Vulnerability Factor
Does a bit matter?

• Branch Predictor
– Doesn’t matter at all (AVF = 0%)

• Program Counter
– Almost always matters (AVF ~ 100%)

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-17

Statistical Fault Injection (SFI)
with RTL

+ Naturally characterizes all logical structures

- RTL not available until late in the design cycle
- Numerous experiments to flip all bits
- Generally done at the chip level

– Limited structural insight

Logic

1

0

Simulate Strike on
Latch

0

output

Does Fault Propagate
to Architectural State

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-18

Architecturally Correct Execution (ACE)

• ACE path requires only a subset of values to flow correctly
through the program’s data flow graph (and the machine)

• Anything else (un-ACE path) can be derated away

Program Input

Program Outputs

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-19

Example of un-ACE instruction:
Dynamically Dead Instruction

Dynamically
Dead
Instruction

Most bits of an un-ACE instruction do not affect
program output

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-20

T = 3 ACE% = 0/4T = 2 ACE% = 1/4

Vulnerability of a structure

AVF = fraction of cycles a bit contains ACE state

T = 1 ACE% = 2/4

Average number of ACE bits in a cycle

Total number of bits in the structure=

T = 4 ACE% = 3/4
(2 + 1 + 0 + 3) / 4

4=

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-21

Little’s Law for ACEs

aceaceace LTN 

totalN

N
AVF

ace


Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-22

Computing AVF

• Approach is conservative
– Assume every bit is ACE unless proven otherwise

• Data Analysis using a Performance Model
– Prove that data held in a structure is un-ACE

• Timing Analysis using a Performance Model
– Tracks the time this data spent in the structure

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-23

Dynamic Instruction Breakdown

DYNAMICALLY

DEAD

20%

PERFORMANCE

INST

1%

NOP

26%

ACE

46%PREDICATED

FALSE

7%

Average across Spec2K slices

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-24

Mapping ACE & un-ACE Instructions to
the Instruction Queue

Architectural un-ACE Micro-architectural un-ACE

Wrong-

Path

Inst

Idle
NOP Prefetch

ACE

Inst

ACE

Inst

Ex-

ACE

Inst

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-25

ACE Lifetime Analysis (1)
(e.g., write-through data cache)

• Idle is unACE

• Assuming all time intervals are equal

• For 3/5 of the lifetime the bit is valid

• Gives a measure of the structure’s utilization
– Number of useful bits

– Amount of time useful bits are resident in structure

– Valid for a particular trace

Idle IdleValidValidValid

Fill Read Read Evict

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-26

• Valid is not necessarily ACE

• ACE % = AVF = 2/5 = 40%

• Example Lifetime Components
– ACE: fill-to-read, read-to-read

– unACE: idle, read-to-evict, write-to-evict

Idle Idle

Fill Read Read Evict

Write-through Data Cache

ACE Lifetime Analysis (2)
(e.g., write-through data cache)

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-27

• Data ACEness is a function of instruction ACEness

• Second Read is by an unACE instruction

• AVF = 1/5 = 20%

Idle Idle

Fill Read Read Evict

Write-through Data Cache

ACE Lifetime Analysis (3)
(e.g., write-through data cache)

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-28

Instruction Queue

ACE percentage = AVF = 29%

NOP

15%

ACE

29%

IDLE

31%

Ex-ACE

10%

WRONG PATH

3%

DYNAMICALLY

DEAD

8%

PREDICATED

FALSE

3%

PERFORMANCE

INST

1%

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-29

Strike on a bit (e.g., in register file)

Bit

Read?

Bit has error

protection?

yes no

detection &

correction
no no error

benign fault
no error

detection only

affects program

outcome?

True DUE False DUE

noyesyes no

affects program

outcome?

benign fault
no error

SDC

yes no

SDC = Silent Data Corruption, DUE = Detected Unrecoverable Error

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-30

True DUE AVF

29%

Uncommitted

6%

Neutral

16%
Dynamically

Dead

11%

Idle & Misc

38%

DUE AVF of Instruction Queue with Parity

False DUE AVF

33%

CPU2000

Asim

Simpoint

Itanium®2-like

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-31

Sources of False DUE in an
Instruction Queue

• Instructions with uncommitted results
– e.g., wrong-path, predicated-false

– solution:  (possibly incorrect) bit till commit

• Instruction types neutral to errors
– e.g., no-ops, prefetches, branch predict hints

– solution: anti-  bit

• Dynamically dead instructions
– instructions whose results will not be used in future

– solution:  bit beyond commit

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-32

Coping with Wrong-Path Instructions
(assume parity-protected instruction queue)

DECLARE

ERROR

ON ISSUE

• Problem: not enough information at issue

IQFetch Decode Execute Commit

Instruction

Cache (IC)
Data Cache

RRinst inst instX

Sanchez & EmerApril 16, 2014 http://www.csg.csail.mit.edu/6.823

L19-33

The  (Possibly Incorrect) Bit
(assume parity-protected instruction queue)

At commit point, declare error only if not wrong-path
instruction and  bit is set

IQFetch Decode Execute Commit

Instruction

Cache (IC)
Data Cache

RRinst inst inst

POST ERROR

IN  BIT ON

ISSUE

inst () inst () inst () inst ()

